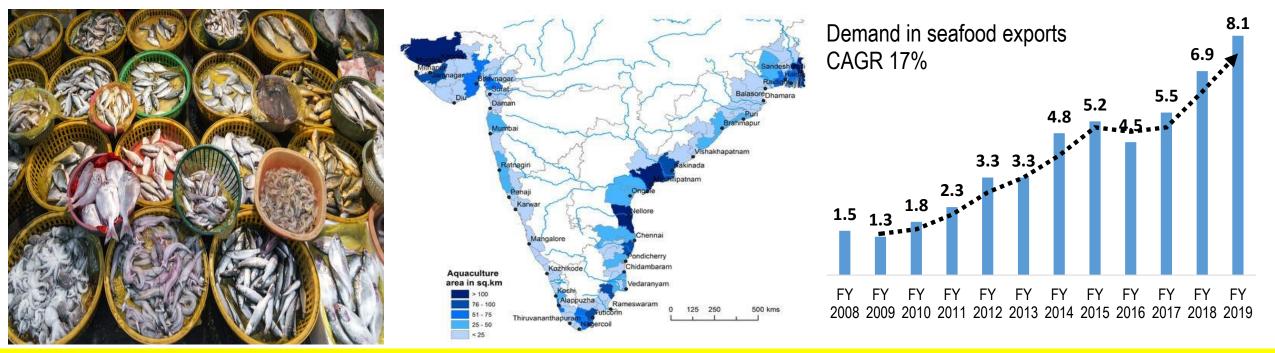
Natural Refrigerant based Cascade Refrigeration System for Seafood Application

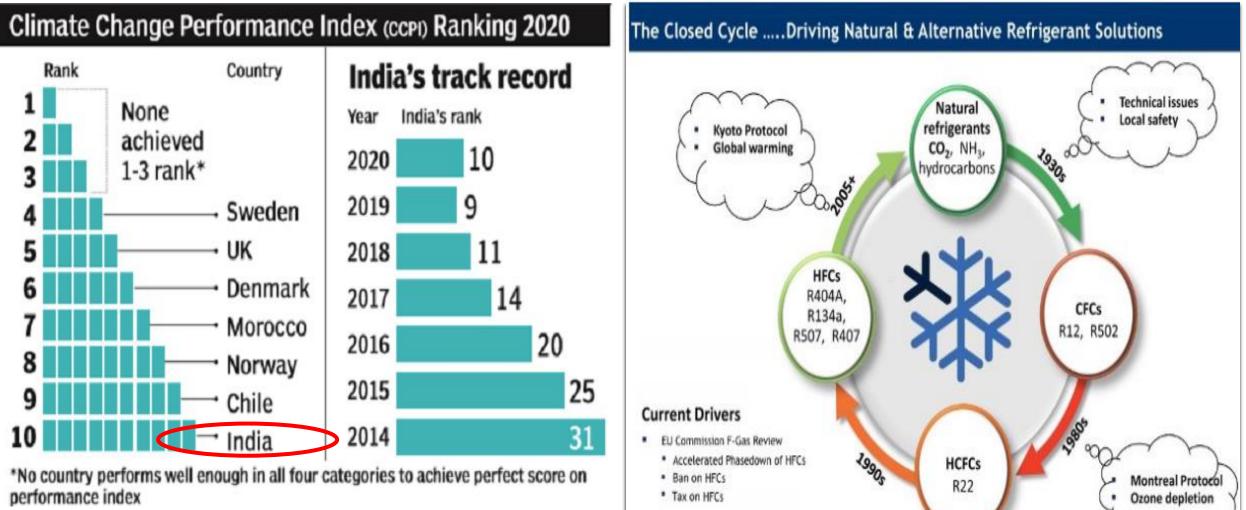
International Webinar on Practicality and Applicability of Natural Working Fluids



Santosh Kumar Saini PhD Scholar BITS Pilani, Pilani campus

Seafood Status of India

- Coastline 8000 km² along with inland water resources, an estimated production 12.6 Mt (2019-20)
- 6.3% of global production (NFDB, 2020), 2nd largest seafood producers (marine +Aquaculture)
- 10.23% exported, 4th biggest exporter
- Seafood export earnings was \$6.68 billion, about 1.2% of GDP, major contributor frozen seafood
- Per capita consumption: 6.5 kg \rightarrow 9 kg in 2030


Refrigeration in Seafood Preservation

- Highly perishable, 1/3rd of produce lost or wasted globally (FAO 2019)
- Impacts food security, food quality & safety, economical development and environment
- Low temperature, ensures longer shelf life retarding microbiological, physical and chemical changes
- Chilling (~0°C), superchilling(-3°C), freezing (-30°C to -50°C) and cold storage (-18°C to -30°C)
- About 20 kWh energy/ton-fish is consumed in processing | 50-70% in freezing and cold storage

Why Natural Refrigerants?

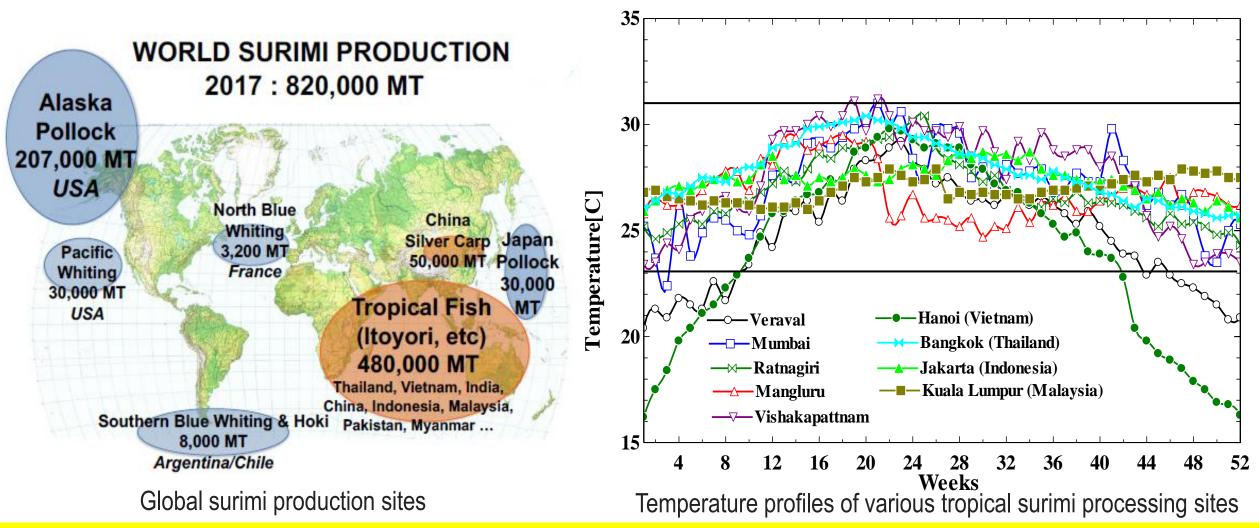
Major refrigerants in use | R22, R23, R404A, R410A, R507C & NH₃, most have high GWP

- a. GHG emission 40% c. Energy efficiency 20%
- b. Renewable energy 20%d. Climate policy 20%

Low GWP Refrigerant Choices

IUPAC name	Structure	ASHRAE designation	GWP ₁₀₀		
	Нус	Hydrocarbons and dimethylether			
Ethane	CH3-CH3	R-170	6†		
Propene (propylene)	CH ₂ =CH-CH ₃	R-1270	2*		
Propane	CH ₃ -CH ₂ -CH ₃	R-290	3 ⁺		
Methoxymethane (dimethylether)	CH3-O-CH3	R-E170	1†		
Cyclopropane	-CH2-CH2-CH2-	R-C270	86		
	Fluorinated alkanes (HFCs)				
Fluoromethane	CH ₃ F	R-41	116 ⁺		
Difluoromethane	CH ₂ F ₂	R-32	677 ⁺		
Fluoroethane	CH ₂ F-CH ₃	R-161	4 ⁺		
1,1-Difluoroethane	CHF ₂ -CH ₃	R-152a	138 ⁺		
1,1,2,2-Tetrafluoroethane	CHF2-CHF2	R-134	1120 ⁺		
	Fluorinated alkenes (HFOs) and alkynes				
Fluoroethene	CHF=CH ₂	R-1141	<1*		
1,1,2-Trifluoroethene	CF2=CHF	R-1123	3		
3,3,3-Trifluoroprop-1-yne	CF3-C≡CH	NA	1.4		
2,3,3,3-Tetrafluoroprop-1-ene	CH2=CF-CF3	R-1234yf	<1*		
(E)-1,2-difluoroethene	CHF=CHF	R-1132(E)	1		
3,3,3-Trifluoroprop-1-ene	CH2=CH-CF3	R-1243zf	<1*		
1,2-Difluoroprop-1-ene [§]	CHF=CF-CH ₃	R-1252ye [§]	2		
(E)-1,3,3,3-tetrafluoroprop-1-ene	CHF=CH-CF ₃	R-1234ze(E)	<1*		
(Z)-1,2,3,3,3-pentafluoro-prop-1-ene	CHF=CF-CF ₃	R-1225ye(Z)	<1*		
1-Fluoroprop-1-ene [§]	CHF=CH-CH ₃	R-1261ze [§]	1		

	Fluorinated oxygenates				
Trifluoro(methoxy)methane	CF3-O-CH3	R-E143a	523 ⁺		
2,2,4,5-Tetrafluoro-1,3-dioxole	-O-CF ₂ -O-CF=CF-	NA	1		
	Fluorinated nitrogen and sulfur compounds				
N,N,1,1-tetrafluormethaneamine	CHF2-NF2	NA	20		
Difluoromethanethiol	CHF ₂ -SH	NA	1		
Trifluoromethanethiol	CF3-SH	NA	1		
	Inorganic compounds				
Carbon dioxide	CO ₂	R-744	1.00 ⁺		
Ammonia	NH3	R-717	<1*		
	Current HFCs and HCFCs				
Pentafluoroethane	CF3-CHF2	R-125	3170 ⁺		
R-32/125 (50.0/50.0)	Blend	R-410A	1924 ⁺		
Chlorodifluoromethane	CHCIF ₂	R-22	1760 ⁺		
1,1,1,2-Tetrafluoroethane	CF3-CH2F	R-134a	1300 ⁺		


Comprehensive screening on PubChem database

 A few pure fluids possess the combination of chemical, environmental, thermodynamic, & safety properties necessary for a refrigerant and that these fluids are at least slightly flammable

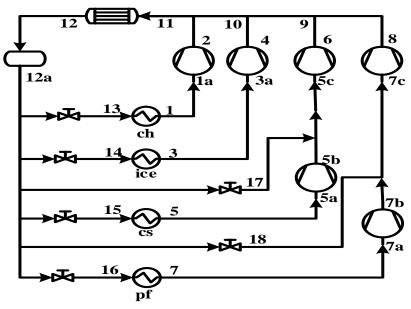
McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F., & Domanski, P. A. (2017). Limited options for low-global-warming-potential refrigerants. Nature Communications, 8(1), 1-9

Surimi (Seafood) Producing Sites

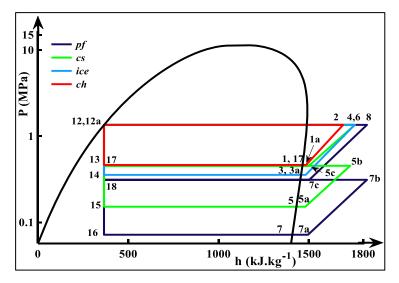
India's annual production of surimi is about 90,200 tonnes, ~11% of total global production

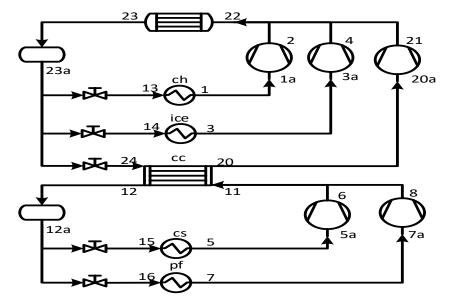
Cooling Demands & Operating Conditions

Production capacity: 10 tpd (Kaiko Surimi, Mumbai)

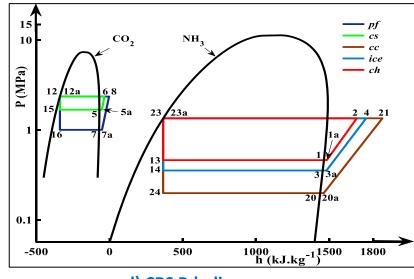

Cooling demands estimated for various temperature applications

Parameter	Evap	Amount	Product Temp (°C)	Evaporation Temp (°C)	Cooling Ioad (kW)	Load %
Chilled water	ch	100 t/d	7	2	115	38.4
lce	ice	10 t/d	0	-5	55	18.3
Cold storage	CS	1500 t	-20	-25	70	23.3
Freezing	pf	10 t/d	-35	-40	60	20.0

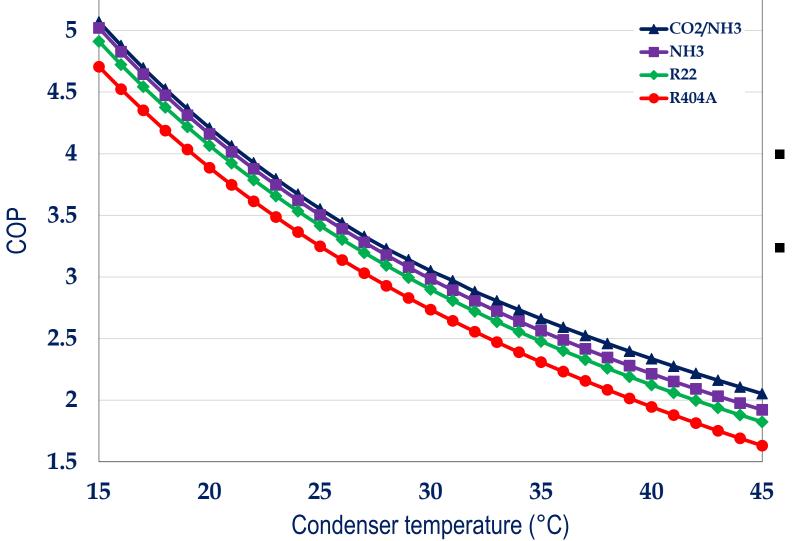

Operating condition used in the simulation


Parameters	Values (°C)
Suction superheat in ch and ice line	5
Suction superheat in cc and cs line	10
Suction superheat in pf line	20
Subcooling	0
Approach temperature	5
Cond temp.	15-45

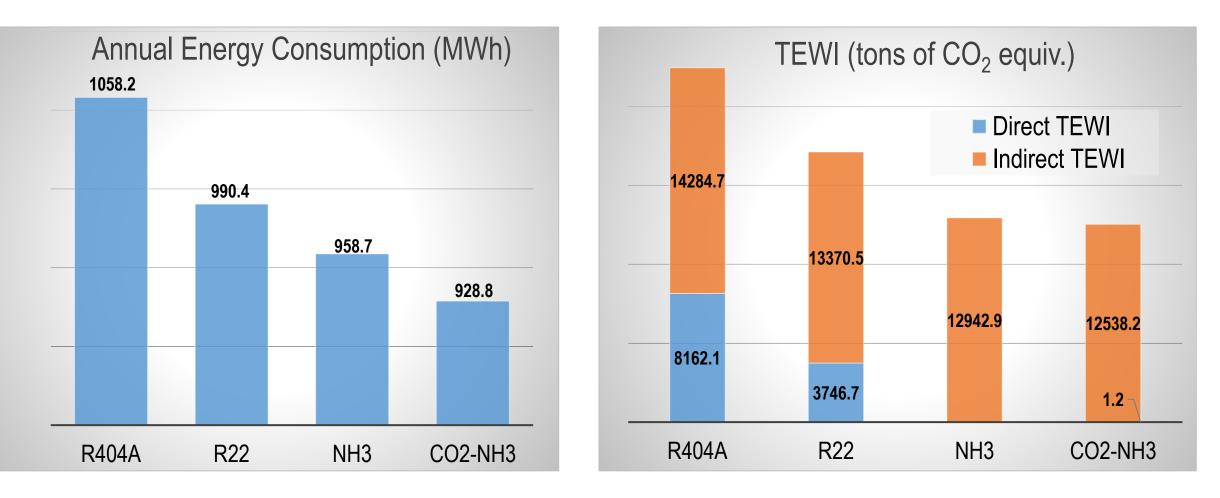
Refrigeration Systems



a) Baseline refrigeration system


c) Cascade refrigeration system

d) CRS P-h diagram


b) Baseline P-h diagram

Performance Comparison

- CO₂-NH₃ CRS has the highest COP, R404A in two-stage has the lowest
- Difference in COP: more pronounced at higher ambient temperatures

Performance Comparison

- CO₂-NH₃ CRS has the lowest AEC, 12.3% less compared to R404 2-stage VCR,
- Save ₹ 10.35 L (\$14278) annually
- CRS has the lowest TEWI too, 44.3%, 26.8% & 3.2% less compared to R404A, R22 & NH3 2-stage VCR 4/8/2021

Why CO₂-NH₃ CRS?

Mostly studied refrigerant pair for low temp applications | 20 out of 42 studies since 2005 in CRS refrigerant pairs (Aktemur et al., 2020)

- High liquid/vapor density (more pronounced at lower temp.)
- high volumetric refrigeration capacity
- low compression ratio
- Iower NBP temperature
- Non-toxic, non-flammable A1 safety group, safer
- Compact system
- Smaller compressor displacement at low temp
- Thermally efficient copper pipes in heat exchangers
- Low critical temp & high critical pressure
- Limited skilled labour
- High component cost
- Absence of local manufacturer

NH₃

- High latent heat of vaporization, 6-8 times others (at 0 °C)
- Well-established refrigerant large industry
- Negligible environmental impacts
- well skilled labour
- local component manufacturers
- easy leak detection
- Lower density, large component size, material compatibility issues
- Toxicity and flammability (B2L)
- Regulatory restrictions
- Food contamination potential

Conclusion

- Increasing seafood demand and production, more cold chain infrastructure to overcome food waste issues
- Increasing energy demand for cooling and various restriction policies to reduce environmental impact forcing use of environmentally benign refrigerants
- Proposed system uses natural refrigerants, having negligible direct and lesser indirect environmental impacts
- Improved thermodynamic performance
- Other benefits
 - Reduction in number of compressors, pressure ratio in compression, total NH₃ charge
 - Possible isolation of NH₃ from food

This work was supported under grant BT/IN/INNO-Indigo/12/NK/2017-18 from DBT India, and NFR Norway | Project # 281262

ReValue: Innovative technologies for improving resource utilization in the Indo-European fish value chains

Thanks much for your attention