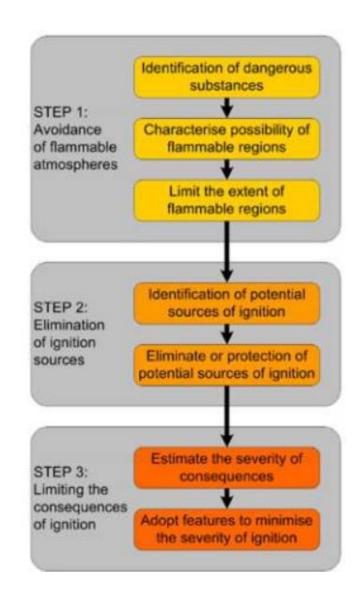
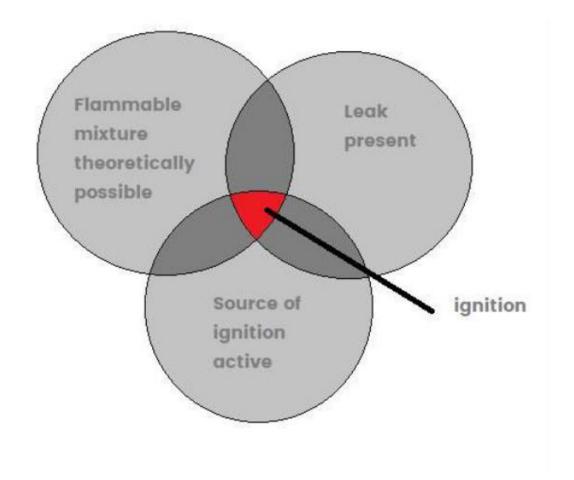


R 290 Experience

- Hydrofluorocarbons (HFCs), the human-made chemicals inside of air-conditioners used to cool the air, are super greenhouse gases, up to 3,000 times more potent than CO2 at trapping heat in the atmosphere. What it comes down to is this: By cooling ourselves off, we risk cooking ourselves to death. -- Source- Rolling Stone News June 22,20221
- The environmentally harmful effect of HFO refrigerants due to the trifluoroacetic acid that is formed as one of their atmospheric decay products will very likely lead to banning HFO refrigerants in a future European F-gas regulation. Ultimately, only natural refrigerants will be approved for new installations.
- At least two enterprises have development of ACs using HC-290 Gree in China and Godrej in India.

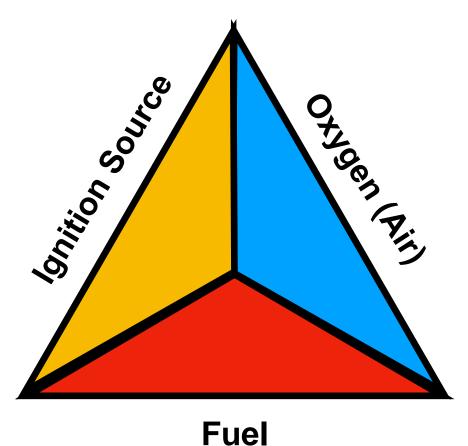
In India ,Godrej participated in the GIZ program under German Ministry of environment to adopt R290 to reduce green house emission


Hydrocarbon Refrigerant Safety

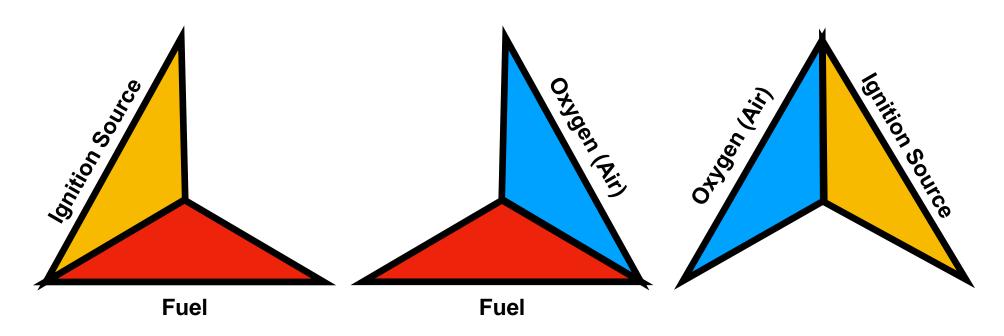


Hydrocarbon Refrigerants are Flammable

- Hydrocarbons are used Daily and Safely throughout the world today for Cooking, Heating, Powering Vehicles, and as Aerosol Propellants for Fly Spray, Deodorants, Whipped Cream and Cooking Sprays etc..
- The Application of Flammable HC Refrigerants can be done safely as with any other type of refrigerant.
- All Refrigeration & Air Conditioning Systems Using Chemical Refrigerants Become Flammable due to the oil mixing with the refrigerant as it travels around the system.
- Most Chemical Refrigerants produce toxic by-products and poisons gases when they are burnt or over heated
- Hydrocarbons DO NOT spontaneously combust on contact with air


R290 Hazard Analysis

The Flammability Triangle



- Here we have all 3 elements in place to have the potential for a fire or ignition
- You MUST have ALL THREE for any risk to occur

Flammability Triangle Continued

- Here We Have Only 2 of the 3 Elements Needed to Cause a Fire or Ignition
- Remove Any ONE of the 3 Elements, An Incident CANNOT Occur.

Where do we have daily uses GESS of Flammable Hydrocarbons

Average LNG Carrier 73,440,000Kgs Of Hydrocarbon

Autogas Refuelling Station 20,000Kgs of Hydrocarbon

Airbus A380 320,000 Liters Of Hydrocarbon

Home Gas Supply 2 x 45Kgs Hydrocarbon

Daily Uses Of Flammable Hydrocarbons Cont.

Autogas Tank 50kgs Hydrocarbon

12000Btu Wall Mouth AC 0.3Kg Hydrocarbon

Fly Spray 0.5Kg Hydrocarbon

BBQ Cooking Gas 4.5Kg - 15Kg Hydrocarbon

Home Refrigerator 0.05Kg Hydrocarbon

Daily Uses Of Flammable Hydrocarbons cont.

Piped Gas Supply *Unlimited Hydrocarbon*

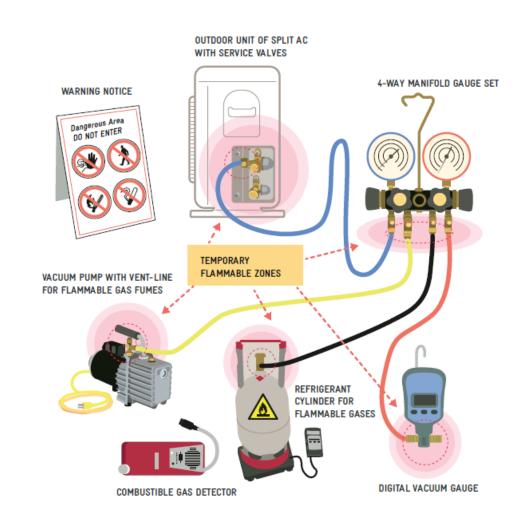
Uses

Cooking

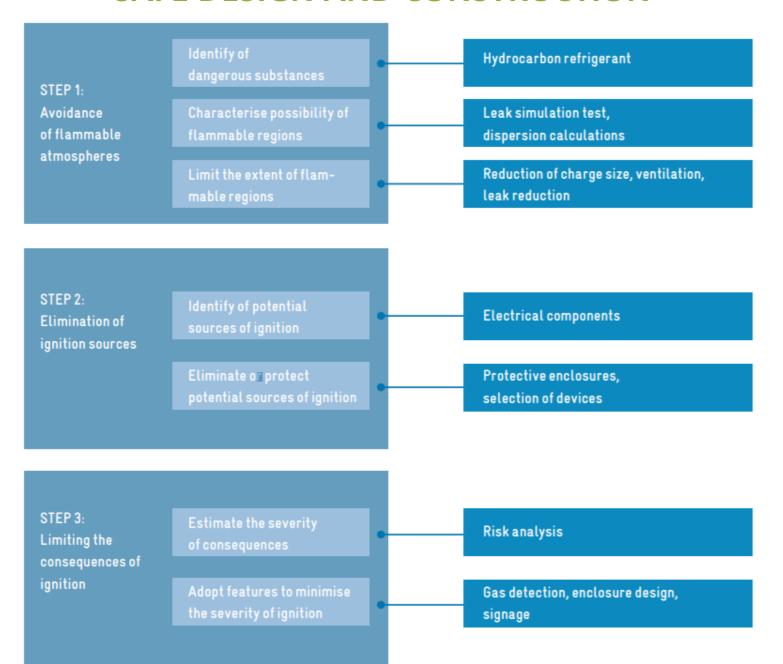
DAILY USE	<u>Hydrocarbon QTY</u>		
LNG CARRIER	74,440,000Kgs		
PLANE	320,000Kgs		
REFUELLING STATION	20,000 - 40,000Kgs		
HOME GAS BOTTLES	45 - 320Kgs		
VEHICLE TANK	50Kgs		
BBQ	4.5 - 15Kgs		
FLY SPRAY	0.50Kgs		
AIR CONDITIONER	0.30Kgs		
REFRIGERATOR	0.05Kgs		

So if I can use Flammable Hydrocarbons GESS Safely For?

- Air Transport
- Vehicle Transport
- Cooking My Food
- Deodorant and Fly Spray Cans
- Heating My Water
- Heating My Home


So Why Can't I Use Hydrocarbons for Cooling My Home?

Design Considerations



Following design consideration are critical

- Charge Size
- Critical component design and development.
 - Compressor.
 - Electronic controller.
 - EEV (Electronic Expansion Valve)
 - Motors.
 - Wire and Harness.
 - Condenser/ Evaporator
 - Sensors/ Alarms
 - Metal Shield, Cases.
- Software Development
 - Algorithm
 - Protection.
 - IoT warning messages, Alarms
- Testing and Validation Instruments.
 - Manifold Gauges.
 - Gas detection System
 - Vacuum Pump

Current requirement for Safety using flammable refrigerant

Category	IEC 60335-2-40
	EN 60335-2-40
Scope	Factory-made whole ACs, heat pumps, dehumidifiers, and partial units
Limits on refrigerant charge amount	Approx. 1 kg of hydrocarbon in a direct system inside (depending on room size) and 5 kg outside or special enclosure
Marking	Requirement of flammability warning symbols
Strength pressure	Specification of pressure tests for systems and components (where applicable)
Electrical equipment	Specification of design, construction, and test requirements
Sources of ignition	Description of what to consider and how to avoid a potential source of ignition, including a test method option
Information & instructions	Details concerning the installation, use, service, maintenance, and disposal of the equipment so that users, operators, and technicians are aware of how to handle flammability hazards
System tightness	Systems generally have to be constructed as "sealed" or "hermetically sealed" systems if they are to use flammable refrigerants indoors (e.g. no or limited number of reusable mechanical connections or fittings)
Pressure limiting/relief devices	The need for additional devices to limit or relieve excess pressure may apply to smaller systems if flammable refrigerants are used
Secondary/indirect systems	Additional components for secondary or indirect refrigerant circuits (such as those using water or brine) are required to vent a leak that has occurred from the evaporator into the secondary circuit if the primary refrigerant circuit exceeds a certain charge size
Gassensors	Gas sensors are be mandated for certain situations to initiate mitigation measures such as ventilation, alarms, terminating electrical supplies, etc. These may be applicable to systems using flammable refrigerants in machinery rooms or even for systems in occupied spaces.

Minimum Charge Size

According to EN 378: Part 1, the maximum allowable charge size (Equation 1) for a given room and the minimum required room size (Equation 2) for a given split AC unit with flammable refrigerant charge can be calculated

(1) $m_{\text{max}} = 2.5 \times LFL^{5/4} \times h_0 \times A^{1/2}$
(2) $A_{min} = m^2 / (2.5 \times LFL^{5/4} \times h_0)^2$
m _{max} : maximum allowable refrigerant charge [kg]
m: refrigerant charge [kg]
A _{min} : minimum required room size [m ²]
A: room size [m ²]
LFL: lower flammability limit [kg/(m ³])
ho: installation height [m]

ŀ	nstallation leight [m]	0.6	1	1.4	1.8	2.2	2.6	3
---	---------------------------	-----	---	-----	-----	-----	-----	---

Refrigerant Charge [g]	Minimum room size (m²)				m²)		
200	63	23	12	7	5	3	3
250	99	36	18	11	7	5	4
300	142	51	26	16	11	8	6
350	193	70	36	21	14	10	8
400	253	91	46	28	19	13	10
450	320	115	59	36	24	17	13
500	395	142	73	44	29	21	16

Sources of Ignition

Precautions should be taken to avoid the possibility of direct sources of ignition from exposed electrical contacts. **Electrical items that have the potential to produce electrical sparks during normal operation** should receive particular attention to eliminate them as potential sources of ignition. The following methods can be applied:

- Insulate terminals
- Locate within IP65 enclosure
- Replace with solid state type component
- Replace with Ex type component
- Locate externally

NOTE: Care should be taken to ensure that electrical terminations, including capacitor terminations are adequately tightened and secured against loosening and that adequate insulation is provided to avoid live parts shorting together.

Motors, including fans, pumps and compressors should be of brushless design. Components to consider as possible sources of ignition are: On/off manual switches Liquid level switch Condensate pump switch Thermostats Flow switches Fan speed controllers Pressure switches Start relays Humidity controllers Oil differential switches Thermal overload relays

Programmable controllers Fan delay switches Potential relays Defrost timers/switches Contactors Universal relays Time switches/relays Isolator switches

NOTE: This list is not exhaustive.

Hot Surfaces (All)

Parts of refrigerating machines whose surfaces could become excessively hot shall be avoided. All components that could come into contact with released refrigerant shall have a maximum surface temperature not higher than 100K below the auto-ignition temperature of the refrigerant used.

Marking and Instructions

- 1. Marking of Systems Installed on Site
- 2. Marking of Compressors and Unit Systems
- 3. Marking of Pipes
- 4. 'Flammable Gas' Stickers
- 5. Instructions

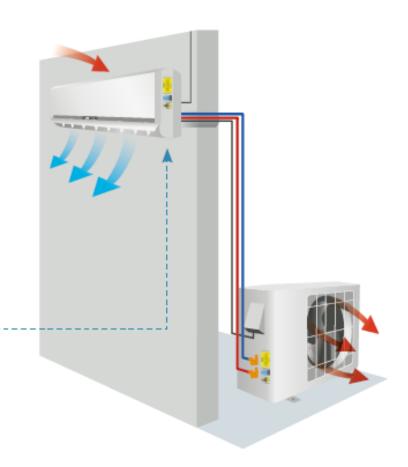
General considerations for workshop/manufacturing

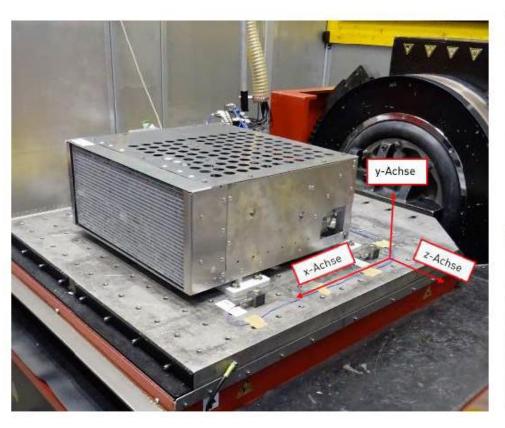
Production areas within factories and workshops require additional precautions in addition to those detailed in other sections. Whilst the scope of this publication does not allow for detailed coverage of these requirements, the following lists items that should beconsidered.

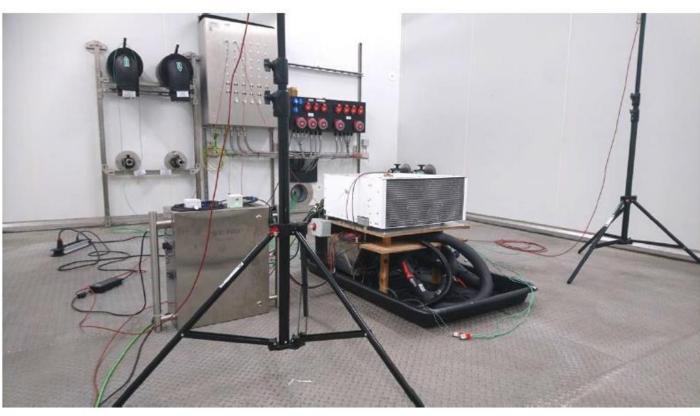
☐ Storage and handling of hydrocarbon refrigerant cylinders

- (a) General requirements
- (b) Open air storage
- (c) Storage within specially designed buildings and outhouses
- (d) Storage within parts of a building
- ☐ Bulk storage installations
- (a) Location, separation and security requirements
- (b) Underground and mounded vessels

Ensure that anyone initiating work on the system is made aware of the presence of flammable refrigerant inside and as far as possible the precautions they should take.

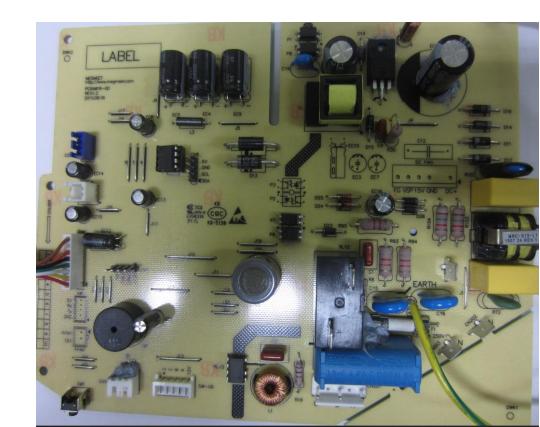

- Flammable refrigerant signage visible on indoor and outdoor unit
- Flame symbol and instruction manual symbol on parts subject to maintenance or repair
- Warning label for room requirement
- Installation/service/operation manual
- Signage and instruction for transportation on packaging for pre-charged equipment.


WARNING


Appliance shall be installed, operated and stored in a room with a floor area larger than 'X' m²

Intensive Validation and Performance Tests

Shock and Vibration Tests


High Temperature and EMC Test

Design and development of Hardware and software

- ✓ Controller Development.
- ✓ Compressor Development.
- ✓ EEV Development.
- ✓ Software Algorithm
- ✓ Sensors and control.
- ✓ Enclosure and Safety.

Compatibility and Certification

General Approach to Hydrocarbon Refrigerant Handling

All flammable refrigerant gases when mixed with air form a flammable mixture. The effect of ignition of such a mixture can be severe. It is therefore important that the appropriate safety requirements are observed at all times when working with flammable refrigerants. Any equipment used in the process of repair must be suitable for use with flammable refrigerants. All tools and equipment (including measuring equipment) are to be checked for suitability for working on the equipment, particular attention is to be paid to the selection of:

Refrigerant recovery units.
☐ Refrigerant leak testing units
☐ Electrical test meters
☐ Refrigerant recovery cylinder
☐ Portable lighting

If the installation permits, it is recommended that the equipment be removed from its existing position to a controlled workshop environment suitable for the type of repair where work can be conducted safely.

Safety checks

- General work area
- Checking for presence of refrigerant
- Presence of fire extinguisher
- No ignition sources
- Ventilated area
- Checks to the refrigeration equipment
- Checks to electrical devices
- Detection of Hydrocarbon Refrigerants

R 290 Experience

Manufacturing Setup

Gas charging station with ventilation ducting & gas alarms

Repair area gas recovery system with ducting & gas alarm interlock

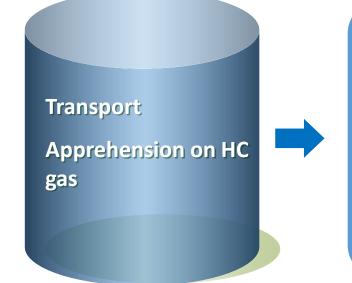
Fire proof junction boxes in Refrigerant charging areas

The impact and Application of flammable refrigerants to the servicing sector

SERVICE, MAINTENANCE AND REFRIGERANT HANDLING

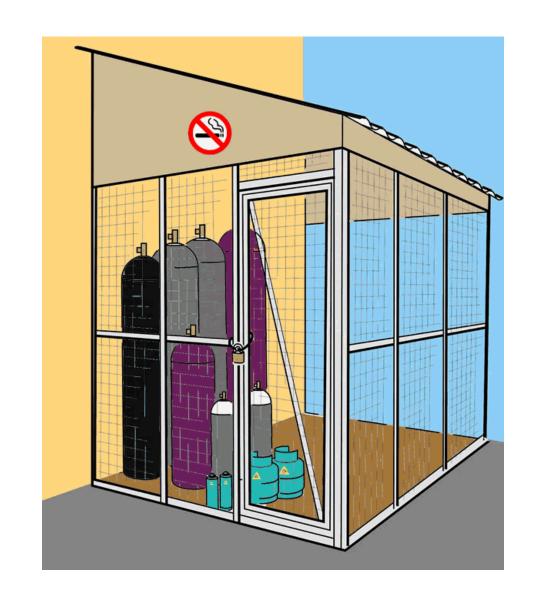
Any person who is involved with working on or breaking into a refrigerant circuit should hold a current valid certificate from an industry accredited assessment authority, which authorizes their competence to handle refrigerants (including hydrocarbons) safely in accordance with an industry recognized assessment specification. Servicing shall only be performed as recommended by the equipment manufacturer. Maintenance and repair requiring the assistance of other skilled personnel shall be carried out under the supervision of the person competent in the use of flammable refrigerants.

Service

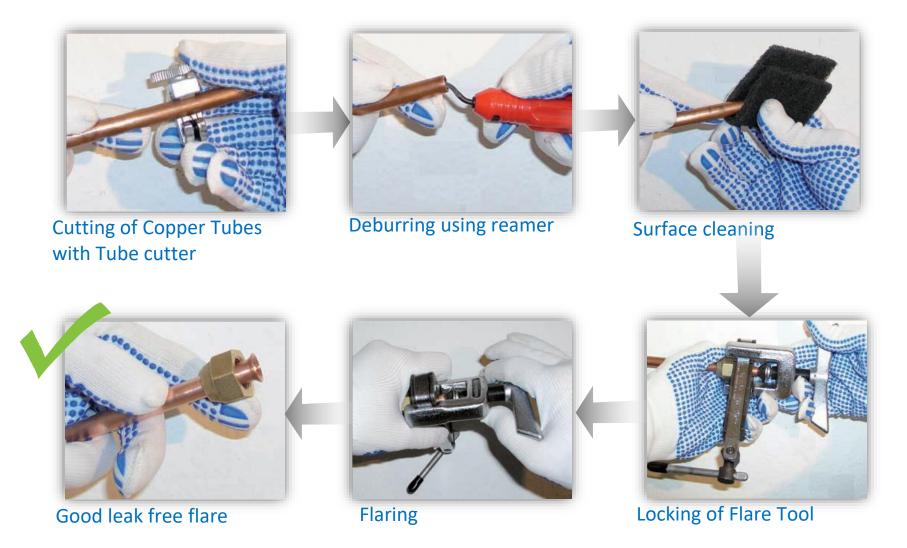

Basics

Basics – Handling & Transport

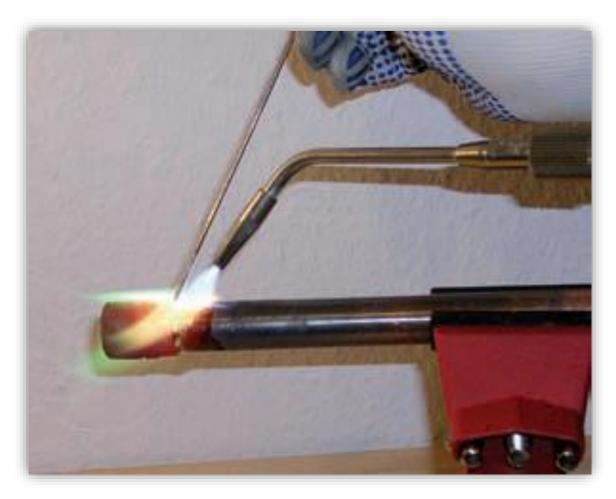
- •Safe handling and storage of refrigerant cans
- Perform sealed system repairs preferably in workshop to avoid refrigerant handling
- •Providing gas cans with150 grams charge which is as per the safety norms



Cylinder Storage ---


- © In a locked cage
- © At ground level
- Away from air intakes to building
- © Remote from ignition sources
- ⊗ No smoking

Servicing Hydrocarbon systems – Good Practices


Coupling of Joints using flared nut

Servicing Hydrocarbon systems – Good Practices

- Brazing of Tubes should be done only by Certified Brazers to ensure leak proof Joints
- AC example The total Length of Connecting Tubes between IDU and ODU should not exceed more than 6 meters.

Brazing of Copper Tubes

Servicing Hydrocarbon systems – Good Practices

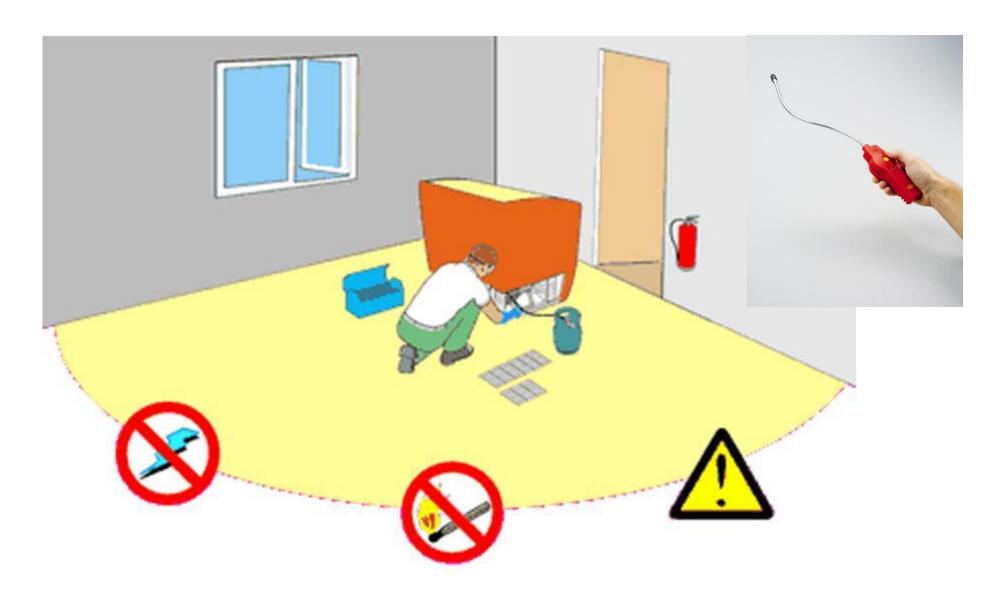
Standard Operating procedures for Sealed system repairs:

- Charging by Weight
- Getting vacuum below 500 Microns
- Leak testing with OFDN

are mandatory procedures which have to be followed by

the technicians

Sealed system services/repairs



GSP's Followed during Repairs

SOP

Safe working Practice

Education, Support and Training on local, national and international levels, are the keys to success!

- •Aside from the environmental benefits of Hydrocarbon Refrigerants I have found them to be far better for performance, efficiency and energy savings. I have never experienced serious component failure or malfunction when using Hydrocarbon Refrigerants.
- •However, as a Refrigeration Engineer, working in the private sector, I cannot afford to educate the general population as to the benefits of Natural Refrigerants. This education needs to be achieved through help from Governments, Worldwide Environmental Groups and Technical Associations.

"The most effective (and maybe the only one) way to achieve the climate neutrality goals as soon as possible lies in the quick reduction of F-Gas by scaling up natural refrigerant-based solutions across the sectors"

Thank you for listening! Anwar Shaikh

anwar.s@globalgess.com

https://globalgess.com/

