Norwegian University of Science and Technology

Introduction to Industry 5.0

Trends, Opportunities, and Challenge

Ph.D. Candidate: Gökce Yilmaz

Timeline & Context

Industry 1.0 ── Industry 5.0

Industry 1.0

- From Hand Production to Machines
- Steam Power
- Opening of Large Scale
 Factories
- Mass Production of Iron and Steel
- Emergence of Unions
- Increased Urbanization
- Pollution, Long Working Hours

- Transition to Electricity
- Development of Henry
 Ford`s Assembly Line
 enabled Mass Production
- Improved **Transportation** (automobiles, railways etc.) and **Communication** (telephones, telegraph etc.)
- Job Displacement concerns due to Automation

Industry 3.0

- Invention of Transistors (1947) and
 Microprocessors (1971)
- Introduced Computer Technology
 (Programmable Logic Controller (PLCs) and Industrial Robots)
- Expansion of Electronics and Information Technology
- Electronic Waste, High Power Consumption

Industry 4.0

- Built upon Industry 3.0
- Cyber-Physical Systems (CPS), which integrate technologies like the Internet of Things (IoT), Artificial Intelligence (AI), and smart industrial production (e.g. digital twins, additive manufacturing)
- Cybersecurity Risks, Lack of Skilled Workers, and job security concerns due to automation.

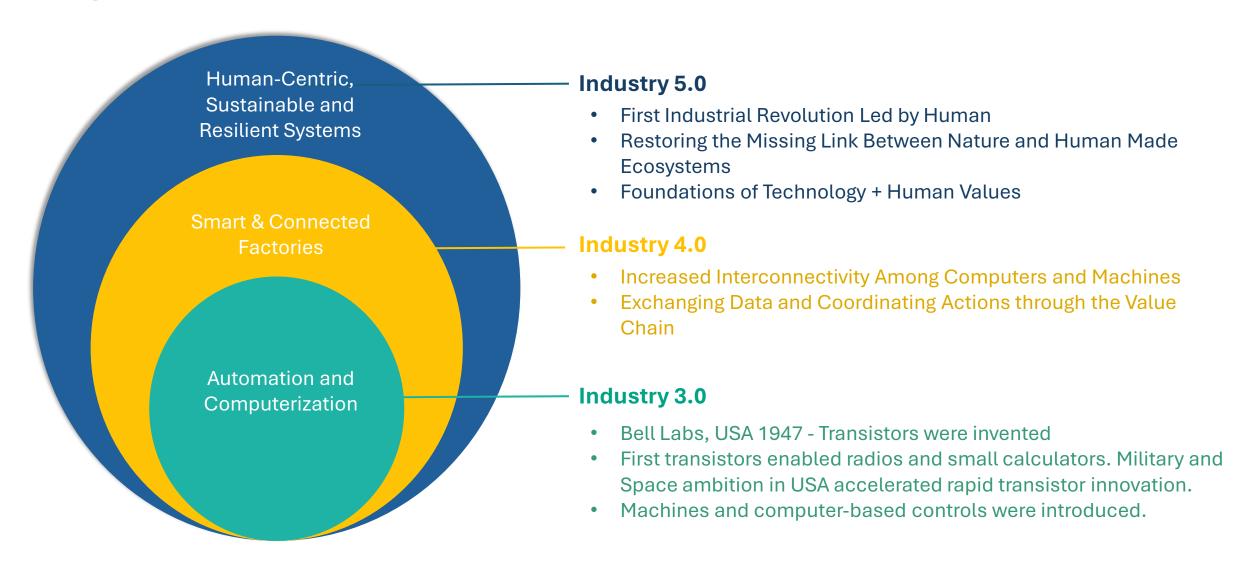
Industry 5.0

- Built upon industry 4.0
- Collaboration Between Humans and Machines
- Worker Well-Being and Skills Development
- Personalized Production,
 Customization based on
 User Needs
- Focus on Resilient & Sustainable Systems
- Need for New BusinessModels and Policies
- Ethical Al use, Privacy
 Concerns, and Stronger
 Cybersecurity

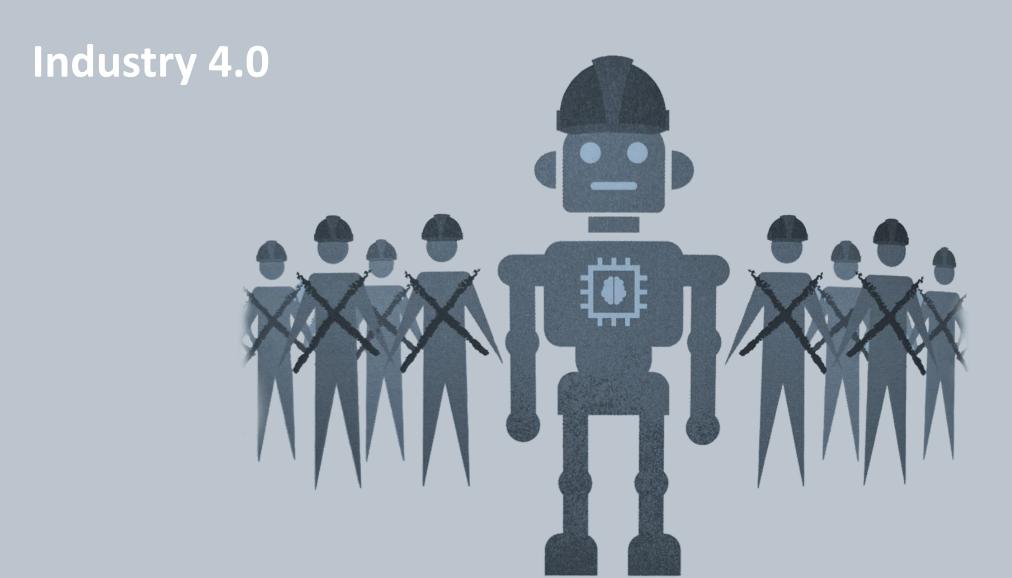
1760s-1840s

1870s-1950s

1960s - 2000s


2011 - Present

Present - Future


[5,8]

Digitalization

Heavily Relies on Automation & Digitalization Lacks Human Centric Perspective

Industry 4.0 Toward 5.0 Vision

	Industry 4.0	Industry 5.0
Drivers	economic and technological factors	economic, social, environmental, and ethical considerations
Power Source	Electrical power, Fossil-based fuels, Renewable power sources	Electrical power, renewable power sources
Technology	Automation and data exchange, Artificial Intelligience(AI), Cyber-physical systems, Internet of Things(IoT), Cloud computing, Big Data	Adding on Industry 4.0, AI-Powered collaborative robots, Smart Materials, Digital Twins
Research Focus	Organizational Research, Process Improvement and Innovation, Business Administration	Smart Environments, Organizational Research, Process Improvement and Innovation, Business Administration
Goals	Increased production output, improved quality, lower production costs, faster production times	Enhanced human capabilities, personalized products and services, sustainable and ethical production, societal progress
[1,13]		

Industry 5.0 is best seen as an evolution or next step after Industry 4.0. It still relies on the main technologies (IoT, cloud, data analytics, cyber-physical systems, etc.) that define Industry 4.0.

Definitions of Industry 5.0

Industry 5.0 is still evolving, and various definitions exist from industry practitioners and researchers.

- 1. Industry 5.0 is a human-led industrial evolution based on the 6R principles (Recognize, Reconsider, Realize, Reduce, Reuse, and Recycle) of industrial upcycling. It is a systematic waste prevention technique and logistics efficiency design to value life, promote innovative creations, and produce high-quality custom products by Michael Rada, Founder of Industry 5.0.
- 2. Industry 5.0 brings the human workforce back to the factory, where **humans and machines work together to increase process efficiency** by **using human brainpower and creativity**, integrating workflows with intelligent systems.
- 3. Industry 5.0 integrates the strengths of cyber-physical production systems (CPPS) and human intelligence to create synergetic factories. It also seeks innovative, ethical, and human-centered design to address the weakening of manpower caused by Industry 4.0.
- 4. Industry 5.0 is a **human-centric design solution** where humans and cobots collaborate to enable personalizable autonomous manufacturing through enterprise social networks.
- [6] More definitions are mentioned in the article.

Development of Industry 5.0

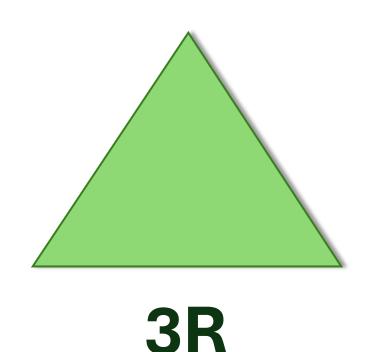
2015	Industry 5.0 Launch	
2020	Named leading industrial trend of a decade	
	First Industry 5.0 Ambassador Assigned	
2021	Integrated into European Union Framework	
2023	118 Industry 5.0 ambassadors, 118 countries	
2024	United Nations Environment Programme (UNEP) integrated Industry 5.0 into 2024 Outlook	

[Michael Rada - https://www.slideshare.net/slideshow/industry-5-0-power-of-industrial-evolution/271750123?from_search=5#1]

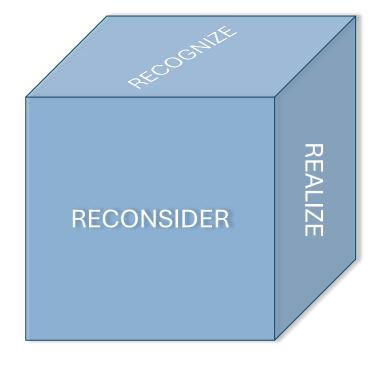
Types of Waste

Depending on the **industrial upcyling** five types of waste is defined.

- PHYSICAL WASTE: Trash and items delivered to garbage bins, containers, landfills
- SOCIAL WASTE: People limited in their will to make work their living
- URBAN WASTE: Buildings, land, locations unused and not utilized properly
- PROCESS WASTE: Not efficient processes and no value services


Industry 5.0.

• WASTING OF TIME: The only waste which can not be recovered once wasted


[Michael Rada - https://www.slideshare.net/slideshow/industry-5-0-power-of-industrial-evolution/271750123?from_search=5#1]

Methodology of Systemic Waste Prevention

RECOGNISE RECONSIDER REALIZE REDUCE REUSE RECYCLE

6R

[Michael Rada - https://www.slideshare.net/slideshow/industry-5-0-power-of-industrial-evolution/271750123?from_search=5#1]

Industry 5.0.

Do Not Waste

1. RECOGNISE

Can we recognize something must not become waste? Can we reconsider what to do with the item we saved?

If you do right, you do not need to Reduce, Reuse, Recycle and pay for never ending waste management

[Michael Rada - https://www.slideshare.net/slideshow/industry-5-0-power-of-industrial-evolution/271750123?from_search=5#1]

EU Framework - Definitions of Industry 5.0 Pillars

Human - Centric

used to describe systems that are designed to work in ways that people can easily understand and learn (Cambridge Dictionary)

Refers to a set of principles that prioritize human needs, well-being, and aspirations, guiding the design, development, and deployment of technologies and organizational practices.

Sustainable

Capable of being maintained or continued at a certain rate or level. (Oxford Dictionary)

Commitment to find a balance among economic improvement, social equity, and environmental protection, with the aim of helping to achieve the Sustainable Development Goals (SDGs).

Resilient

Capacity to adapt and recover quickly from disruptions or unexpected changes (Cambridge Dictionary)

Designing systems, supply chains, and organizations that can maintain essential functions during challenging circumstances while minimizing negative impacts on society and the environment.

[1,2,3]

Industry 5.0 in EU FRAMEWORK

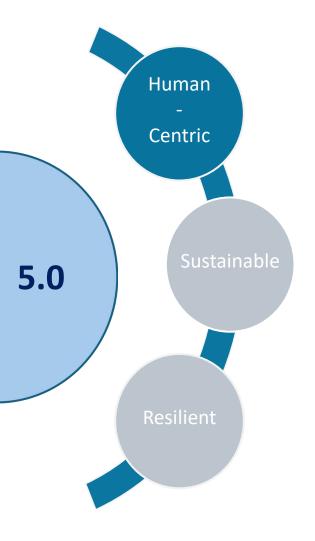
EU Framework - Industry 5.0

- Addressing Social Inequality and Worker Well-being
- Shifting from Technology-Driven to **Human-Driven** Innovation
- **Encouraging Meaningful and Engaging Work**
- Attracting and Retaining **Talent** in a Changing Labor Market
- Aligning with **European Values and Fundamental Rights**

- **Urgency of Climate Change** and Resource Scarcity
- Shifting from Linear (takemake-waste) to Circular Models (production, use, recycle)
- **Meeting Consumer Demands** and Expectations
- Aligning with **EU Policy Priorities**

- Lessons from Recent Crises (e.g. Covid 19)
- **Disruptions** in global supply chains
- Geopolitical Shifts and **Global Uncertainties**
- **Anticipating Future** Disruptions

Sustainable


Resilient

Human - Centric

[1,2,3]

Industry 5.0.

Worker Empowerment & Participation

- Co-Design & Co-Creation: Engage employees in the development of new technologies and processes.
- Decision-Making & Autonomy: Provide staff with genuine input and flexibility in their roles.
- Continuous Learning & Skill Development: Commit to ongoing education for emerging technologies.
- Well-Being & Job Satisfaction: Enable safe and healthy work environments

Social Inclusion & Diversity

- Accessibility: Ensure that technologies and environments accommodate individuals of all abilities.
- *Intergenerational Collaboration:* Encourage knowledge exchange among different age groups.
- Addressing Bias: Implement fair and impartial practices and systems within the workplace.

Human - Machine Collaboration

Integrated Technologies(e.g Robots, Digital Twins, AI, AR/VR): Employ various advanced systems that complement and improve human abilities, deliver real-time data, optimize workflows, and keep employees in the decision-making process.

Ethical & Responsible Tech Development

- Data Privacy & Security: Protect employee information and prevent its misuse.
- Transparency & Explainability: Ensure that technologies are clear and trustworthy.
- Human Oversight: Maintain human control over critical decisions and actions.

Used various resources included in the presentation.

Human Centric Goals

Level	Goals/Effects
Individual/Micro	- Worker empowerment
	- Higher workers' satisfaction
	- Fostering creativity
	- Better work-life balance and well-being
	- Better security
	- Life-long learning
	- Ethical approaches to business
Organisational/Meso	- Growth & productivity
	- Employee retention & attraction
	- Enhanced innovation & learning capacities of organisations
	- Aligning the core beliefs and values of the organisation with behaviours that prioritise people as well as the planet
	- Flexibility & agility, future-preparedness at organisational level
Economic and societal/Macro	- Long-term competitiveness through enhanced innovation and learning capacity of companies
	- More labour market resilience, in particular less unemployment and less occupational downgrading due to technological shifts
	- Emergence of industry 5.0 related learning ecosystems
	- Improved quality of work and health for workers
	- Sustainable development

By realisation of human centricity, values at micro (e.g., worker empowerment, satisfaction),
Meso (e.g., employee retention, profitability) and macro level (e.g., Improved quality of life, sustainable growth) can emerge.

Human-centric Research & Innovation Policy Recommendations

Policy actions recommended in EU roadmap, to be implemented by 2035.

Education & skills

- Skills foresight
- Skillset taxonomy for Industry 5.0
- New forms of education. distributed multidisciplinary training
- Flexible accreditation frameworks for non-standard HC-related educational programmes

Standards, certifications, PCP

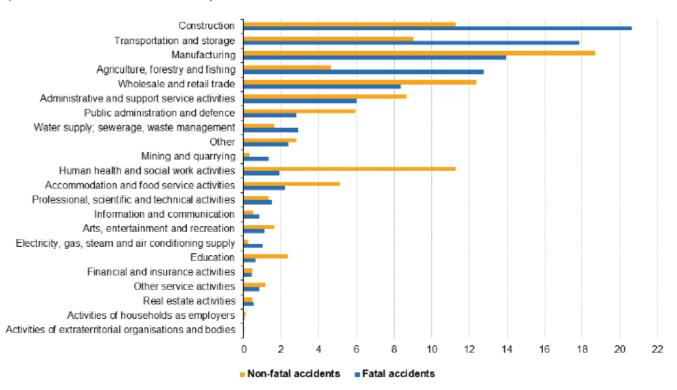
- Coherence of HC ISO standards
- Self-assessment tool for companies
- Maturity model for HC adoption, KPIs
- Pre-commercial procurement (PCP) stipulations including HC

Learning capacity of organisations

- Participatory decision-making, enhanced cooperation and better work-life balance
- Focus on harnessing new technologies for employees' well-being, learning, accessibility etc.
- Support to new organisational model adoption in the digitalisation & sustainability processes

HC in technology development

- Foster multidisciplinary technology development
- Foster uptake of HC enabling technology
- Specific investments in HC enabling technology developments


Knowledge sharing, open innovation, testing facilities

- Monitoring platforms for new training programmes
- Open social innovation practices
- Testing facilities for HC technology development

<u>Safety</u>

Fatal and non-fatal accidents at work by NACE section, EU-28, 2017 (% of fatal and non-fatal accidents)

Industry 5.0.

Note: non-fatal (serious) accidents reported in the framework of ESAW are accidents that imply at least four full calendar days of absence from work. Ranked on the values for fatal accidents.

Source: Eurostat (online data codes: hsw n2 01 and hsw n2 02)

eurostat

Eurostat data indicates that the sectors with the highest accident rates are also those that are well-suited for automation. In 2017, there were reported 3.3 million non-fatal workplace accidents and over 3,500 fatal incidents. Despite the common fear of job loss that comes with adopting new technologies, properly implemented automation can actually improve workplace safety and promote inclusivity.

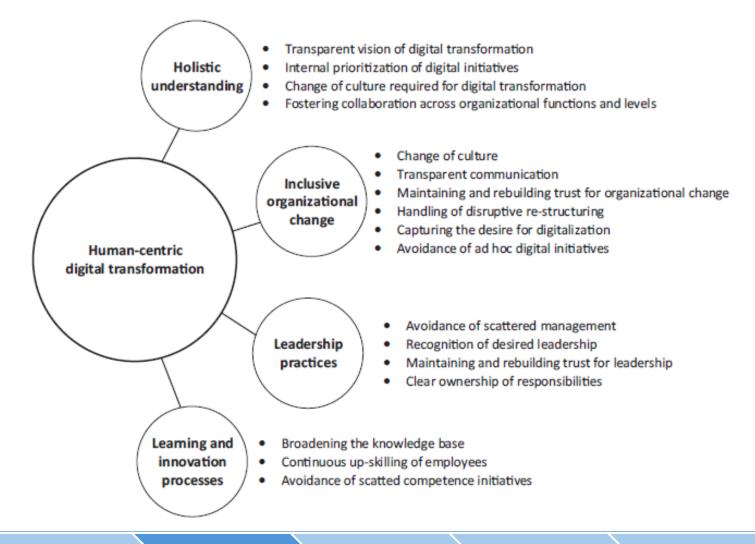
Moreover, the introduction of new technologies can lead to increased job satisfaction and overall well-being among employees. It is important to note that many workplace accidents may be under-reported, and the actual figures could be higher. Additionally, variations in accident rates can be observed among different Member States, influenced by distinct work cultures and reporting systems.

Standards Related to Human-Centricity at Organisational or Technology Level

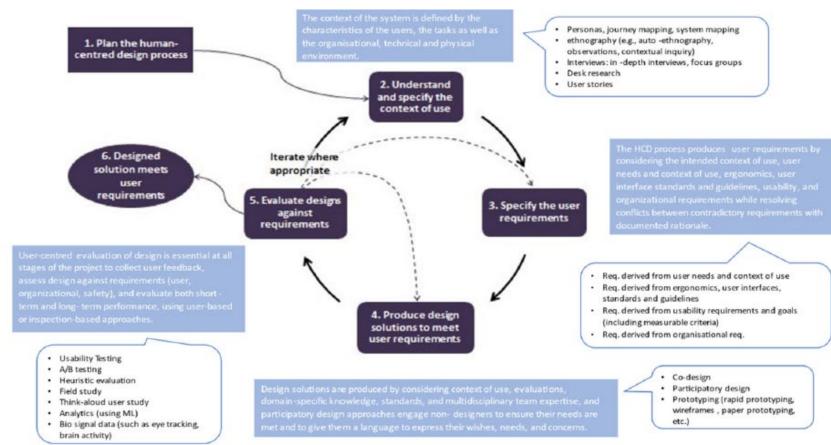
Standards related to human centricity	Standards, technical reports, technical specifications on ergonomics	Standards related to aspects of human centricity in specific technologies
- Ergonomics of human-system interaction — Part 210: Human-centred design for interactive systems	- Software ergonomics for multimedia user interfaces	- Artificial intelligence — Overview of trustworthiness in artificial intelligence
- Ergonomics of human-system interaction — Part 220: Processes for enabling, executing and assessing human- centred design within organisations	- Ergonomic design of control centres	- Artificial intelligence — Overview of ethical and societal concerns
- The human-centred organisation — Guidance for managers	- Ergonomic requirements for the design of displays and control actuators	- Common Industry Format for usability (CIF) - General framework for usability-related information
- Guidance on human aspects of dependability	- Ergonomics of human-system interaction — Usability methods supporting human-centred design	- Common Industry Format (CIF) for usability test reports
- Corporate governance of information technology	- Ergonomics of human-system interaction — Specification for the process assessment of human-system issues	- Common Industry Format for Usability (CIF): Context of use description
- Human resource management — Learning and development	- Ergonomics — General approach, principles and concepts	- Common Industry Format for Usability (CIF): User needs report
- Systems and software engineering — System life cycle processes	- Ergonomics of human-system interaction - Auditing procedure for the development of interactive products based on DIN EN ISO 9241- 210	- Common Industry Format for Usability (CIF): User requirements specification
- Systems and software engineering — Systems and software Quality Requirements and Evaluation (Square) — Guide to SQuaRE	- Resource-saving application of methods and tools for the anthropocentric design of effective interactive IT systems	- Common Industry Format for Usability (CIF): Evaluation report
- Information technology — Process assessment — Part 5: An exemplar software life cycle process assessment model	- Ergonomics of human-system interaction — Part 820: Ergonomic guidance on interactions in immersive environments including augmented reality, and virtual reality	- Software ergonomics for multimedia user interfaces — Part 1: Design principles and framework, Part 2: Multimedia navigation and control, Part 3: Media selection and combination
- IEEE P70xx series		- Robots and robotic devices — Safety requirements for industrial robots — Part 1: Robots; Part 2: Robot systems and integration
		- Robots and robotic devices — Collaborative robots

Standards & Policies - ISO 27500 - The human-centred organization

Industry 5.0.


<u>ISO 27500</u>, explains the principles that enshrine the values and beliefs that make an organization human-centred. The term human-centred is used to reflect that organizations not only have an impact on their customers (the users of their products and services), but also on other stakeholders, including their employees, their families, and the wider community. <u>ISO 27500</u> explains seven principles of human centredness, which are:

- capitalize on individual differences as an organizational strength;
- make usability and accessibility strategic business objectives;
- adopt a total system approach;
- ensure health, safety and wellbeing are business priorities;
- value personnel and create meaningful work;
- be open and trustworthy; and
- act in socially responsible ways.

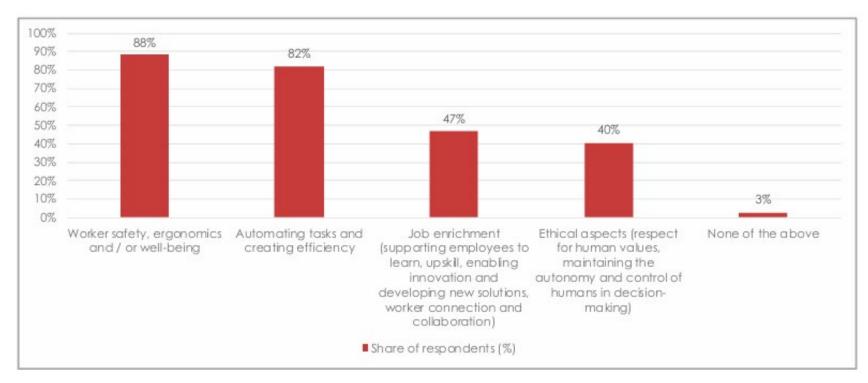

/www.iso.org/obp/ui/en/#iso:std:64239:en

Organizational Requirements for Digital Transformation Management

Human-Centered Design

Overview of exemplary methods for each human-centered design phase

Source: International Organisation for Standardisation. (2016). Ergonomics of human-system interaction. Part 210: Human-centered design for interactive systems (EN ISO 9241-210:2019).


Human-centred design follows an **iterative process consisting of four primary phases**. These phases are revisited in design cycles until the resulting solution aligns with user requirements

- 1. Plan the process
- 2. Understand the context of use
- 3. Specify user requirements
- 4. Develop design
- 5. Evaluate designs
- 6. Ensure the design meets user needs

Investing in New Human-Centric Technologies

Human centric aspects considered when purchasing manufacturing technologies

Industry 5.0.

Considering that these technologies can be obtained with or without a focus on human-centricity, a survey conducted was among manufacturing companies to if they took humancentric factors into account when investing in new technology or software.

Skilled Workforce

A skilled workforce is critical for effectively utilizing technologies aimed at human-centered outcomes. Companies must invest in training employees, especially in specialized areas like artificial intelligence, to fully harness the benefits of human-centric technology. The 2019 World Manufacturing Forum Report titled "Skills for the Future of Manufacturing" offers detailed insights into the skills required for this purpose.

2019 World Manufacturing Forum

Industry 5.0.

Transversal Skills

Human creativity, emotional intelligence and innovation remain irreplaceable, even if:

14% of jobs are highly automatable

32% of jobs might change substantially due to Al within this decade

Both workers and employers value transversal skills that help to adapt the changing work landscape, particularly in the green and digital transitions.

24.5% of candidates lack transversal skills

SMEs in the EU see a growing importance of these transversal skills:

68% for soft skills

62% for digital skills

42% for green skills

Transversal skills like critical thinking, teamwork, and learning skills are essential for work, education and daily life. Developing and recognizing these skills play an important role in promoting sustainable economic growth, social inclusion, and competitiveness.

https://year-of-skills.europa.eu/transversal-skills en

Urgency of Climate Change & Resource Scarcity

- Need for Rapid Action: Traditional linear economic models are exhausting resources and contributing to climate instability.
- Critical Climate Threat: Reports from the IPCC emphasize the urgent need for rapid decarbonization and a transition to renewable energy sources.

Transitioning from Linear to Circular Models

- Circular Economy: Focus on eliminating waste by continuously circulating materials through reuse, repair, and recycling.
- Policy Support: The EU Circular Economy Action Plan offers a strategic framework for change

Industry 5.0.

Aligning with EU Policy Goals

- European Green Deal: Aims for climate neutrality by the year 2050.
- Digital Transformation in Europe: The importance of responsible and ethical digital advancements.
- Economy That Benefits People: Social justice, equitable working conditions, and inclusive economic growth.

Embracing a Regenerative Approach

- Reevaluating Production Processes:

 Reduce ecological impact throughout product life cycles.
- Key Approaches: Design products with durability, reparability, and recyclability in mind, establish closedloop systems to recapture and repurpose materials, move towards product-service systems that prioritize access over ownership.

Used various resources included in the presentation.

Some Initiatives From the European Green Deal

Making transport sustainable for all

Cleaning our energy system

Leading the green industrial revolution

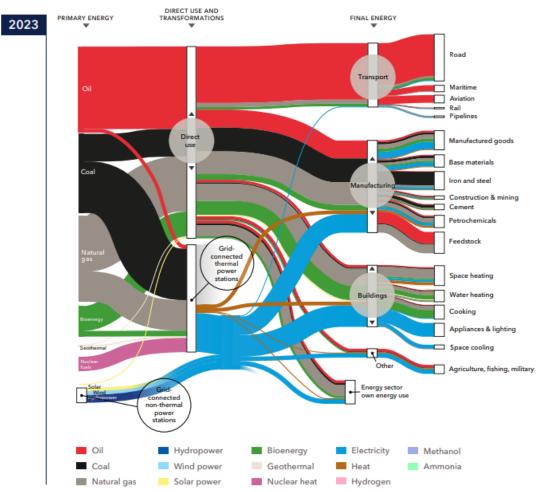
Renovating buildings for greener lifestyles

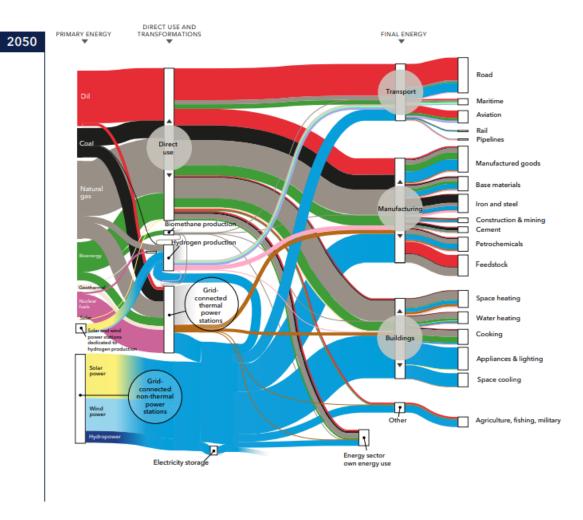
To complement new EU rules on buildings and guide Member States' efforts, there is a new indicative national benchmark of 49% of renewable energy in the buildings sector.

https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en#making-transport-sustainable-for-all

Industry 5.0.

Sustainable Development Goals




https://sdgs.un.org/goals

Developed by United Nations → **Linked to Industry 5.0**

https://dashboards.sdgindex.org/chapters

Comparison of Energy Flows Outlook 2050

Industry 5.0.

Insights from Crises (e.g., COVID-19)

- Vulnerability of Global Systems: Global disruptions can occur rapidly when one region enters lockdown.
- Need for Readiness: The necessity of contingency plans, diverse sourcing strategies, and the adoption of agile technologies.

Disruptions in Global Supply Chains

- Risk Exposure: Border closures and lockdowns have exposed the fragility of streamlined, single-source supply chains.
- Necessity for Diversification: The establishment of. local and regional production centers along with multiple supplier networks
- Reassessing Efficiency: Incorporate redundancy and flexibility even if it incurs higher costs to enhance resilience.

Geopolitical Changes & Global Uncertainties

- Increasing Protectionism: Trade conflicts underline the importance of strategic independence and less reliant global dependencies.
- Resource Constraints: The competition for essential materials necessitates efficient resource use and circular economy practices.
- Strategic Independence for Europe: Europe should reduce its dependence on international suppliers and invest in alternative resources.

Anticipating Future Disruptions

- Foresight & Scenario Planning: Monitor emerging risks and trends to prevent crises before they escalate.
- Flexibility & Adaptability: Implement modular production systems, agile manufacturing etc.
- Nurturing a Resilient Culture: Empower workers, promote teamwork, and support proactive problem-solving initiatives.

Resilience and Projects / Disruptions in Projects

- Unexpected events that impact a project's progress, cost, or performance.
- Can be internal (endogenous) or external (exogenous).
- May lead to delays, financial losses, resource shortages, or even project failure

Exogenous Disruptions: Forces **outside** the immediate control of the project or organization

Examples: COVID-19 pandemic, Political clashes, Bushfires, Hurricanes, Typhoons, Cyclones, Droughts, Sea-level rise, Migration due to climate change and war, 11 March 2011 tsunami in Japan, 2019/20 Australian Bushfires

Endogenous Disruptions: They arise from within the organization, the project team, or the supply chain itself

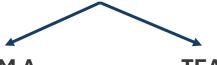
Examples: Counterfeit items (branded to imitate original products), Fraudulent items, Cultural and Behavioral Factors, Human Errors, Mismanagement, Lack of Coordination between Teams and Internal Conflicts etc.

29

This Photo by Unknown Author is licensed under CC BY-

Systems Thinking & Multi-Level Perspective

SOCIETY


(Wider environment: law, policy, norms)

ORGANIZATION / INDUSTRY

(Permanent firms, sector-wide supply chains)

PROJECT

(Temporary entity delivering a goal)

TEAM A

TEAM B

Industry 5.0.

(Subgroups by role or function)

INDIVIDUALS

(Managers, engineers, etc.)

Institutional resilience deals with how well formal institutional structures can sustain shocks and support recovery. This involves actions across the community and public and private domains.

Organizational resilience focuses on shocks to organizations, business continuity, organizational reliability, resource buffers, capabilities to deploy resources under crisis, adaptability of business models, and organizational responses to extreme contexts.

Project resilience is the capacity to organize under a variety of scenarios, including disruptions in the form of shocks or stressors

Team resilience is defined as the ability of teams to perform under a variety of conditions and towards team goals.

Psychological resilience focuses on the adaptive strength of individuals to face disruptions and variations in their life and careers

Cybersecurity

Increased Digital Dependence: Industry 5.0 relies heavily on digital technologies, that is vulnerable to technical disruptions and cyberattacks.

Ensuring Resilience: Cybersecurity measures are essential for ensuring the resilience of Industry 5.0 against disruptions.

Al-Driven Threats and Defenses: All can be used for cybersecurity, but also creates risks through Al-related cyberattacks.

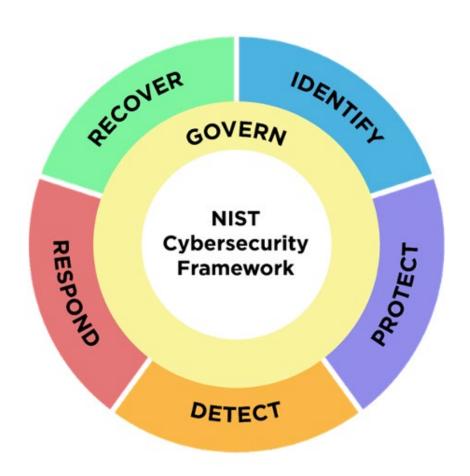
Certificates: Certifications such as TUV is important to ensure the products reliability and security.

IOT devices certification by TÜV

TÜV (Technischer Überwachungsverein) certification for IoT devices holds a critical role in Industry 5.0. As IoT devices are integral for data collection and automation in this context, such certification becomes paramount in guaranteeing the reliability and security of these devices.

Industry 5.0.

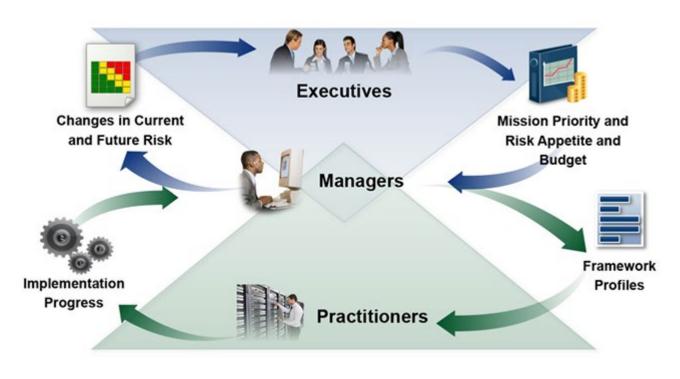
Key Aspects of Cybersecurity


- Data Protection: Cybersecurity protects sensitive data from unauthorized access and breaches.
- System Integrity: It ensures the integrity and availability of digital systems and infrastructure.

Cybersecurity Govarnence - NIST Cubersecurity Framework(CSF) 2.0

Industry 5.0.

The Cybersecurity Framework (CSF) 2.0 is designed to help organizations of all sizes and sectors — including industry, government, academia, and nonprofit — to manage and reduce their cybersecurity risks. It is useful regardless of the maturity level and technical sophistication of an organization's cybersecurity programs.


Actions that support GOVERN, IDENTIFY, PROTECT, and DETECT should all happen continuously, and actions that support RESPOND and RECOVER should be ready at all times and happen when cybersecurity incidents occur.

All functions have vital roles related to cybersecurity incidents. GOVERN, IDENTIFY, and PROTECT outcomes help prevent and prepare for incidents, while GOVERN, DETECT, RESPOND, and RECOVER outcomes help discover and manage incidents.

https://www.nist.gov/cyberframework

Cybersecurity Govarnence - Risk Management Communication

The CSF provides a basis for improved communication regarding cybersecurity expectations, planning, and resources. The CSF fosters bidirectional information flow (as shown in the top half of the figure) between executives who focus on the organization's priorities and strategic direction and managers who manage specific cybersecurity risks that could affect the achievement of those priorities.

The CSF also supports a similar flow (as shown in the bottom half of the figure) between managers and the practitioners who implement and operate the technologies. The left side of the figure indicates the importance of practitioners sharing their updates, insights, and concerns with managers and executives

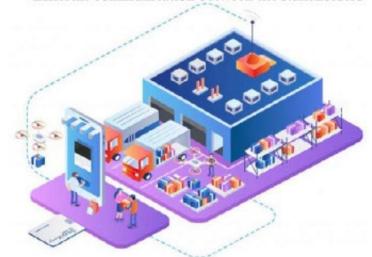
https://www.nist.gov/cyberframework

Risk Management vs. Resilience

Aspect	Risk Management	Resilience
Definition	Identifies, assesses, and mitigates known risks to minimize their impact.	Ability to perform under a variety of conditions, including disruptions (both known and unknown).
Approach	Preventive → tries to anticipate and reduce risks before they occur.	Adaptive -> assumes disruptions will happen and prepares for flexible responses.
Focus	Managing specific threats that can be predicted and quantified.	Ensuring the system as a whole can continue functioning despite shocks .
Response to Uncertainty	Works best with known unknowns (quantifiable risks with probability estimates e.g. storm).	Addresses unknown unknowns (emerging, unpredictable events e.g. global crisis like pandemic).
Key Methods	Risk assessments, mitigation plans, contingency buffers, compliance measures.	Redundancy, adaptability, learning from past disruptions, cross-functional collaboration.
Time	Short to medium-term (within project lifecycle).	Long-term and continuous improvement, beyond individual projects.
Mindset	"How can we avoid failure?"	"How can we recover and adapt from failure?"
Handling Disruptions	Tries to eliminate or control risks before they occur.	Accepts that some disruptions are inevitable and focuses on recovery.
Example in Projects	A project team identifies supply chain risks and finds alternative vendors before disruptions happen.	A project team rapidly adapts to an unexpected supplier shutdown by reallocating resources and modifying plans.

Industry 5.0.

What is Happening in Other Industries?


Intelligent Healthcare

- · Manufacturing of personalized implants
- · Performing surgeries in a more precise way
- Reduced Error Rates = Better Patient Care

Supply Chain Management

- · Minimize the losses and errors
- Increase margins, reduce operational costs
- · Efficient communication between the stakeholders

Cloud Manufacturing

- Low cost manufacturing process
- · Reliability, high quality, on-demand capabilities
- · Eliminate the long haul delivery requirements

What is Happening in Other Industries?

Smart Education

- · Improves visualization and creativity
- · Interactive Learning Experience
- · Real-time blended teaching and learning

Manufacturing / Production

- · Improved Productivity
- · Innovation and higher quality products
- · Energy Efficiency

Disaster Management

- · Ability to handle consequences of the disaster
- · Used in search and rescue operation
- · Enhance the level of preparedness

Key Technologies of Industry 5.0 and Applications

Industry 5.0 Applications	Edge computing	Digital twins	Cobots	IoE	AI	Big data	Blockchain	6G and beyond	Swam networking	Network slicing	Extended reality	Private mobile network
Intelligent healthcare	Н	M	L	Н	Н	Н	Н	Н	L	Н	Н	M
Cloud manufacturing	H	H	H	H	H	H	H	H	H	H	H	M
Supply chain management	M	L	L	Н	H	H	Н	H	H	L	L	L
Manufacturing/Production		H	H	H	H	H	H	H	H	H	H	H
Education	H	M	L	M	M	M	M	H	L	H	H	M
Human-cyber-physical systems	H	H	H	Н	Н	H	Н	H	Н	Н	H	H
Disaster management	Н	M	M	Н	Н	H	M	H	Н	M	H	M
H High Utilization M Medi	um Utili	zation					L	Low Ut	ilizatio	n		

Industry

Applications.

Architecture Engineering Construction Industry

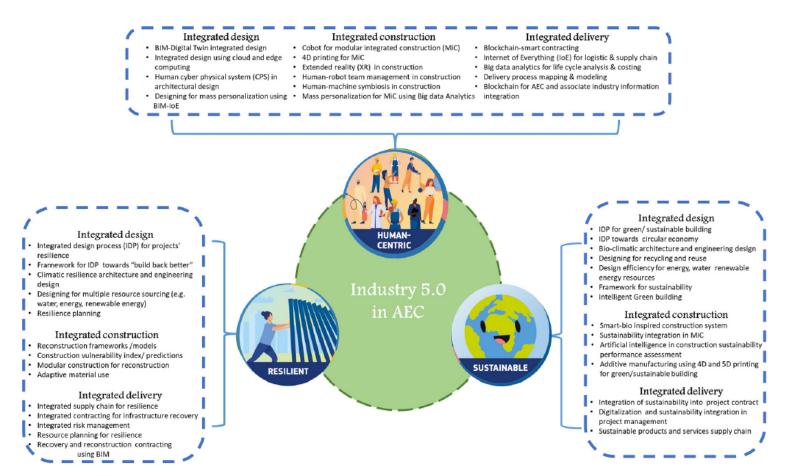


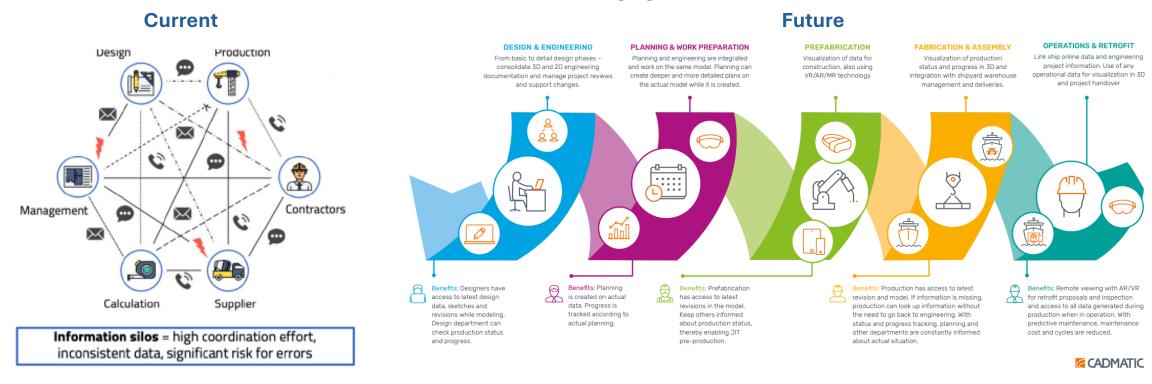
Fig. 14. Prospective research pathways towards achieving Industry 5.0 core values in the AEC industry.

Integrated Design, Integrated Construction, and Integrated Delivery becoming widely important under industry 5.0

- **Addressing Fragmentation: IPs** promote collaboration and information sharing to overcome these challenges
- **Enhancing Collaboration: IPs** are collaborative processes where individuals share skills, expertise, and knowledge to achieve optimal solutions
- **Improving Project Outcomes:** IPs can lead to improved project performance and reduced waste

Enabling Technologies

- BIM
- Other Technological Enablers



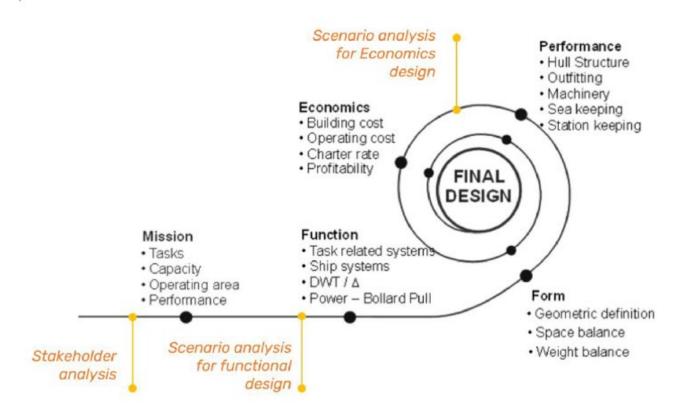
Industry

Applications

Maritime Industry – Digitalization Needs

Integrated practices are widely becoming important in maritime industry as well in the era of Industry 5.0. The increasing complexity of shipbuilding projects involving a "spider-web"- type network of information exchanges among dispersed stakeholders necessitates integrated communication and data flow [16].

naval-architect.io


39

https://www.cadmatic.com/en/resources/publications-and-brochures/

Cadmatic, 2023

Maritime Industry – Ship Design Process under Industry 5.0

Moreover, there are further research on how Industry 5.0 can transform the ship design process and methodology. Traditionally, the ship design process has been viewed as a "design spiral." However, by explicitly incorporating a human-centric perspective, we can enhance this process through stakeholder analysis and scenario analysis that focus on functional and economic design.

Additionally, it is beneficial to integrate practices from other fields, such as project management and futures studies, to better navigate the complexities and uncertainties inherent in ship design.

Maritime Industry – Autonomous Ships

MASS autonomy level	Details	Simplified (Source: Bureau Veritas 2019)
Degree One	Ship with automated processes and decision support: Seafarers are on board to operate and control shipboard systems and functions. Some operations may be automated and, at times, unsupervised, but with seafarers on board ready to take control.	Smart Ship Directed by humans. Rely on the system and sensors for support in collecting data and making decisions.
Degree Two	Remotely controlled ship with seafarers on board: The ship is controlled and operated from another location. Seafarers are available on board to take control and operate the shipboard systems and functions.	Semi-Autonomous Ship Human delegated or supervised. Rely on the system to make decisions and/or initiate actions.
Degree Three	Remotely controlled ship without seafarers on board: The ship is controlled and operated from another location. There are no seafarers on board.	Semi-Autonomous Ship Same as above.
Degree Four	Fully autonomous ship: The ship's operating system can make decisions and determine actions.	Fully Autonomous Ship Unmanned Ship. Requires no input from humans except in an emergency.

Source: International Maritime Organization (2018).

Factors of MASS

Technology feasibility
Labour market dynamics
Knowledge and skills
Social acceptance
Regulations and governance
Economic benefits

Questions

Is the technology ready for large-scale operation?
Is labour expensive? Is there a labour shortage?
Are users able to master the technology?
Does society accept the technology?
Are regulations ready? Is the authority supportive?
Has a sound business model been drawn up?

Source: Lagdami (2022).

Autonomous ships, are defined as vessels capable of operating independently of human interaction to varying degrees. The level of automation for these ships can vary and can even change during a voyage.

The introduction of autonomous ships is seen as a powerful technological advancement that will require a reconfiguration of the maritime workforce. While some traditional skills focused on manual operations may become outdated, this transition towards automation also presents opportunities for new technology-driven roles. Workers will increasingly need to focus on technology management and data analysis, as certain tasks are automated.

https://glamsquadmagazine.com/the-worlds-first-fully-electric-autonomous-cargo-vessel-unveiled-in-norway/https://tipbandit.com/technology/yara-birkeland-fully-electric-autonomous-cargo-ship/

Maritime Industry - Net Zero Goals - SDG 13

2023 IMO Strategy

- 1. Carbon intensity of the ship to decline through further improvement of the energy efficiency for new ships
- 2. Carbon intensity of international shipping to decline

to reduce CO2 emissions per transport work, as an average across international shipping, by at least 40% by 2030, compared to 2008)

3. Uptake of zero or near-zero GHG emission technologies, fuels and/or energy sources to increase

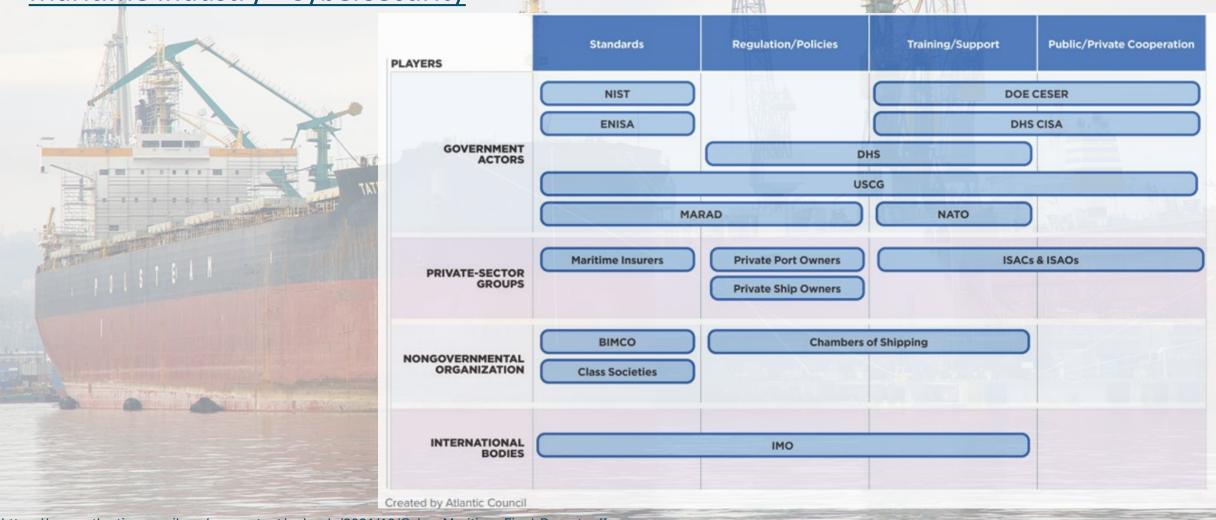
uptake of zero or near-zero GHG emission technologies, fuels and/or energy sources to represent at least 5% striving for 10% of the energy used by international shipping by 2030; and

4. GHG emissions from international shipping to reach net zero

to peak GHG emissions from international shipping as soon as possible and to reach net-zero GHG emissions by or around, i.e. close to, 2050

08 October 2024

IMO makes progress on netzero framework for shipping


https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx

Industry

Applications

Maritime Industry - Cybersecurity

https://www.atlanticcouncil.org/wp-content/uploads/2021/10/Cyber-Maritime-Final-Report.pdf

Aerospace Industry

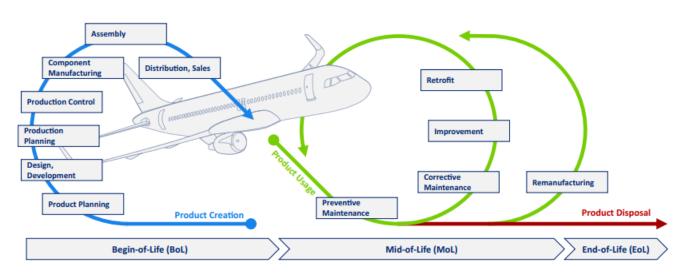


Fig. 3 An aircraft's lifecycle from product creation to product disposal (based on [16, 17])

Characteristics of Aircraft Industry

- High proportion of manual processes;
- Dependence on expert knowledge (e.g., classifying defects);
- R-Processes, like, remanufacture, reuse and retrofit systems, subsystems, and components;
- Fixed position final assembly;
- Historically grown processes;
- Distributed production with a large number of suppliers;
- High levels of inspection, testing, occupational health and safety, certification, and documentation

Challenges in Aircraft Industry

Integrational challenges

- Missing standardized structure & semantic
- Complexity of integration
- Interfaces

Organizational challenges

- Qualified staff
- Collaboration
- Value for management

Compliance-related challenges

Data protection/ownership

Applications from Aerospace Industry

AR-assisted H2 Leakage Inspection

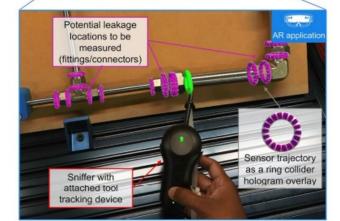
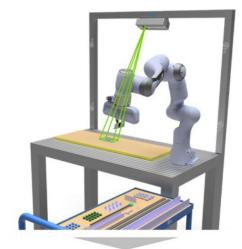



Fig. 4 Top: Use case of an AR-assisted H₂ leakage inspection on aircraft components; Bottom: AR application for measuring the leakage of fittings in a pipe system with a sniffing sensor

Digital Production Process Twin

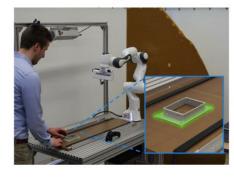
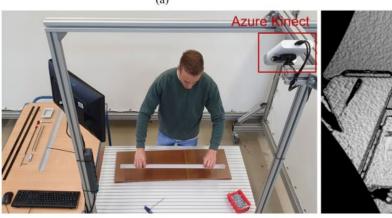



Fig. 6 The *Digital Production Process Twin* of an assembly station for hybrid assembly of cabin interior components (based on [21])

Human Action Recognition (HAR)-based progress detection in manual assembly

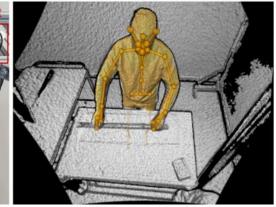


Fig. 6 a Workstation for multi-variant assembly processes in aircraft interior production; b Azure Kinect depth image and skeleton reconstruction [62]

[23]

Challenges

Some challenges mentioned from the various resources in this document include;

Category	Specific Barriers
Technological	Lack of interoperability and standardization among different systems and platforms.
	Immature or unreliable AI technologies that leads to performance issues or unexpected outcomes.
	Difficulties in integrating AI and robotics into existing manufacturing workflows and processes.
Economic	High implementation costs for AI, robotics, and other Industry 5.0 technologies, especially for small medium sized enterprises (SMEs)
	Uncertain return on investment and difficulty in quantifying the benefits of Industry 5.0 initiatives.
	Potential for job displacement and economic inequality due to automation.
Human and Societal	Lack of skilled workforce with the necessary technical and cognitive skills to work alongside AI and robots.
	Resistance to change and cultural barriers to adopting new technologies and working practices.
	Ethical concerns surrounding AI, data privacy, algorithmic bias, and the responsible use of technology.
Organizational	Lack of strategic vision and leadership commitment to drive Industry 5.0 transformation.
	Siloed organizational structures and lack of collaboration across departments.
	Inadequate infrastructure, including data storage, network capacity, and cybersecurity measures.

Challenges

Some challenges mentioned from the various resources in this document include; Time Right policies Social values Ethical issues Moral codes Technological challenges Industrial chain From technology-driven to value-driven Heterogeneity of systems Massive data Social supervision system Symbiosis under technology Compliance with industry standards reorganization Productivity Human-centric value-driven socio-ecological systems technology transformation Significant investment Limitations, barriers, and challenges Development of lifelong learning for workers A lack of clear objectives Education Shipping industry Privacy and security of data circulation Use of different Innovation management enabling technologies Microalgae industry & Interdisciplinarity of research content Training of workers in Diverse opinions the industrial transformation Transnationality of value systems Architectural construction of Industry 5.0 systems Chaos in HRC Few reference Other potential challenges Fig. 5. A tri-dimension architecture of implementing Industry 5.0. Limitations of current research

Fig. 6. Limitation, Barriers, and Challenges towards Industry 5.0.

47

Social barriers

Summary & Additional Notes

Key Pillars

Human - Centric

- Well-being and Satisfaction
- Human Input in Decision-Making
- Skill Development and Continuous Learning
- Security and Stability

Sustainability

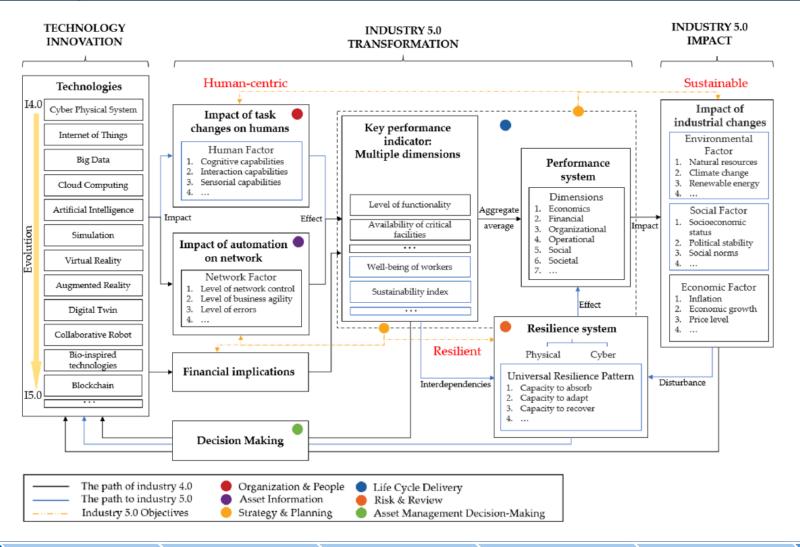
- Circular Economy Transition
- Maximize Material and Energy Efficiency
- Design for Sustainability Across the Value Chain
- Alignment with EU Policies

Resilient

- Resilient Value Chains
- Flexible Business Processes
- Create Adaptable Production Capacity
- Create an Adaptable Workforce

Industry 5.0

Interrelated Values


Reinforcing One Another

A Design Model for human-centred, sustainable and resilient systems

Framework for making strategic decisions related to technology development and implementation in asset management, targeting alignment with Industry 5.0 goals. The research examines the effects of technological innovation on industrial evolution across environmental, social, and economic dimensions.

Additionally, it outlines key areas such as organization and people, asset information, strategy and planning, life cycle delivery, and risk and review.

Value Model for Industry 5.0

Human-technology Interaction	 Designing technologies that enhance human capabilities, improve quality of life. Foster human dignity, agency, and empowerment. Rather than viewing humans as secondary actors in automated systems. Envision human-centric technological partnerships, where machines support human creativity, empathy, and decision-making.
Social Responsibility	 Equitably distribute resources, create meaningful work, ensure inclusivity and support human rights. Consider inclusive growth where technological advancements benefit all Be accountable to the communities they operate in, prioritizing social equity, education, and empowerment.
Sustainability	 Integrate economic, social, and environmental dimensions into industrial processes Rusure that production systems are regenerative and resource-efficient. Sustainability must not be an afterthought but a central organizing principle in all stages of industrial design, production, and consumption.
Innovation	Devise innovative approaches that solve real-world problems, improve life quality, and support long-term sustainability goals. Innovation must transcend technological advancements Purposeful innovation and value-driven progress leveraging technology with ethical benefitcial for society.
Ethics	Ensure that all activities contribute to the broader societal good. Priotitize fairness, transparency, and social ustice as fundamenta criteria. operate beyond efficiency, profit, or technological innovation.

This study introduces a conceptual model for Industry 5.0 that integrates humancentric, ethical, and technological factors. It connects key elements such as ethics, sustainability, innovation, and social responsibility to create a framework that aligns technological advancements with societal environmental goals.

The model emphasizes a balanced approach to value creation, moving beyond the efficiency focus of Industry and guiding industrial practices toward a more human-centered future.

Fig. 13 Value conceptual model for Industry 5.0 (Source: authors)

<u>Impacts</u>

- Minimizing the Environmental Impact of Manufacturing
- Breaking Down Silos for Unified and Coordinated Action
- Encouraging Cross-Industry Collaboration
- Prioritizing Industrial Upcycling and Repurposing
- Building a Wasteless World for Everyone

[Michael Rada - https://www.slideshare.net/slideshow/industry-5-0-power-of-industrial-evolution/271750123?from_search=5#1]

References

- 1. European Commission, Directorate-General for Research and Innovation, (2024) *ERA industrial technologies roadmap on human-centric research and innovation for the manufacturing sector*. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/0266
- 2. European Commission, Directorate-General for Research and Innovation, Renda, A., Schwaag Serger, S., Tataj, D. et al. (2021) *Industry 5.0, a transformative vision for Europe* : governing systemic transformations towards a sustainable industry. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/17322
- 3. European Commission, Directorate-General for Research and Innovation, Breque, M., De Nul, L., Petridis, A. (2021) *Industry 5.0 : towards a sustainable, human-centric and resilient European industry*. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/308407
- 4. Kumar, A., Bansal, P., Kumar, A., Gupta, A.K. and Choudhari, A., Digital Manufacturing: Artificial Intelligence in Industry 5.0. In *Artificial Intelligence and Communication Techniques in Industry 5.0* (pp. 1-25). CRC Press.
- 5. Pilevari, N., 2020. Industry revolutions development from Industry 1.0 to Industry 5.0 in manufacturing. Journal of Industrial Strategic Management, 5(2), p.44.
- 6. Maddikunta, P.K.R., Pham, Q.V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T.R., Ruby, R. and Liyanage, M., 2022. Industry 5.0: A survey on enabling technologies and potential applications. *Journal of industrial information integration*, 26, p.100257.
- 7. Olsson, A.K., Eriksson, K.M. and Carlsson, L., 2025. Management toward Industry 5.0: a co-workership approach on digital transformation for future innovative manufacturing. *European Journal of Innovation Management*, 28(1), pp.65-84.
- 8. Mathur, A., Dabas, A. and Sharma, N., 2022, December. Evolution from industry 1.0 to industry 5.0. In 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (pp. 1390-1394). IEEE.
- 9. Naderpajouh, N., Matinheikki, J., Keeys, L. A., Aldrich, D. P., & Linkov, I. (2020). Resilience and projects: An interdisciplinary crossroad. *Project Leadership and Society*, 1, 100001.
- 10. Ikudayisi, A. E., Chan, A. P., Darko, A., & Adedeji, Y. M. (2023). Integrated practices in the Architecture, Engineering, and Construction industry: Current scope and pathway towards Industry 5.0. *Journal of Building Engineering*, 73, 106788.

References

- 11. Simply AI Facts Made Fast, 2023, DK Publishing
- 12. Ahmad Fuad, Ahmad Faizal, et al. "Maritime education in the era of Society 5.0 and autonomous ships: a concise literature review." *Australian Journal of Maritime & Ocean Affairs* (2024): 1-10.
- 13. Demir, Kadir Alpaslan, Gözde Döven, and Bülent Sezen. "Industry 5.0 and human-robot co-working." Procedia computer science 158 (2019): 688-695.
- 14. Autsadee, Yuthana, et al. "Maritime Society 5.0: a global transition on human economy and civilisation for maritime sustainability." *Australian Journal of Maritime & Ocean Affairs* 17.1 (2025): 1-26.
- 15. Seppälä, Ludmila. "Industry 5.0: Transforming ship design through human-centered approach." International Marine Design Conference. 2024.
- 16. Agis, Jose Jorge Garcia, and Per Olaf Brett. "Digital Shipbuilding-Needs, challenges, and opportunities." International Marine Design Conference. 2024.
- 17. Chabane, Bilal, Dragan Komljenovic, and Georges Abdul-Nour. "Converging on human-centred industry, resilient processes, and sustainable outcomes in asset management frameworks." *Environment Systems and Decisions* 43.4 (2023): 663-679.
- 18. DNV, "Energy Outlook, A global and regional forecast to 2050", 2024
- 19. Gokce Yilmaz, "Introduction to Industry 5.0, Trends, Opportunities, and Challenges", 2025
- 20. Jourabchi Amirkhizi, P., Pedrammehr, S., & Pakzad, S. (2025). A system-based approach to value prioritization in industry 5.0 for sustainable value creation. Discover Sustainability, 6(1), 364.
- 21. Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., ... & Wang, L. (2022). Industry 5.0: Prospect and retrospect. Journal of Manufacturing Systems, 65, 279-295.
- 22. Moenck, K., Rath, JE., Koch, J. et al. Digital twins in aircraft production and MRO: challenges and opportunities. CEAS Aeronaut J 15, 1051–1067 (2024). https://doi.org/10.1007/s13272-024-00740-y
- 23. Moenck, K., Koch, J., Rath, JE. et al. Industry 5.0 in aircraft production and MRO: challenges and opportunities. CEAS Aeronaut J (2025). https://doi.org/10.1007/s13272-025-00832-3