

What is hydro-morphology?

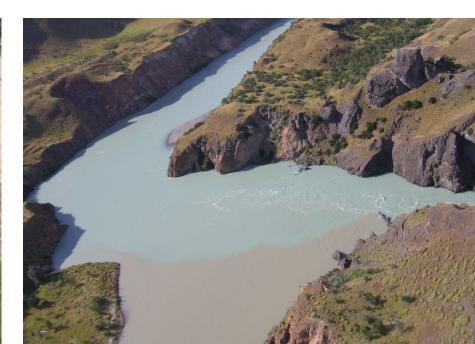
Flow, riverbed, riparian zone

Velocity, depth, turbulence, substrate, physical habitat, river banks, floodplain

Directly impacted by hydropower

Hydrology

Flow variation in time



Geomorfologi

Two dilemmas about WFD

Hydro-morphology = supporting element

Two dilemmas about WFD

Hydro-morphology

= supporting element

= fundamental for the ecosystem

Two dilemmas about WFD

Hydro-morphology

= supporting element

= fundamental for the ecosystem

Water is flowing from source to sea

...difficult to split into units

HyMo 1.0 report – final suggestion for Norwegian authorities

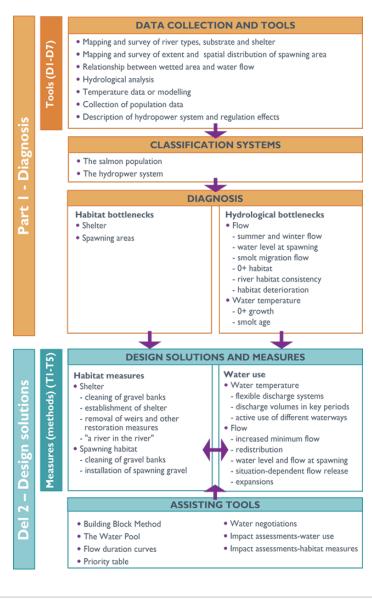
Field work and testing different methods

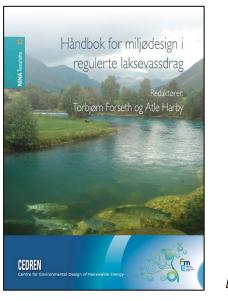
11 workshops



HyMo 1.0 report

				Clas	s bord	ers					
	Topic	Indicator for change	Natural	Small changes	Moderate changes	Large changes	Very large changes				
	Lateral connectivity	Running meters of river impacted [%]	<5%	5-20%	20-50%	50- 80%	>80%				
river	Embankments	Running meters of river impacted [%]	<5%	5-20%	20-50%	50- 80%	>80%				
the	Riparian vegetation	Running meters of river with higher vegetation [%]	<5%	5-20%	20-50%	50- 80%	>80%				
Along	Channelization	Changes in sinuosity [%]	<5%	5-20%	20-50%	50- 80%	>80%				
	Incision	Average incision of the river [m]					5m				
river	Barriers inside the water body	Number of barriers (absolute/partly) [#]	None/ none	None/ < 2	<2/<3	<3 / <5	≥3 / ≥ 5				
ss the	Backwater effect inside the water body	Running meters of river impacted from backwater effect [%]	<10%	10-30%	30-50%	50- 80%	>80%				
Across	Barriers in upstream catchment/water bodies	Distance to upstream barrier [km]	None	> 50km	10- 50km	2- 10km	<2km				



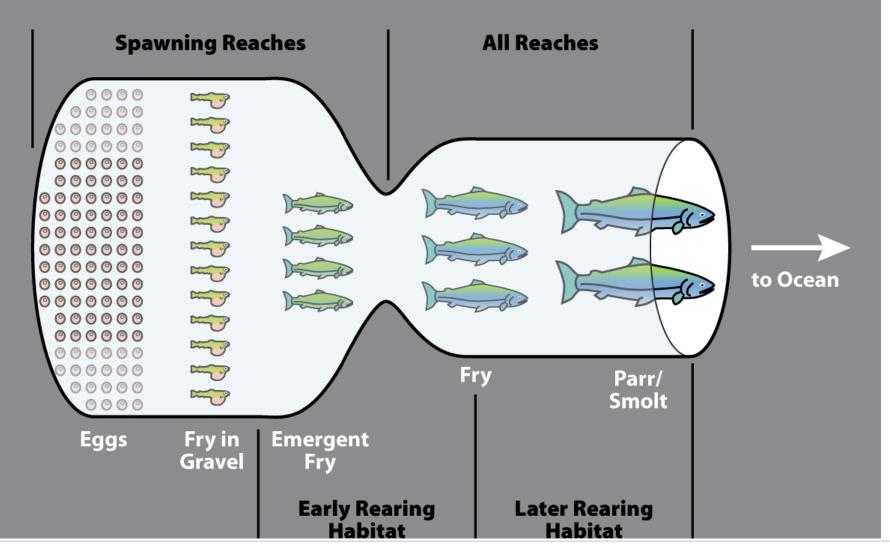


Environmental design – what is it?

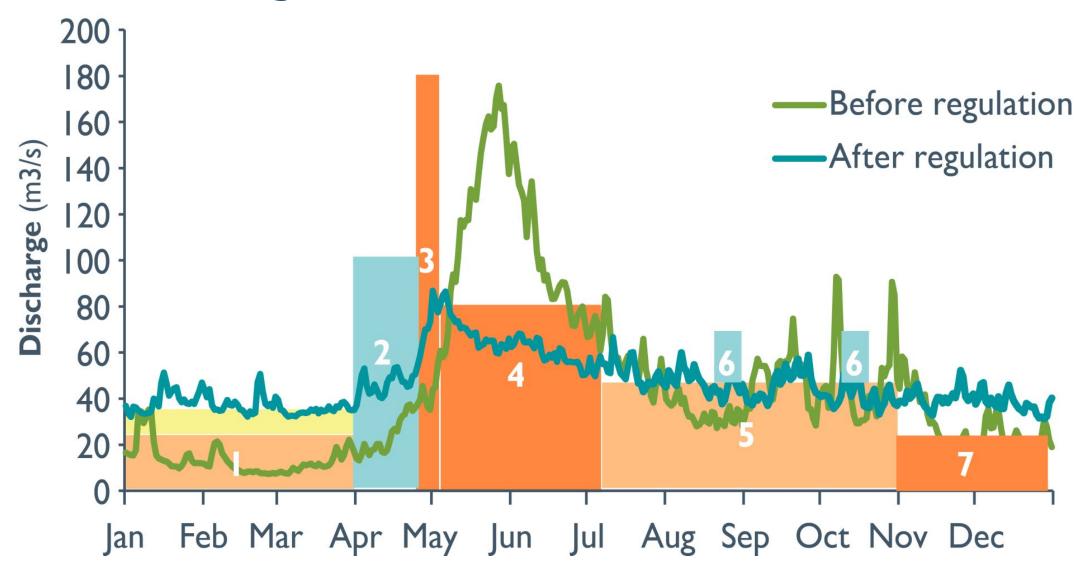
- A method to consider power production, societal needs and the environment
- A systematic approach combining recognized and new knowledge
- Handbook, course and a set of tables and graphs for hydropower and salmon
- Under further development to include other species, biodiversity, recreation and other services

- Methods for Atlantic salmon
- These methods also applicable for other species and services
- Printed and pdf available in English,
 Norwegian and Chinese

Free download at: www.cedren.no



HABITAT BOTTLENECK


Fish dies only once!

Design solutions – how to use water?

Mitigation measures – design solutions

Environmental flow release

Stable temperature and ice cover

Introduce "a river in the river" when water is withdrawn

Two-way migration solutions

Improving habitats

"Water bank"

Species, activities and services

Other species and habitats

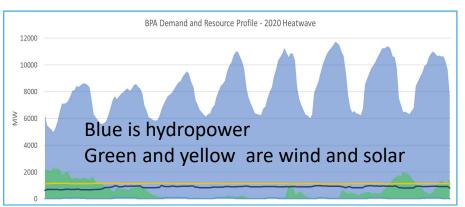
Flood protection

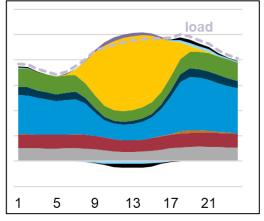
Energy services

Recreation and tourism

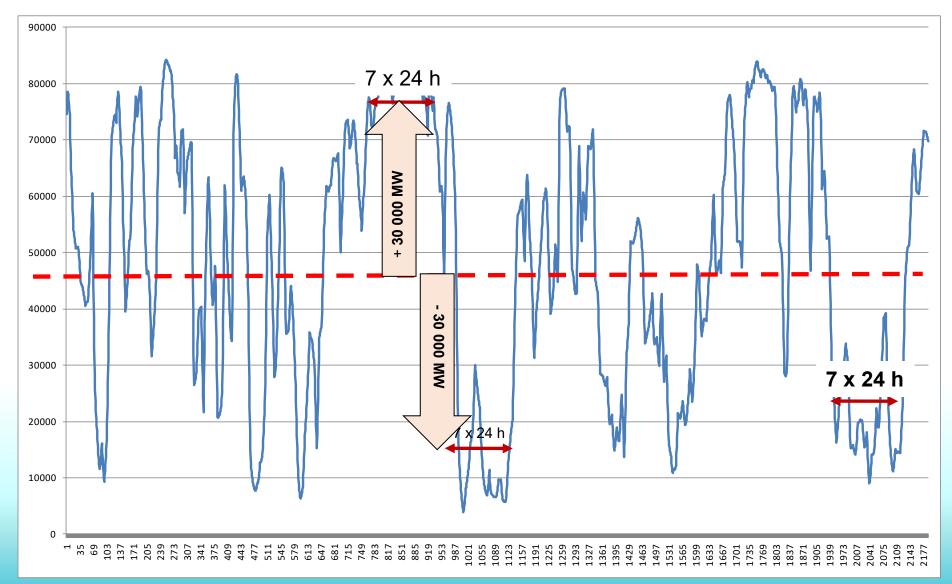
		Extent of spawnin	g habitat as a percentage of river area					
		Small (<1%)	Moderate (I-10%)	Large (>10%)				
Distance	Large (>500 m)	Small	Small	Moderate				
between spawning	Medium (200-500 m)	Small	Moderate	Large				
habitats (across all segments)	Small (<200 m)	Moderate	Large	Large				

Reach	Length (rs)	Sogwest	Length (m)	Population regulation stage	Habitat bottlereck	Productivity (1-3)	Importance of flow (1-3)	Spawning water level ratio (0-3)	Flow conditions in summer (+, 0-3)	Flow conditions in wincer (4, 0-3)	0+ grouth (0, 2, 3)	0+ habitat (0-3)	T and smolt production (0-3)	Flow during smoit migration (+, 9-3)	Habitat deterioration (9-3)	River course uniformity (0-3)
1	4202	1	500	Fry	Specia	- 1	3	2	0	2	2	0	3	0	0	- 1
		2	1000	Fry	Spawn	1	3	2								
		3	600	By	Spawii	1	3	3								
		4	900	Fry	Spawn	7	,	7								
		3	700	Fry-Parr	Boen	1.	2	3								
2	2500	4	500	Pry/Parr	Seco	1	- 1	3	3	2	2	э		0	1	9
		7	600	Parr	Shelte-	2	- 1	-								
		8	939	Part	Shalter	2	1	1								
		9	500	Per	Shelte-	2	-1	ì								
		10 600	None	None	3	3	2									
		11	500	Nana	None	3	3	2								
3	2100	2	1000	Fry	Spawn	2	2	2	2	3	0	1	0	2	2	0
		3	800	fry	Spawn	1	2	-1								
		14	500	By	Spewa	2	3	2								
etc.		ecc.														


Guidance, methods and tools


Dunkelflaute

- periods with hardly no wind, nor solar power

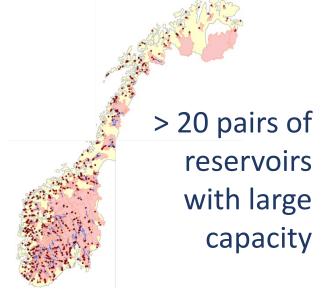


Surplus periods - how to use excess energy and avoid curtailing generation?

Simulated wind production in the North Sea area in 2030

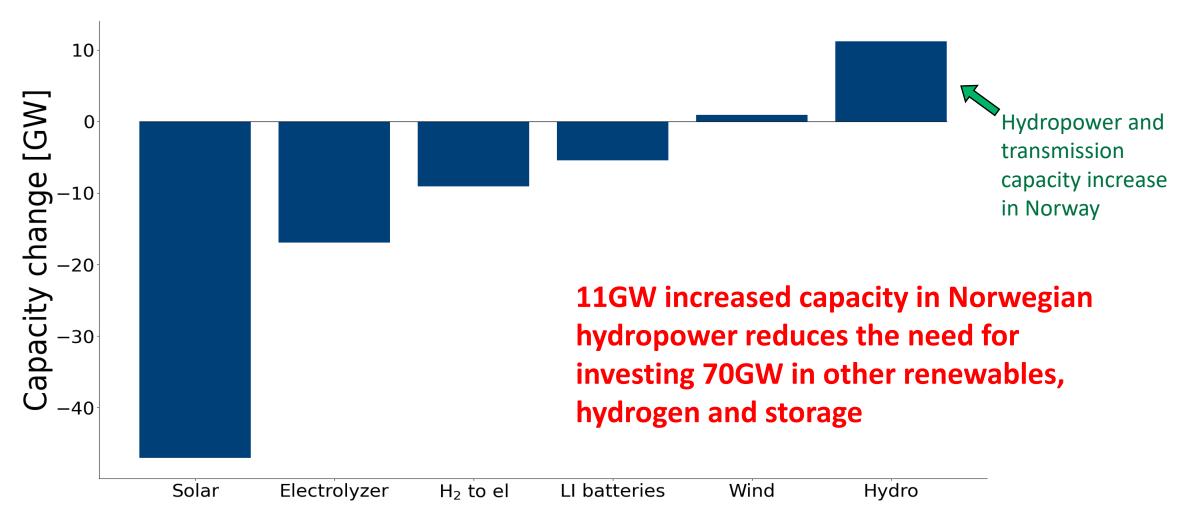
One week balancing

- = 30 000 MW in 168h
- = 5 000 GWh energy
- = 1 000 typical PSH
- = 38 700 HornsdalePower Reserve(Elon Musk battery project in Australia)



from IEA TCP Hydropower

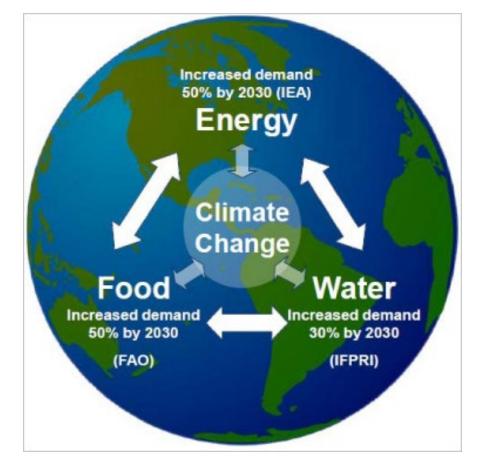
Upgrading capacity in Norwegian hydro



The amount of solar PV, hydrogen and batteries needed in Europe reduced substantially

Installed capacity change from 2050 baseline to extended - Europe

Source: The HydroConnect project


Ensure access to affordable, reliable, sustainable and modern energy for all

Requires hydropower companies to declare their impact and dependency on nature and climate,

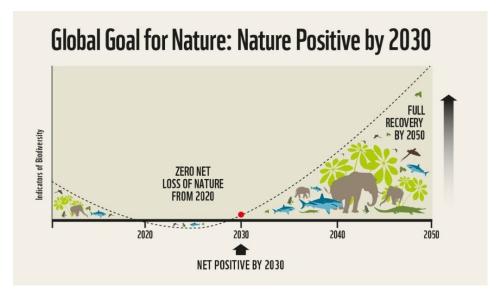
Environmental and social impacts

What is sustainable hydropower?

- Sustainable hydropower leads to:
 - Energy for all
 - Clean water and sanitation
 - Zero hunger
 - Economic growth
 - Sustainable communities
 - Life on land (including freshwater)
- What is sustainable hydropower?
 It's the wrong question to ask!

- Sustainable hydropower must not be seen isolated from the society
- Good practice hydropower
 - Adapted to local challenges and needs
 - Meeting global requirements

Hydropower that provides energy, water management for all users and interests and contributes to welfare



What is a sustainable energy system?

- What is the alternative to hydropower?
 - More efficient energy generation
 - More efficient energy use
 - Less energy use ...but more electricity
 - Fossil fuels
- We must have a holistic view
 - Maximise reduction in CO₂ emissions
 - Maximise benefit for society
 - Include effects of alternatives
 (also the zero-alternative = doing nothing)
 - Minimise impact on nature
 → becoming nature positive

