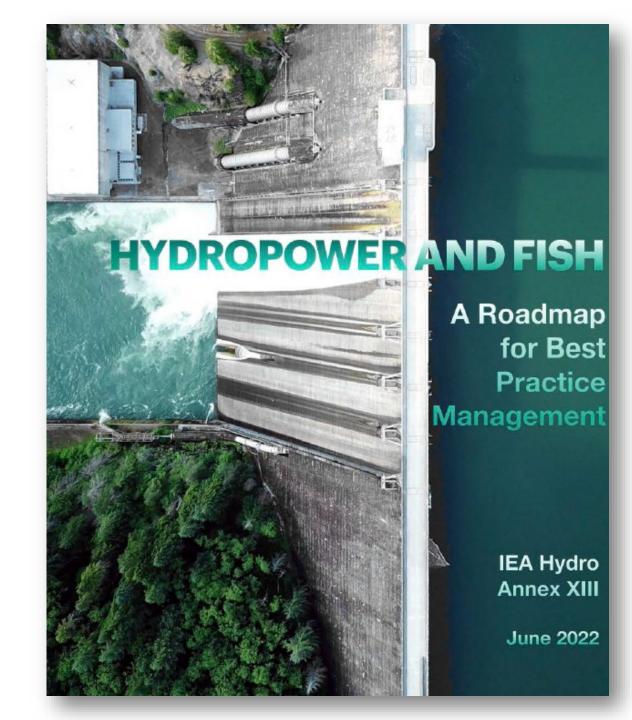


IEA Hydro – Roadmap for best practise solutions for hydropower and fish

Ana Adeva Bustos, and Marcell Szabo-Meszaros, SINTEF Energy Research, Norway



Commitment towards sustainable hydropower

Dedicated working group for Hydropower and Fish within IEA Hydro

- Main objective was to provide a better understanding of the effect of hydropower on fish
- Closing phase of Annex XIII (2020-2022), with one objective,

to compile and transfer knowledge in a Roadmap format

Joint collaboration

Editors:

Niels Nielsen, Former Executive Committee Secretary of IEA Hydro TCP, Consultant, Kator Research, Marcell Szabo-Meszaros, Operating Agent of Annex XIII, Research Scientist, SINTEF Energy Research, Norway

rch,

Authors:

Ismail **Albayrak**

Lee **Baumgartner**

Robert **Boes**

Jeanne **Boughaba**

Ana Adeva Bustos

Zhiqun (Daniel) **Deng**

Hans-Petter Fjeldstad

Jo Halvard Halleraker

Atle **Harby**

David **Ikedife**

Christos **Katopodis**

Alban **Kuriqi**

Markku **Lahti**

Dana **McCoskey**

Katherine **Morrice**

Piotr **Parasiewicz**

Emanuele Quaranta

Thomas **Schleker**

Luiz G.M. Silva

Senior Scientist, ETH Zürich, Switzerland

Professor of Fisheries and River Management and Director of Gulbali Institute,

Charles Sturt University, Australia Professor, ETH Zürich, Switzerland

Policy Officer, European Commission, Belgium

Research Scientist, SINTEF Energy Research, Norway

Laboratory Fellow, Pacific Northwest National Laboratory, U.S.A

Senior Research Scientist, SINTEF Energy Research, Norway

Guest Scientist, Department of Civil and Environmental Engineering, NTNU, Norway

Senior Research Scientist, SINTEF Energy Research, Norway

Senior Environmental Scientist, Hydro Tasmania, Australia

Consultant, Katopodis Ecohydraulics Ltd, Canada

Research Scientist, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Environmental expert, Fortum Power and Heat Ltd, Finland

Environmental Technologies Manager, U.S. Department of Energy, U.S.A.

Marine Scientist, U.S. Department of Energy, U.S.A.1

Head of River Fisheries Department, S. Sakowicz Inland Fisheries Institute, Poland

Scientific Officer, European Commission, Joint Research Centre, Italy

Policy Officer, European Commission, Belgium

Senior Scientist, ETH Zürich, Switzerland

Reviewers:

Markus **Auflager**

Tor Haakon Bakken

Isabel **Boavida**

Barbara **Brinkmeier**

Paulo **Branco**

Maria João **Costa**

Gabriela-Elena **Dumitran**

Brett **Fflugrath**

Marie-Pierre **Gosselin**

Svein **Haugland**

Torodd **Jensen**

Klaus **Jorde** Morten **Kraabøl**

Jayson **Martinez**

Bogdan **Popa**

Ana L. **Quaresma** Helena M. **Ramos** José Maria **Santos**

Fjola Gudrun **Sigtryggsdottir** Sebastian Franz **Stranzl**

Liana Ioana **Vuta**

Professor, University of Innsbruck, Austria

Professor, Department of Civil and Environmental Engineering, NTNU, Norway

Research Scientist, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Consultant, HyFish GmbH Innsbruck, Austria

Research Scientist, Forest Research Centre, School of Agronomy, University of Lisbon,

Portugal

Research Scientist, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Associate Professor, Department of Hydraulics, University Politehnica of Bucharest, Romania

Earth scientist, Pacific Northwest National Laboratory, U.S.A.

Research Scientist, Department of Aquatic Biodiversity, NINA, Norway

Environmental Specialist, Agder Energi Vannkraft, Norway

Chief Engineer, NVE, Norway

Secretary of IEA Hydro TCP, Director of KJ Consulting, Austria
Department head of Aquatic Ecology, MultiConsult, Norway

Mechanical Engineer, Pacific Northwest National Laboratory, U.S.A.

Associate Professor, Department of Hydraulics, University Politehnica of Bucharest,

Romania

Research Scientist, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Professor, CERIS, Instituto Superior Técnico, Universidade de Lisboa, Portugal
Professor, Forest Research Centre, School of Agronomy, University of Lisbon

Professor, Department of Civil and Environmental Engineering, NTNU, Norway

Research Scientist, LFI / Division of Climate and Environment, NORCE Research, Norway Associate Professor, Department of Hydraulics, University Politehnica of Bucharest,

Romania

Roadmap overview

Knowledge basis on hydropower and fish interactions, discussed in the following parts:

- Background
- Problems and Solutions
- Decision-making processes
- Monitoring tools

Holistic approach to address key components

INTRODUCTION AND OVERVIEW

Section 1

BACKGROUND

Nature and Socio-Economic interests Legislative and Environmental aspects

Section 7

Hydropower & Fish: COMPETING INTERESTS

- Fragmentation
- Inundation
- Sediment Transport
- Water temperature and quality
- Regulated flow and water abstraction
 Section 3

Hydropower & Fish: SUSTAINABLE OPTIONS

Measures to address issues and risks associated with multiple processes one by one

Section

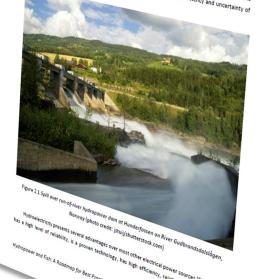
DECISION-MAKING PROCESSES

Section 5

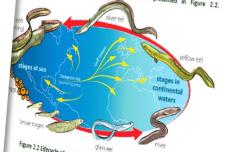
MONITORING THE EFFECTIVENESS OF SOLUTIONS Section 6

Background

- Presents socio-economic and nature's interest for water resource management
- Discuss the need for legislative practices that may set the maximum impact of hydropower on target species


SECTION 2. BACKGROUND

Section 2 presents the impacts of hydropower developments on fish. It starts with notes on social and natural aspects relative to watercourses, followed by a brief overview of the main interactions. The next part presents the policies and regulations that must be addressed, depending on the relevant jurisdictions. This is interlinked with environmental impact assessment and its role in evaluating the degree of hydropower impact on local fish. Based on the previous subsections, the final part discusses ecological


2.1 Socio-economic Interests: The Present and Future of Hydropower as a Renewable Energy Source

The rationale for hydropower is based on its past and present a significant contribution to global energy and its future importance towards a post-carbon civilization.

Hydropower is a long-standing, reliable, safe, and cost-competitive renewable energy source. It is essential in today's electricity mix, contributing more than 17% of electricity generation worldwide and hydropower is twofold: the primary benefit is the generation of clean, low-carbon, and renewable

odplains; estuaries), while juveniles occupy feeding sites until they reach maturity. The ranges from territorial to free-ranging and schooling foraging behaviour. Once mature, spawning sites to reproduce. In species-rich watercourses, spawning migrations occur up vers, between littoral and profundal lake zones and into pelagic zones. A great gamut evaluable for general descriptions of major potamodromous and diadromous fish groups life cycles for eels is presented in Figure 2.2.

(Source: EreborMountain/shutterstock.com)

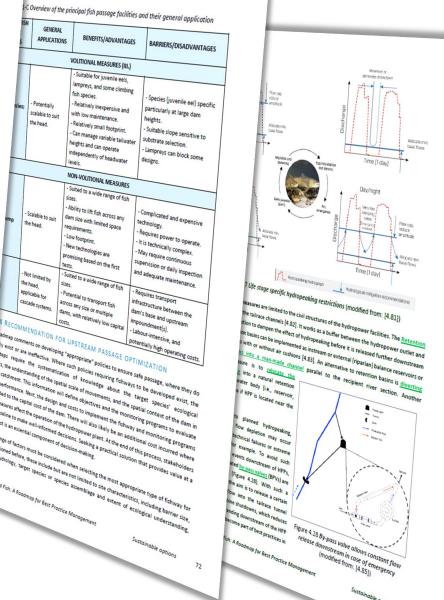
e Hydropower and Science-Policy interface

decision involving mitigating the impacts of hydropower developments on fish requirements. This section provides an overview of the general policies that

A DECISION-MAKING FRAMEWORK

of the United Nations (UN) have adopted an agenda for sustainable development 17 defined goals for peace and prosperity for the planet and its people. The UN Goal (SDG) #6, «Ensure availability and sustainable management of water and whits the importance of water management for the planet and society. Still, rivers er are also touched by goal 87 «Ensure access to affordable, reliable, sustainable alls. Also relevant is goal #15, «Protect, restore and promote sustainable use of Bustainably manage forests, combat desertification, and halt and reverse land estify loss». Since it is essential to life, water can easily be connected to almost all

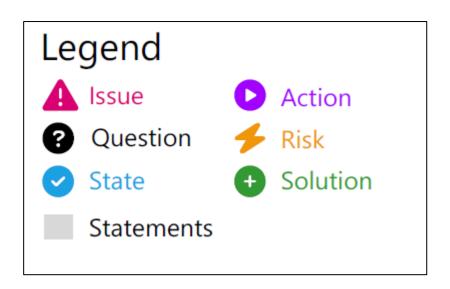
, $^{\rm f}$ and fish are embedded into all three dimensions of sustainability (i.e., social, ental) and can be connected to various policies. Major policies of international

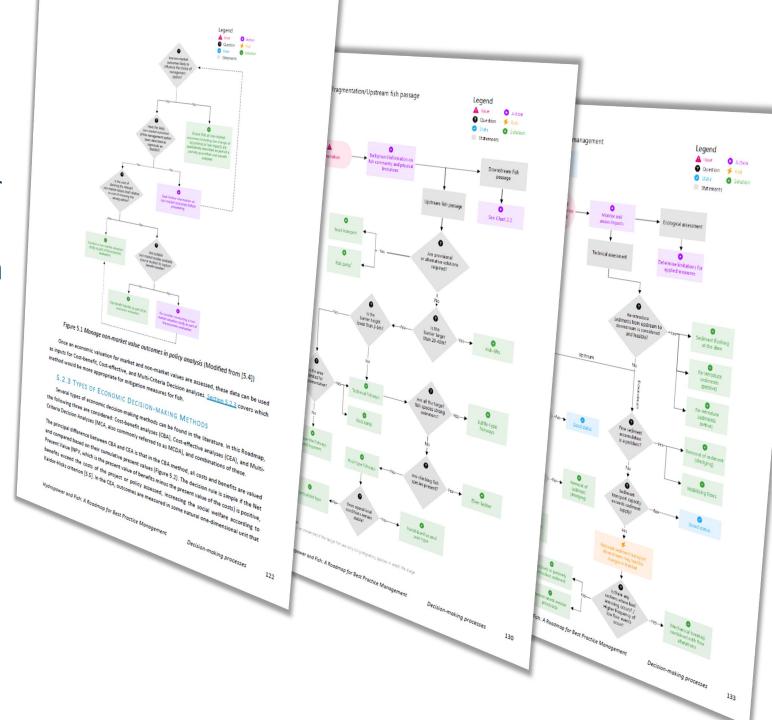


Problems and Solutions

Presented along five processes:

- Fragmentation
- Inundation
- Sediment transport,
- Water temperature and quality
- Regulated flow and water abstraction





Decisionsupport tool

To guide and assist the users for considering mitigation measures: eight flowcharts with explanations supports this process.

Monitoring

Importance of adequate monitoring programmes to design solutions and to assess their effectiveness.

Discuss techniques for:

- Fish movement,
- Habitats,
- Water quality,
- Supplementary tools e.g.: statistical and numerical approaches.

Table 6.1 Applicability of monitoring techniques

M	ONITOR	ING	DESCRIPTION-PURPOSE		PAS	PASSAGE		1	reconniques			
	Modelling - physical Modelling - 1 to 1		TOTAL ON POSE		LOC	LOCATION		LIMITATIONS			COMMENTS	
M			Detects fish movement hrough fixed		- All, included ladders.	- All, specifically turbine and fishway passage. c		comparison.		- Ma meth it has	- Mature methodology as it has been used for many years. - Applications are evolving.	
Mo					turbine and					- Appli		
Hydro- Techi					both upstres							
Biotele	metry	- Bio pass acou	otelemetry types sive, radio, and ustic telemetry.	are	movement. All structure:	_	- T	ags surgicected,	ally	_		
Dire biological	ct testing	- Ball techn labora testin	oon-tag recaptur nique, and atory simulation	re ·	Downstream		ext atta	planted or ernally iched.				
Environm DNA		- By will collect fragme individu	ater samples sing DNA ents from	- As	osage.	i	not in baron	ptures do neasure trauma. rides	· Fo	r specific		
Direct Physi measureme	ical di	Small, I Duoyant levices v	neutrally autonomous with sensors	- Dou	anu scale).	(3 8)	tuour	ersity es &).	- Use studi	cies ident etic marke needed. Iful for es on fish dance.	ers	
Video surveilla	nce ne	bservin arby fish	If fish activities	Near	ge.	fish	ovide injui	relative	biolog respon	age to rical nse model ped using Diological	5	
dydropower and	Fish: A R	ood-	-2619tin	passan	fish	- Lim turbii	d and itions	dark	deep-lea techniqu	ed with arning les to		
		maj	P for Best Practic	se Mana	gement	\	_	r	ipecies a novemer utomatic	nd		
							•		Monito	ring	144	

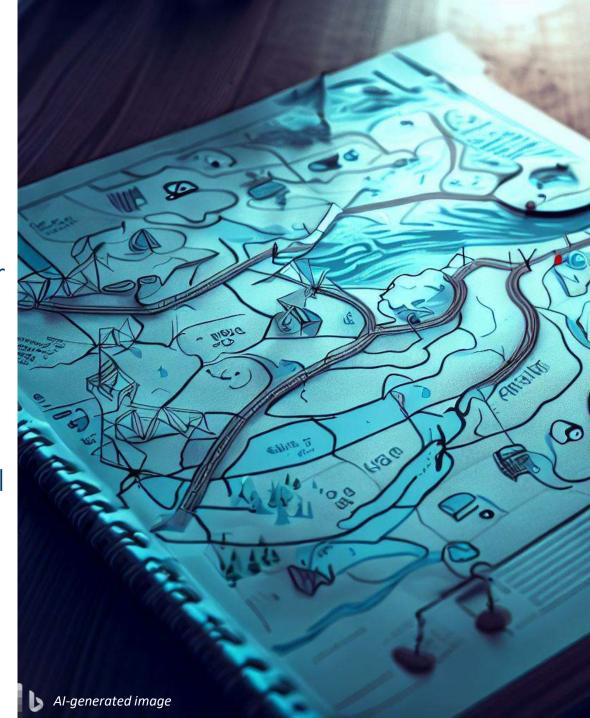
water quality parameter affected by hydropower is the amount of TDG in the water column G is not to be confused with DO levels. DO is often used mistakenly as a proxy for TDG in watercourses. However, there is no linear relationship between DO and TDG levels in as water passes over spillways, it entrains gases, leading to elevated levels of TDG in the Typically. TDG levels in unregulated river systems are approximately 100%. However, TDG as 140% and beyond have been measured in rivers heavily impacted by hydropower. Emperature is also a key factor in aquatic ecosystems. Temperature loggers have become conditions are also relevant to monitor via remote sensing at winter habitats. The collected of fish.

Satellite Modem

Solar Power

Solar Power

Buoy



Summary of the Roadmap

It starts with a broad background to hydropower and fish, including conflict descriptions between them. Where there are challenges, the Roadmap provides options as mitigation measures for further consideration. Since there is often more than one suitable alternative, decision-support processes guide the reader in considering options. Although the main focus of the Roadmap has been to provide effective solutions for fish populations, many of the same measures may also be beneficial for viable habitats and for other aquatic species.

Available at:

The future of Hydropower and Fish working programme within IEA Hydro

The work will continue in a new Task within IEA Hydro.

Task 19

Hydropower and Fish 2.0

Task 19: Hydropower and Fish 2.0

Utilizing advanced techniques for monitoring: data abundancy for enhanced knowledge on fish and their habitats

Risk assessment for hydropower operation and fish: importance of real-time information for mitigation measures

Environmental flows

- E-flows have been at the forefront of Ecohydraulic research for decades
- Several guidelines and international standards from the EU, North America and from the World Bank are available
- In recent years, a new approach has emerged from the EU to develop a
 universal method that can be applied from a local to regional scale.
- The main aim for the new Task 19 is to draw attention to the next level of e-flows and serve as a valuable forum for discussion and dissemination.
 - Combined with economic considerations, will provide an excellent basis for further discussions between the stakeholders

Utilizing advanced techniques for monitoring

- Monitoring techniques have been in continuous progress for ages.
- For centuries, people wanted to know more about where to find fish and what might indicate their abundance in water.
- In the digital age, technologies have advanced, providing new, unique ways to follow fish's path and characterize their living habitats.
- The aim of Task 19 is to raise awareness of new technologies, such as the use and benefit of e-DNA, using AI techniques and new types of devices capable of collecting data from fish and on behalf of the fish (e.g., artificial sensor units).

Risk assessment for hydropower operation and fish

- Risk assessment for hydropower operations is historically focused on preventing failures and securing stable power production.
- Ecohydraulics research tends to apply similar methods to assemble risk matrices for aquatic animals in relation to hydropower operation.
- Following **real-time information** from monitoring stations, such matrices provide valuable information to apply feasible and **cost-effective mitigation measures** at sites to improve the operational protocol of the local hydropower plant.
- The goal of Task 19 is to emphasize the benefit of such techniques that can increase social acceptance of hydropower operations in general.

Milestones

Phase	Description of milestones	Deadline
1	Kick-off meeting	M3
	Launch of Task 19 website	M5
	Proposal Task Force establishment	M6
П	Engage collaboration with IHA	M8
	Organized seminar/special session at a	M12-M17
	selected international conference	
	Organized 1-day meeting (physical) with	M20-M23
	the expert group associated with an	
	international conference	
	Organized 1-day workshop associated with	M24-M27
	an international conference	
III	Organized 1-day workshop to disseminate	M34
	compiled knowledge of Task 19	

Deliverables

Phase	Description of deliverables	Deadline
I	Teaser of IEA Hydro Task 19	M7
	Factsheet in alignment with the main objective of	M9
	Task 19	
	Factsheet in alignment with the secondary objective	M9
	1 of Task 19	
	Factsheet in alignment with the secondary objective	M9
II	2 of Task 19	
	Teaser to promote sustainable hydropower,	M12
	produced together with IHA	
	White report on e-flows	M24-M28
	White report on monitoring techniques and risk	M24-M28
	assessment for hydropower operation	
III	Final report from Task 19	M34
	Executive summary of the final report from Task 19	M36

VALUING FLEXIBILITY IN EVOLVING ELECTRICITY MARKETS

Current Status and Future Outlook for Hydropower

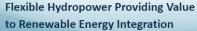
The rapid expansion of variable renewable energy (VRE) resources combined with retirements of thermal generation give rise to increasing needs for flexibility at transmission, distribution, and the individual resource levels in the power system. The fundamental challenges associated with VRE integration and corresponding power system flexibility needs are similar across the world. Several different solutions are being developed to address these challenges, from infrastructure investments, improved (forecasting, planning and operations, and improved electricity market design.

Flexibility Needs

The power system is dependent on flexibility to maintain overall reliability by balancing supply and demand and keeping frequency and voltage within their limits in a cost-effective manner. The following table presents an overview of different flexibility services, as defined by IEA. Hydropower, with its unique operating characteristics, can provide flexibility across all the timescales, a capability that is likely to become more important in future power systems with high shares of VRE.

Survey of Flexibility Services in Current Systems

IEA Hydro Task 9 developed a how these services are pro different markets around the


The resource portfolio in a sy timescales, and the techni-

Flexibility Services

Most timescales correspond multiple types of flexi services. The table b illustrates the distribution flexibility services by timescale, based on survey in

Flexibility Services Pro

services including market-ba interconnection agreements. dominates for short-term se long-term services.

expand energy access and enable clean energy electrification. transmission technologies, and smart grid solutions.

Achieving low-cost, reliable, and environmentally sustainable Variable power production from VRE needs to be balanced electricity is a key part of the global decarbonization against consumption, and this can be accomplished through challenge. Variable renewable energy (VRE), like wind and multiple measures, including energy storage, demand solar photo-voltaic (PV) energy, are increasingly important to response and management, generation flexibility, flexible

What flexibility is needed?

Power system flexibility is defined as the ability to effectively cope with variations in the supply or demand of electricity. In systems with high shares of wind and solar energy, system flexibility becomes increasingly important to maintain system balance.

lexibility type		Short-term		Medium-term	Long-term		
Time scale	Sub-seconds to seconds	Seconds to minutes	Minutes to hours	Hours to days	Days to months	Months to years	
sue	Ensure system stability	Short term frequency control	More fluctuations in the supply / demand balance	Determining operation schedule in hour- and day-shead	Longer periods of VRE surplus or deficit	Seasonal and Inter-annual availability of VRE	
elevance for ystem peration and lanning	Dynamic stability: inertia response, voltage, and frequency	Primary and secondary frequency response	Balancing real time market (power)	Day sheed and intraday balancing of supply and demand (energy)	Scheduling adequacy (energy over longer durations)	Hydro-thermal coordination, adequacy, power system planning (energy over very long	

Contribution by Hydropower

expects hydropower generation to double by 2050. Hydropower is also by far the worlds' largest grid-connected Association expects that the current installed capacity of USA, and Brazil). pumped storage hydropower of around 160 GW will increase to between 412 and 700 GW by 2050.

Reservoir, run-of-river, and pumped storage hydropower are already widely used for providing flexibility, energy storage and ancillary services in the electricity system and will play an Hydropower is the largest source of renewable energy in the even more important role in future systems with higher share electricity sector globally, representing 60 percent of total of VRE. Hydropower can deliver important flexibility services renewable generation in 2020. The technical potential for to support the provision of secure, reliable energy supply, increased hydropower generation is large enough to meet whilst underpinning the effective integration of cleaner substantial further deployment both in the medium (2030) energy technologies. Hydropower is also used to provide base and long term (2050). The International Energy Agency (IEA) load energy in many countries and regions that have both high (Norway, Costa Rica, Venezuela, Tajikistan, Quebec, British Columbia, and Tasmania) and lower shares of hydronower in storage technology. The International Hydropower their grid (Sweden, Austria, Switzerland, Russia, China, India,

> A good indication of the types of flexibility required can be obtained by the phases of VRE integration as proposed by the

Factsheet coordination

 Environmental flows: Marie-Pierre Gosselin (Norwegian Institute for Nature Research)

 Utilizing advanced techniques for monitoring: Daniel Deng (PNNL)

 Risk assessment for hydropower operation and fish:

Shannon Ames and Maryalice Fischer (Low Impact Hydropower Institute)

Flexible Hydropower Providing Value to Renewable Energy Integration

Achieving lov electricity is challenge. V: solar photo-v expand eners

What fl

Power syst defined as effectively or in the supp electricity. In shares of win system fle increasingly maintain syst

shed through ge, demand sility, flexible ons.

he balancer

Months to years

oordination, dequacy, power ystem lanning (energy ver very long urations)

Contribution by Hydropower

Hydropower is the largest source of renewable energy in the electricity sector globally, representing 60 percent of total renewable generation in 2020. The technical potential for increased hydropower generation is large enough to meet substantial further deployment both in the medium (2030) and long term (2050). The International Energy Agency (IEA) expects hydropower generation to double by 2050. Hydropower is also by far the worlds' largest grid-connected storage technology. The International Hydropower Association expects that the current installed capacity of pumped storage hydropower of around 160 GW will increase to between 412 and 700 GW by 2050.

Reservoir, run-of-river, and pumped storage hydropower are already widely used for providing flexibility, energy storage and ancillary services in the electricity system and will play an even more important role in future systems with higher share of VRE. Hydropower can deliver important flexibility services to support the provision of secure, reliable energy supply, whilst underpinning the effective integration of cleaner energy technologies. Hydropower is also used to provide base load energy in many countries and regions that have both high (Norway, Costa Rica, Venezuela, Tajikistan, Quebec, British Columbia, and Tasmania) and lower shares of hydropower in their grid (Sweden, Austria, Switzerland, Russia, China, India, USA, and Brazil).

A good indication of the types of flexibility required can be obtained by the phases of VRE integration as proposed by the

1st in-person Meeting Task 19 Edinburgh 19-20 October

Do you want to be part of the working group?

ana.adeva.bustos@sintef.no

Teknologi for et bedre samfunn