A critical review of best practice mitigation

towards low ecological impacts from large hydropower in Europe and the US

Jo Halvard Halleraker¹, Isabel Boavida², Franz Greimel³, Brenda M. Pracheil⁴, Martin Schletterer^{3, 5}, Steffen Schweizer⁶, Tor Haakon Bakken¹

¹ Norwegian University of Science and Technology (NTNU), Norway
 ² CERIS, Universidade de Lisboa, Portugal
 ³ University of Natural Resources and Life Sciences (BOKU), Austria
 ⁴ Pacific Northwest National Laboratory (PNNL), USA
 ⁵ TIWAG - Tiroler Wasserkraft AG, Austria
 ⁶ Kraftwerke Oberhasli AG (KWO), Switzerland

Outline

- 1. The low impact HP challenges
- 2. Best management practises for boosting mitigation
- 3. Sustainability standards
- 4. Emerging cases
- 5. Prelim key messages

Upgrading or low utilisation

Closed loops (circular HP?)

- Water wheels
 - x % of mean flow (with no storage)

Figure 3.4 Open vs closed pumped storage hydropower scheme (Source: U.S. DoE)

While PSP is a net electricity consumer (i.e., an efficiency of 70 to 80%), it is a significant energy stora

Ecosystem based HP management

- The main objectives of this study
 - i) highlight modern solutions for mitigating HP impacts,
 - ii) compare environmental performance of new mitigation measures to current standard practice and
 - iii) discuss if the compiled cases are all likely to meet sustainability standards.

• Halleraker, Jo Halvard; Bakken, Tor Haakon; Larsen, Tine. (2022) <u>Økosystembasert forvaltning og miljøforsvarlig drift av</u> <u>vannkraftanlegg i et EU-perspektiv.</u> Cappelen Damm

SUSTAINABILIT

Steinar Taubøll (red.)

VANN, JUSS OG SAMFUNN

- rettigheter og regulering i utvikling

Samiha Tahseen *, Bryan W. Karney University of Toronto, 35 St. George Street, Toronto, ON, Canada M55 1A4

Ranking of modernised HP (NO)

НРР	Decision	First	Capacity /Power	Key species	Dam/barrier		Bypass	River section	(Minimum flov	v sections)
River basin	XC	prod.	MW/GWh		Upstream migr.	Down- stream migr.	rivers	Min-Q	Ratio of	Red.
		yr.					(No)	[m³/s]	max Q	GWh
									(%)	(%)
Trollheim/	Kgl.res.,	1968	400 MW/	National	Upstream of r	natural barrier	> 10km	Yes, past two intakes	0.46/45m ³ /s	Ca. 35 GWh
Suma (1)	2021		< 893	salmon river			(4)		(1.02 %)	(3.9 %)
	2010	1987	150 MW/ Nation 762 salmon ri	National	National Upstream of natural barrier salmon river		1-2 km	No, but short section		0
/ (1CG (2)	(<u>trial</u> regime)			salmon river			(1)			
Straumsmo/	Kgl.res.	1966	130 MW/	Trout	Upstream of natural barrier		> 10km	Yes, 0.5-2 m ³ /s	0.5-2/70 m ³ /s	Ca. 20 GWh
Bardu (з)	2021		< 704				(5)	(<u>from</u> dam)	0,70 %	(2.8 %)
Lovik/	Køl res	1952	1.2 MW/	Anadromous			1-2 km			
Storelva (4)	2019		4.7	(Sea char) Catadromous	No	No	(1)	No	No	0
				Catadromous						
Laudal/	2013/	1981	32 MW/	Anadromous	Ladder,	Guiding fence	2-5 km	Yes,	6-25/110 m ³ /s	15-26 GWh
Mandal (5-#)	2020 (trial regime)	185	(NLV), catadromous	design	(2021)	(1)	6-25 m³/s <u>#(</u> 5)	(4.5-11 %)	#	
	0									(8-14%)
Kolsvik/	Revised	1979	128 MW/	Anadromous	Upstream of r	natural barrier	> 10 km	Yes. 7 m ³ /s (1 Jul – 15	0-7/31 m³/s	No
Abjøra (b)	2014		549				(9)	Sep)	(0-23) %	<0.04%

lacksquare NTNU Knowledge for a better world

VANN, JUSS OG SAMFUNN

Transformative changes....

- IPBES, 2019 Transformative changes
 - doing things <u>differently</u>—not just a little more or less of something we're already doing.

NTNU Knowledge for a better world

EU taxonomy for sustainable activities

What the EU is doing to create an EU-wide classification system for sustainable activities

LET'S REVIVE OUR RIVERS

AND WETLANDS

The Commission has today adopted a new package that builds on and strengthens the foundations of our sustainable finance agenda.

For more information, please also consult the page about taxonomy delegated acts (EN I).

Sustainable finance package

What the EU is doing and why

Half-full or half empty?

- Management tools
- Emerging good/best examples
- Addressing measures for all impacts

Intercomparison of ecological potential: towards common mitigation practices (feasibility studies) Protection Restoration

Measure options – hydropeaking /rapid flow fluctuation in the European mitigation library

				o o o n in in ione i n i
Hydromorphological alteration	Main ecological impact*	Mitigation measures options		 Composed and the second and the second
<u>Rapidly changing flows</u> (including hydro peaking)	Reduction in animal & plant species abundance due to stranding & wash out	 Balancing reservoir(s) (internal) Relocate tailrace 	Mitigation for rapidly changing flows	
		 Reduce rate Modify river morphology Balancing reservoir(s) (external) (Fish stocking – some countries) 	2 Mittigation	<page-header><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></page-header>
			low flow	har and

Constructing external balancing reservoir

knowledge for a better world

tail race

Reducina hydropeaking rate

Improving river morphology

Constructing balancing reservoir(s)

ro Koenzeo
lanungsbü

SUSTAINABILITY

Compensating with fish stocking

•	-
•	•

Need to mitigate episodic and long **lasting impacts** (if significant)

Acknowledge «new impacts» and innovative solutions

- Gas supersaturation
- Thermopeaking
- Accidential HP turbine shut down
- Sediment degradation

Figure 4.28 By-pass valve allows constant flow release downstream in case of emergency (modified from: [4.85])

IEA Hydr

Some relevant HP sustainbility standards

	Туре	Scale	3rd part	Env obj	Indicator
EU taxonomy for HP	Promote holistic sustainability - investors	Water body or HP scheme	Yes	Not yet, but evident based	(yes), also terrestrial
WFD principles	International framework	Water body	Yes	Yes, monitoring	Yes - aquatic
Low impact HP	Volunteerly	Reach	Yes	Endangerd spp.	
IHA Sust tool	Volunteerly	Unclear	Yes	More process bases	
Swizz water law	National law	Reach	Yes	Very specific – e	g. hypeak
IEA Best Practise	Uodated overview of r	Not specified	Not specified	Evaluation by m cruisial	ontiroin

Key impact from large HP

- \rightarrow Adressing significant ecological impacts
- \rightarrow Mitigation feasability study

Strategic governance

- HP fund to finance mitigation (SE)
- Mitigation fee electricity bill (CH)
- PP-principle; NO, AT
- International /national guidelines
- Planning tools

Adressing cumulative impacts – biodiversity offsetting

SUSTAINABILITY

NTNU

Surna /Trollheim HP

- New mitigation ongoing (relicensed, 2021)
- High base flow (downstream tailrace)
- Restricted downramping
- Thermal mitigation
- ✓ By-pass Eflow

Alta HP

- High base flow (downstream tailrace) \checkmark
- Very restricted sub daily variability
 - «Turbine Q 16-33 m³/s < 2 m³/s pr day » \checkmark
- **By-pass valve (BPV)**
- **Thermal mitigation**
- «One of the best salmon rivers in the world»
- Still habitat for tiger bettle (northernmost location *in the world*)
- Loss of endemic species habitat (Innundated land)
- No residual flow from the dam (although short bypass reach)

Finnmarksjonsokblom Silene involucrata ssp. tenella

Finnmarksjonsokblom er kjent fra Reisadalen Troms og Alta-Kautokeinodalen i Finnmark og vokser på sand og grus på elveører og i

Discussed in the group: How to target what is best practise cases?

- **Qualitative expert judgement** is "allowed"
 - (we are searching for THE best ones, more than the most representative one)
- Mitigation practise may have **pilot character** (the first, or the most promising examples)
- Some cases may be best "only"/mainly for one of the mitigation categories
- HP project aiming at low ecological impact/well mitigated by relevant measures
- Should much more severe ecological impacts be allowed in older schemes?

SUSTAINABILIT

Ecosystem based management

"An integrated management approach that recognizes the full array of interactions within an ecosystem, ...

rather than considering single issues, species, or ecosystem services in isolation."

Number of endangered species in Norway and dominating pressure.

Forurensing

All climate friendly HP - 100% sustainable with no signifcant harm for ecology..

Welcome to Sustainability in Hydropower 2023 -Ecological mitigation, best practises and governance

Trondheim, Norway 13-15 June 2023

Knowledge for a b

Photo: S.M. Tunli

Key messages

- Best practise mitigation (BPM) is possible
- Several impacts have **mature** measures
 - Continuity for fish/biota
 - Hydropeaking mitigation
- Innovative measures
 - Mitigation evolves
- Drivers towards best practises
 - Innovation (R&D)
 - Policies, common understanding & incentives
 - Knowledge sharing like the IEA Roadmap
 - & this conference are important arenas

