

The benefits and challenges of using environmental nucleotides for fish passage species detection and enumeration

Kristine N. Moody¹, Steven Gardner¹, Andrew Furtak¹ Xiu Marks¹, Ed Pearce², Brenda Pracheil³

¹Environmental Sciences Division, Oak Ridge National Laboratory
 ²Michigan Department of Natural Resources
 ³Pacific Northwest National Laboratory

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Hydropower dams present barriers to fish movement

Hydropower dams and fish passage

Hydropower dams, fish passage, and recreation

*National Laboratory

Open slide master to ed

eDNA/eRNA – What is it good for?

- Environmental DNA (eDNA)
 - Organismal DNA deposited into the environment
 - Cellular sloughing, gamete and waste excretion, senescence
 - Air, soil, honey, water
- Environmental RNA (eRNA)
 - Only from living organisms
 - Degrades quickly
- Biodiversity

CAK RIDGE National Laboratory

- Which species
- How many individuals
- Species distributions

Michigan Dams - Grand and St. Joseph Rivers

Open slide master to edit

Michigan Dams - Grand and St. Joseph Rivers

15

Open slide master to edit

Berrien Springs Hydropower Dam and Fish Ladder

Every site – 3 samples + negative control

3 sampling events

August

September

October

- Single genes
- Single species
- Relative abundance
 estimates

- Single genes
 - Single species
- Relative abundance
 estimates

Multi-speciesRead counts

21

Open slide master to edit

Fish Widow Videos

Fish Widow Videos

CAK RIDGE

Species diversity from videos

Count data from videos

More detection and higher copy number of eDNA compared to eRNA

More detection and higher copy number of eDNA compared to eRNA

• Relic eDNA signal?

More detection and higher copy number of eDNA compared to eRNA

- Relic eDNA signal?
- Rapid eRNA degradation?

eRNA copy number, better for relative abundance estimates? Log(Copy Number) ~ Count/Discharge

Further analyses – American Fisheries Society

Ictalurus punctatus

30

Micropterus salmoides

Target: Cytb_Om Slop: -3.393 R²: 0.996 Y-Inter: 37.769 Eff%: 97.107 Error: 0.043

Acknowledgements

