

PHYSICAL ENVIRONMENTAL IMPACTS ON A HYDROPOWER RESERVOIR UNDER DIFFERENT OPERATIONAL MODES

Ana Adeva-Bustos (SINTEF), Gaia Donini (UniTN), Anna Pinneli (UniTN), Asja Alic (UniTN), Marco Tofollon (UniTN), Atle Harby (SINTEF), Knut Alfredsen (NTNU), Mauro Carolli (SINTEF), Per Øyvind Grimsby (Sira-Kvina kraftselskap)...et al.

Intro

Decarbonising the EU's energy system is crucial to reach our 2030 climate objectives and for Europe to become carbon neutral by 2050

HydroConnect

Impacts of connecting Norwegian hydropower to continental Europe and the UK

- 1. How can Norwegian hydropower contribute to the decarbonisation of the European power system?
- 2. What are the consequences on the Norwegian power system of delivering balancing services to Europe?
- 3. What are the implications of participating in several markets on operations and income of hydropower plants?
- 4. What will be the impacts of future hydropower operations on environmental conditions in reservoirs?

Project Leader: SINTEF Energi

Partners: NTNU, Fraunhofer IEE (Tyskland), University of Trento (Italia), Agder Energi, BKK, EnergiNorge, Hydro Energi, Lyse Produksjon og Sira-Kvina kraftselskap

Project period: 2021-2024

Type: Knowledge-building Project for Industry

Why is it important to study these effects?

A variation in the thermal cycle of the lake can alter its **physicochemical processes**, and **biological activity** both at the lake and downstream. A stable ice cover ensures a safe lake crossing for **animals** and **humans.**

Sira-Kvina system

1 100 1 100 Roskreppfjorden 929–890 Svartevatn 899-780 1 000 1 000 Øyarvatn 837-820 900 900 Nesjen 715–677 Gravatn-Valevatn-Kilen 800 800 660-625 6 ROSKREPP 700 700 Homstølvatn 497,6–471 **KVINEN** DUGE 600 600 SOLHOM 500 500 TJØRHOM Ousdalsvatn Tjørhomvatn 400 400 497,6-492 497,6-482 Siravassdraget Kvinavassdraget 300 300 200 200 100 - 100 TONSTAD **ÅNA-SIRA** 0 - 0 Vannveisystemet med HRV og LRV NORDSJØEN Sirdalsvatn Lundevatn 48,5-44,0 49,5-47,5

Conventional HPP

Sira-Kvina system

1 100 1 100 Roskreppfjorden 929–890 Svartevatn 899-780 1 000 1 000 Øyarvatn 837-820 900 900 Nesjen 715–677 Gravatn-Valevatn-Kilen 800 800 660-625 Gr ROSKREPP 700 700 Homstølvatn 497,6–471 **KVINEN** DUGE 600 600 SOLHOM 500 500 TJØRHOM Ousdalsvatn Tjørhomvatn 400 400 497,6-492 497,6-482 Siravassdraget Kvinavassdraget 300 300 200 200 100 - 100 TONSTAD **ÅNA-SIRA** 0 - 0 Vannveisystemet med HRV og LRV NORDSJØEN Sirdalsvatn Lundevatn 48,5-44,0 49,5-47,5

Pump HPP

Focus of todays presentation

Anna Pinneli, 2023

Hymo classification

1

No	Parameter	Near-natural	Slightly modified	Moderately modified	Extensively modified	Severely modified	
100	Change in annual inflow	<5 % regulation upstream	5-20 % regulation upstream	20-50% regulation upstream	50-90% regulation upstream	>90% regulation upstream	
101	Upstream barriers <5% reduction in affecting distance to natural sediment upstream barrier processes		5-10 % reduction in distance to natural upstream barrier	10-50 % reduction in distance to natural upstream barrier	50-90 % reduction in distance to natural upstream barrier	>90 % reduction in distance to natural upstream barrier	
200	Water level changes	<2 meters	2-3 meters	3-10 meters	10-50 meters	>50 meters	
201	Total volume change	<5 % change from natural volume	5-10 % change from natural volume	10-30 % change from natural volume	30-70 % change from natural volume	>70 % change from natural volume	
202	Change in retention time	<5 % change in retention time	5-20 % change in retention time	20-50 % change in retention time	50-100 % change in retention time	>100.% change in retention time	
203	Change in date of filling starting date		3-10 days change compared to filling by starting date	10-20 days change compared to filling by starting date	20-70 days change compared to filling by starting date	>70 days change compared to filling by starting date	
204	Change in date of emptying	<3 days change compared to emptying by starting date	3-10 days change compared to emptying by starting date	10-20 days change compared to emptying by starting date	20-70 days change compared to emptying by starting date	>70 days change compared to emptying by starting date	
205	Water level change at filling date	<5 % relative deviation from natural water level	5-10 % relative deviation from natural water level	10 – 30 % relative deviation from natural water level	30-70 % relative deviation from natural water level	>70% relative deviation from natural water level	
206	Water level change at emptying date	<5 % relative deviation from natural water level	5-10 % relative deviation from natural water level	10 – 30 % relative deviation from natural water level	30-70 % relative deviation from natural water level	>70% relative deviation from natural water level	
207	Short term water level variations (days)	<0.1 meters change during one day (90- percentile day during a year)	0.1-0.5 meters change during one day (90- percentile day during a year)	0.5-1 meter during one day (90-percentile day during a year)	1-2 meters during one day (90-percentile day during a year)	>2 meters during one day (90-percentile day during a year)	
208	Short term water level variations (weeks)	<0.3 meter within a week (90-percentile of a week during a year)	0.3-1 meter within a week (90-percentile of a week during a year)	1-3 meters in a week (90-percentile of a week during a year)	3-5 meters during one week (90-percentile week during a year)	>5 meters during one week (90-percentile week during a year)	
210	Dewatered areas	<5 % dewatered compared to natural surface area	5-10 % dewatered compared to natural surface area	10-40 % dewatered compared to natural surface area	40-90 % dewatered compared to natural surface area	>90 % dewatered compared to natural surface area	
211	Relative lake level fluctuation	<5 % in relative lake level fluctuations	5-50 % in relative lake level fluctuations	50-100 % in relative lake level fluctuations	100-150 % in relative lake level fluctuations	>150 % in relative lake level fluctuations	
212	Dewatered littoral zone versus total littoral zone (ratio)	<5 % affected by dewatering	5-10 % affected by dewatering	10-40 % affected by dewatering	40-90 % affected by dewatering	>90 % affected by dewatering	
213	Loss in lateral connectivity <5% of shoreline along the affected shore line		5-20 % of shoreline affected	20-50% of shoreline affected	50-90% of shoreline affected	>90% of shoreline affected	
214	Riparian zone changes (measured as % of shoreline)		5-20% of riparian vegetation affected (measured as % of shoreline)	20-50 % of riparian vegetation affected (measured as % of shoreline)	50-90 % of riparian vegetation affected (measured as % of shoreline)	>90 % of riparian vegetation affected (measured as % of shoreline)	
220	Change in substrate <5 % spawning substrate lost 5-10 % spawnin substrate lost qualities substrate lost substrate lost			10-40 % spawning substrate lost	30-90% spawning substrate lost	>90 % spawning substrate lost	

HYMO classification

Rapport

HyMo 1.0 - Hydromorfologisk klassifisering av vannforekomster

No.

P.207

P.210

P.212

changes

Change in

substrate

qualities

Riparian zone

214

220

<5 % of riparian

vegetation affected

(measured as % of

shoreline)

<5% spawning

substrate lost

Hymo classification

10	Change in O Change in annual inflow Upstream barriers 1 affecting	Near-natural	Slight 5-20 5-10 %	tly modified % regulation upstream % reduction in nce to natural	Moderately modified 20-50% regulatio upstream 10-50 % reduction distance to natur	Extensively modified n 50-90% regulation upstream in 50-90 % reduction in al distance to natural	Severely modified >90% regulation upstream >90 % reduction in distance to natural				
20	sediment processes Water level changes Total volume change Change in retention time	upstream barrier <2 meters <5 % change from natural volume <5 % change in retention time <3 days change	upst 2 5-10 % natt 5-20 ret. 3-10	ream barrier -3 meters & change from ural volume -0% change in ention time i days change	upstream barrie 3-10 meters 10-30 % change fr natural volume 20-50 % change i retention time 10-20 days chang	r upstream barrier 10-50 meters 50-70 % change from natural volume n 50-100 % change in retention time retention time	>50 meters >50 meters >70 % change from natural volume >100 % change in retention time >70 days change				17 hydromorphological parameters
	Parar	meter		N.	.N.	S.M.	M.	M.	E.M.	Se.M	
	Short te variation	erm WL 1s (days)		< 0.	.1 m	0.1 - 0.5 m	0.5 –	1 m	1 – 2 m	> 2 m	Easy classifications for
	Dewater	red Area		< 4	5 %	5-10 %	10 — 1	30 %	30 – 70 %	> 70 %	
Dev VS	vatered L Total Li	Littoral Zo ittoral Zor	ne ne	< 5	5 %	5-10 %	10 – •	40 %	40 – 90 %	> 90 %	
2:	1 Relative lake level fluctuation Dewatered littoral zone versus total littoral zone (ratio)	<5 % in relative lake level fluctuations <5 % affected by dewatering	5-50 % level 5-10 %	% affected by ewatering	50-100 % in relati lake level fluctuatik 10-40 % affected l dewatering	ve 100-150 % in relative ons lake level fluctuations by 40-90 % affected by dewatering	>150 % in relative lake level fluctuations >90 % affected by dewatering				Daily detailed-level
2:	3 Loss in lateral connectivity along the shore line	<5 % of shoreline affected	5-20 5	% of shoreline affected	20-50% of shoreli affected	ne 50-90% of shoreline affected	>90% of shoreline affected				

vegetation affected

(measured as % of

10-40 % spawning

substrate lost

vegetation affected

(measured as % of

shoreline)

30-90% spawning

substrate lost

vegetation affected

(measured as % of

shoreline)

>90 % spawning

substrate lost

vegetation affe

TRAD.

Anna Pinneli, 2023

Dewatering indices (new)

 \bigcirc

SINTEF

Dewatering indices (new)

 \bigcirc

SINTEF

14

Hydropower Optimization model- way forward Asja Alic (UniTN)

Environmental constraints

• State-dependent level constraint on maximum discharge

$$\begin{aligned} q_{h,k} &= 0 & \text{if } v_{h,k} \leq V_h^{lim} \\ v_{h,k} &\geq V_h^{lim} & \text{for } t \in [t_1, t_2] \end{aligned}$$

Minimum Environmental Flow

$$b_{h,k} = Q_h^{min}$$

Ramping constraints

$$+\Delta^{-} \leq v_{h,k} - v_{h,k-1} \leq \Delta^{+}$$

*Schäffer, Linn Emelie, Arild Helseth, and Magnus Korpås. "A stochastic dynamic programming model for hydropower scheduling with state-dependent maximum discharge constraints." Renewable Energy (2022)

Ramping constraints- way forward... Øyarvatn - Water level - 1981-2009 SINTEF 838 836 834 WL [masl] 832 830 PUMP, NO RAMP PUMP, RAMP 10 cm/day Max WL 828 1985 1990 1995 2000 2005 time

PUMP NO RESTRICTION

PUMP WITH RESTRICTION

Anna Pinneli, 2023

Focus of todays presentation

Hydromorphological impacts on the littoral zone

water level fluctuations

Effects on water temperature

Stratification

Ice cover

Rosskreppfjorden

SINTEF

Jul 2021

Jul 2021

Jul 2021

Jul 2021

Gaia Donini, 2022

Results

ROSSKREPPFJORDEN - 2000

Results

ØYARVATN - 2000

Results

ØYARVATN - 2000

Model calibration – ice cover

ICE COVER – PRICE YEAR:2000

Ice cover- way forward...

ICE COVER – PRICE YEAR:2000

Conclusions I

The **smaller** the reservoir, the bigger the impacts along the littoral zone

High differences in **WL variation** for traditional and **pumping mode**, especially in Øyarvatn

The **dewatered zone** impacted is **lower** with **pumping** than with traditional, especially in Øyarvatn

Ramping constraints on WL variations can help in reducing impacts on the regulation zone, needs more investigation

÷

Conclusions II

The area closest to the inlet/outlet is the most altered

In Rosskreppjorden there is a weaker and more discontinuous **stratification**

In Øyarvatn there are more frequent water level fluctuations

In Øyarvatn the **ice period is shorter** with **lower ice thickness** close to the outlet due to hydropower operations

Gaia Donini, 2022. Modelling hydrodynamics and ice formation in a pump-storage system between two Norwegian reservoirs. Master Thesis. <u>Modelling hydrodynamics and ice formation in a pump-storage system between two</u> Norwegian reservoirs - SINTEF

Anna Pinneli, 2023. Analysis of environmental impacts of a pump-storage system between two Norwegian reservoirs considering climate scenarios. Master Thesis.

Thank you for your attention! ana.adeva.bustos@sintef.no

Especial thanks to Gaia Donini and Anna Pinneli (University of Trento)