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Abstract

Partial shape retrieval is a challenging problem in content-based 3D model retrieval. This track intends to evalu-

ate the performance of existing algorithms for partial retrieval. The contest is based on a new large-scale query

set obtained by mimicking the range image acquisition using a standard 3D benchmark as target set. The query set

contains 7200 partial meshes with different levels of complexity. Furthermore, we propose the use of new perfor-

mance measures based on a partiality factor. With this characteristics, our goal is to evaluate several important

aspects: effectiveness, efficiency, robustness and scalability. The obtained results of this track open new ques-

tions regarding the difficulty of the partial shape retrieval problem and the scalability of algorithms. In addition,

potential future directions on this topic are identified.

Categories and Subject Descriptors (according to ACM CCS): H.3.2 [Information storage and retrieval]: Information

Search and Retrieval—Retrieval models I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Shape

1. Introduction

The problem of retrieving 3D shapes using queries with par-

tial data (also called whole-from-part retrieval) is an open

and challenging problem. Moreover, with the increasing use

of inexpensive consumer 3D acquisition devices such as

RGB-D cameras in real-world applications, this problem

is receiving special attention due to its increasing potential

for model creation, repair, and retrieval tasks. In this track,

we aim at evaluating algorithms for partial shape retrieval

using a large set of queries composed by views extracted

from a 3D dataset. The manual creation of 3D view data

for benchmarking is a time-comsuming and expensive ap-

proach which is expected to be not scalable for creation of

large benchmarks. Therefore, our general idea is to simulate

a large number of partial views from an existing 3D object

benchmark, generating point clouds from a number of views

to the model. For each view, a point cloud is extracted and

† Track organizers. For any questions related to the track, please

contact isipiran@dcc.uchile.cl.
‡ Track participants.

a varying number of views control the degree of partiality in

the retrieval tasks.

This track represents a further advance in evaluating of

partial retrieval algorithms compared to previous tracks. In

addition, novel measures are introduced in order to give

prominence to the level of “partiality” of each partial query.

In this way, we want to reduce the bias introduced when

comparing the queries with different levels of difficulty.

More details about the query set and its properties will be

presented in Section 2.

Previous challenges have been presented so far in past edi-

tions of SHREC [VT07,DGA∗09,DGC∗10] trying to evalu-

ate partial retrieval algorithms. Nevertheless, the query sets

were rather small, with dozens of query views provided. In

contrast, in this challenge, a query set composed of 7,200 3D

views, obtained from 360 target models is provided. Com-

pared to standard datasets in the 3D retrieval community, this

query set can be considered as large-scale.

Regarding the evaluation, ten teams registered at the be-

ginning of the track. However, during the contest we were

informed that most of the teams had problems regarding the
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size of the dataset (it was simply too large for being pro-

cessed in the slotted time) or the algorithms had problems

processing the simulated partial scans of a 3D model (possi-

bly indicating robustness issues of given implementations).

At the end of the track, only two teams submitted results

which are evaluated and compared in this paper. What is this

indicating us? On the one hand, efficiency is starting to be a

real issue for 3D object retrieval in large datasets. Research-

ing efficient methods, both for the description of 3D objects

and for the querying of large datasets, will become essen-

tial in the short term. On the other hand, the assumption of

working only with “perfect” and noiseless 3D data is be-

coming too strong and unrealistic. In particular, inexpensive

comsumer-type 3D acquisition devices will provide us with

a large set of potentially noisy partial views in the future.

Therefore, in our opinion, more research should focus on de-

veloping robust techniques for efficient 3D object processing

and retrieval.

The paper is organized as follows. Section 2 present the

dataset and how it was built. Section 4 is devoted to describe

the two approaches which were submitted for evaluation.

Section 3 presents the evaluation methodology and discusses

the obtained results. Finally, Section 6 draws conclusions.

2. Benchmark Creation Based on Simulated Range

Views

The dataset† is divided in two parts: the target set and the

query set. The target set is composed of a subset of the

SHREC 2009 Generic Shape Retrieval dataset [DGA∗09].

This dataset provides a uniform distribution of class sizes,

thereby avoiding class bias. We chose 360 shapes organized

in 20 classes of 18 objects per class. On the other hand, to

obtain the query set, we simulate the process of range scan

acquisition on the target set to obtain a set of partial views.

Below, we list the steps to obtain the query set:

• A shape is enclosed in a regular icosahedron. Previously,

the shape is translated to the origin of the coordinate sys-

tem and scaled to fit in a unit cube.

• Each face of the icosahedron will be used as projection

plane.

• The intersecting points between the object and the rays

leaving the projection plane generate a 3D point set.

• We reconstruct a 3D mesh from the obtained point set us-

ing the Point Cloud Library [RC11] using the Greedy Pro-

jection Triangulation method. We set the nearest neighbor

distance multiplier µ to be 2.5 and the nearest neighbor

search radius for each point to be 0.025. In addition, we

applied a simple hole filling algorithm to discard small

holes. Briefly, our algorithm creates a new face when three

adjacent faces share a triangle hole.

† The dataset and the evaluation software is available in

http://dataset.dcc.uchile.cl.

Figure 1: Process to obtain the dataset. Left: a shape is en-

closed in a regular icosahedron. Middle: A set of pointclouds

is obtained by projecting the shape onto each face of the

icosahedron. Right: Meshes are then reconstructed from the

point clouds, after a hole filling method has been applied.

This simulation process represents a simplified model of a

3D data acquisition pipeline, including a moderate degree of

postporcessing (mesh generation) which is often included in

current 3D acquisition software. While more complex mod-

ifications, in particular, noise models, could be considered,

we believe this model is a valid first step. Figure 1 shows the

stages of our simulated acquisition. Totally, our method gen-

erates 20 partial views for each target mesh, so the complete

query set contains 7200 queries.

At this point, we want to make an observation about the

generated partial views. The extension and quality of the par-

tial views depend on both the object and the point of view. So

it is possible that some views contain less information than

others. Therefore, there is an important factor that we need

to take into account: how partial is a view with respect to the

original mesh? To deal with this aspect, we attach a partial-

ity factor to each partial view which can be considered as a

measure of difficulty. The partiality is defined as the ratio of

surface areas between the partial view and the original shape.

This factor will be used to weight the retrieval performance

as we will show in Section 3.

3. Evaluation

In this section, we present the evaluation of both submitted

methods using the proposed dataset. This section describes

the methodology used in our experiments and the perfor-

mance measures.

3.1. Methodology

Each participant was asked to provide a 7200 × 360 dissim-

ilarity matrix which measures the distances between each

query object and each target object. Note that each query

object was used for measuring the individual performance
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and then final measures were obtained by averaging over the

complete set of queries. For evaluation, we used precision-

recall plots to analyze the effectiveness of the algorithms.

For a given query, precision is the ratio of retrieved relevant

objects with respect to the complete list of retrieved objects.

Likewise, recall is the ratio of retrieved relevant objects with

respect to the the complete list of relevant objects. Precision-

recall plots measures the precision in every possible recall

value (that is, in every position of the ranked list when a rel-

evant object appears).

In addition, we use five standard measures from the re-

trieval information community:

• Mean Average Precision (MAP): Given a query, its av-

erage precision is the average of all precision values com-

puted on all relevant objects in the retrieved list. Given

several queries, the mean average precision is the mean of

average precision of each query.

• Nearest Neighbor (NN): Given a query, it is the precision

on the first retrieved object in the ranked list.

• First Tier (FT): Given a query, it is the precision when

C objects have been retrieved, where C is the number of

relevant objects in the 3D dataset.

• Second Tier (ST): Given a query, it is the precision when

2*C objects have been retrieved, where C is the number

of relevant objects in the 3D dataset.

• Mean Query Rank (MQR): Given a query, the query

rank is the position (in the ranked list) of the object in the

dataset which generated that query (partial view). Given

several queries, the mean query rank is the mean of query

ranks for each query.

The aforementioned measures do not consider the relative

complexity of each query. In this case, the dataset provides

the information about partiality which is a good indicator of

complexity. Therefore, we use a weighted version of each ef-

fectiveness measure as follows. For the precision-based mea-

sures (MAP, NN, FT and ST), the weighted version is:

weighted(measure) =
∑(1− partiality)×measure

∑(1− partiality)
(1)

For the rank-based measure (MQR), we use the following

weighted counterpart:

weighted(measure) =
partiality×measure

∑ partiality
(2)

4. Submissions

Two methods were submitted and evaluated, each with one

run. Following is a list of contributions and the authors:

• Range Scan-Based 3D Model Rettrieval by Incorpo-

rating 2D-3D Alignment by B. Li, Y, Lu and H. Jo-

han [LJ12] [LSG∗12]. This method is presented in

Sec. 4.1(For abbreviation, we will refer this method as Li-

Lu-Johan).

• Partial Shape Retrieval with Spin Images and Signature

Quadratic Form Distance by I. Sipiran and B. Bustos. This

method is presented in Sec. 4.2 (For abbreviation, we will

refer this method as Sipiran-Bustos).

4.1. Range Scan-Based 3D Model Retrieval by

Incorporating 2D-3D Alignment

The retrieval algorithm is a modified version of the sketch-

based 3D model retrieval algorithm proposed in [LJ12]. The

main steps are described in Fig. 2. It comprises precom-

putation and online retrieval which contains two successive

steps: 2D-3D alignment and 2D-3D matching. In detail, it

first precomputes the View Context [LJ10] and relative shape

context features of a set of (e.g. 81 in our algorithm) densely

sampled views for each model in the 3D dataset. For the

query scan, we first generate its silhouette feature view and

then similarly compute its View Context and relative shape

context features. Based on the View Context of the silhou-

ette feature view and the sample views of a 3D model, we

perform a 2D-3D alignment by shortlisting several (e.g. 16

in this case) candidate views of the model to correspond

with the silhouette feature view and finally perform 2D-3D

matching based on the shape context matching between the

silhouette feature view and the candidate sample views of

the 3D model.

To extract the relative shape context features and com-

pute the View Context feature for a range scan query, we

need to first generate its silhouette feature view. This is also

the main difference between the modified retrieval algorithm

for range scan queries and the original algorithm for sketch

queries in [LJ12] and [LSG∗12]. The details of the silhouette

feature view generation for the range scan query are as fol-

lows. First, we render the 3D range scan into a 2D screen of

128×128 size to obtain its range scan view. Then, we gener-

ate the silhouette feature view based on the following steps:

binarization, Canny edge detection, morphological opera-

tions of closing (infinite times until there is no changes),

followed by several times of dilation (e.g. 10 times for our

128×128 input, which is a trade-off between the sharpness

in the details of salient features and the completeness of the

generated silhouette feature view), filling the holes. After ob-

taining the silhouette feature view for a range scan, we can

easily extract its contour to compute the relative shape con-

text features for the range scan query. One example demon-

strating the process of silhouette feature view generation is

shown in Fig. 3.

We need to mention that the reason of choosing the size of

128×128 to represent the scan view is to have enough num-

ber of sample points to represent a contour, such that we can

obtain more accurate relative shape context features while

not adding additional computation load. This is because to

speed up the 2D-3D matching process, we sample a fixed
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Figure 2: Flow chart of the range scan-based 3D model retrieval algorithm.

(a) Range scan

view

(b) Binarization (c) Canny (d) Closing (e) Dilation (f) Filling (g) Inversion

Figure 3: Silhouette feature view generation from a range scan view image.

number of 100 points for the contour(s) of a silhouette fea-

ture view while sampling on a long contour with only 100

points will decrease the accuracy of the extracted relative

shape context features for the contour.

Other steps of the retrieval algorithm are similar as those

presented in [LJ12] [LSG∗12]. Please refer for more details.

4.2. Partial Shape Retrieval with Spin Images and

Signature Quadratic Form Distance

This method involves the application of a flexible distance

used to compare two shapes which are represented by fea-

ture sets. The Signature Quadratic Form Distance [BUS09]

is a context-free distance that has proven to be effective in

the image retrieval domain. In addition, in this algorithm,

we built a feature set composed of normalized spin images.

These descriptors are suitable for missing data and therefore,

for partial shape retrieval. The idea is to compute an interme-

diate representation for each shape using a set of spin images

which are calculated around a set of representative surface

points. This technique is a modified version of a technique

evaluated in [BBB∗12].

First, we compute interest points using Harris 3D [SB11].

We selected 2% of the number of vertex of a shape (with

the highest Harris response) as keypoints. In our experi-

ments, that percentage represents in average between 200

and 800 keypoints. These interest points are used as base

points around which the spin images [Joh97] will be com-

puted. On the other hand, we use the complete set of vertices

as accumulation points. If a shape has less than 50,000 ver-

tices, our method samples points on the surface until reach-

ing 50,000 points. Recall that the spin images are represen-

tations of accumulation. Nevertheless, we use them as de-

scriptors to represent interest points, and therefore they are

normalized to have unit magnitude.

The set of spin images of a shape forms the feature space

of that shape. Next, a local clustering algorithm [LL04] is

applied to obtain a set of representative descriptors. Briefly,

the clustering uses two thresholds to define the inter-cluster

and intra-cluster properties of the space, so it does not de-

pend on the number of clusters. Hence, the clustering only

depends on the distribution of the descriptors in the feature

space. Given a partitioning after the clustering, the interme-

diate representation SP of an object P is defined as a set of

tuples as follows:

S
P = {(cPi ,w

P
i ), i= 1, . . . ,n} (3)

where cPi is the average spin image in the i-th cluster and wP
i

is the fraction of elements belonging to the i-th cluster. It is

worth noting that the representation of an object depends on

the clustering and two objects doest not necessarily have the

same number of clusters.
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Figure 4: Precision-recall plot for the regular version of pre-

cision.

For the experiments, we used the following parameter

configuration:

• Interest point detector: adaptive neighborhood around a

vertex to compute the local support. Two percent of the

number of vertex with the highest Harris response is se-

lected as keypoints.

• Spin Images computation: Width of spin images W =
25, support angle As = π, and bin_size is set to the mesh

resolution. These parameters allow us to compute spin im-

ages with a local support (a detailed description of these

parameters can be found in [BS12]).

• Clustering: we use 0.1 and 0.2 as intra-cluster and inter-

cluster thresholds, respectively. The minimum number of

elements per cluster was 10.

• SQFD: we use L2 as ground distance and a Gaussian func-

tion with α = 0.9 for the similarity function.

5. Results and Discussions

In this section, we present the results obtained by the two

methods submitted. For clarity of presentation, we divide the

analysis into two parts, depending on both the regular and

the weighted performance measures.

For the regular measures, Figure 4 depicts the precision-

recall plot and Table 1 summarizes the results. From the

precision-recall plot, it is possible to note the superior per-

formance of the Li-Lu-Johan method. This can be also evi-

denced in the performance measures of Table 1. On the other

hand, it is important to point out the moderate overall per-

formance achieved by both methods. For instance, the best

mean query rank (MQR) is above 70 . It means that, in aver-

age, one needs to retrieve 70 shapes from the ranking to find

the shape that corresponds to the query. This is a good indi-

cation of the difficulty of the problem and how challenging

the dataset is.

Table 1: Performance measures

Measure Li-Lu-Johan Sipiran-Bustos

NN 0.3444 0.3108

FT 0.2116 0.2043

ST 0.1675 0.1576

MAP 0.2247 0.1978

MQR 71.9232 84.5678
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Figure 5: Precision-recall plot for the weighted version of

precision.

The performance difference of the submitted methods can

be explained by two reasons. On one hand, the Li-Lu-Johan

method obtains a set of 81 views for each model in the tar-

get set. Therefore, the probability of similarity between the

partial query and a sampled view is high. We believe that

this aspect contributes to the effectiveness of this method.

On the other hand, regarding the Sipiran-Bustos method, the

computation of spin images in partial views could not be as

robust as expected. Moreover, many keypoints might be lo-

cated close to the boundary of a partial query, affecting the

computation of the local descriptors. Therefore, the subse-

quent clustering for obtaining the intermediate representa-

tion could not be robust.

Table 2: Performance measures with partiality weight

Measure Li-Lu-Johan Sipiran-Bustos

NN 0.3399 0.3476

FT 0.2106 0.2086

ST 0.1669 0.1334

MAP 0.2239 0.2034

MQR 66.4191 61.4216

For the weighted measures, Figure 5 depicts the precision-

recall plot and Table 2 summarizes the results. Compared to

the previous results, the performance difference between the

two evaluated methods is smaller. From the precision-recall

c© The Eurographics Association 2013.
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plot, it possible to note a similar behavior on both methods

with a slight advantage of the Li-Lu-Johan method. This im-

provement can also be observed in the condensed measures

(FT, ST, and MAP) in Table 2. However, in these results, the

Sipiran-Bustos method is slightly better with respect to the

Nearest Neighbor and the Mean Query Rank. This means

that the Sipiran-Bustos method is able to obtain a better per-

formance according to these measures for more difficult (in

terms of lower partiality) queries.

The previous results unveil an important issue: the ro-

bustness against partiality. We believe that the better perfor-

mance of the Sipiran-Bustos method over the Li-Lu-Johan

method in terms of Weighted Mean Query Rank is due to

the use of local representations. That is, spin images and the

intermediate representation can better deal with partiality in

some degree. In contrast, the Li-Lu-Johan approach is more

global by construction, and hence when partiality is high,

the generated contours would not provide enough informa-

tion for matching.

To get more insight about the showed performances, we

provide a class-by-class evaluation. The complete results can

be found in Table 3(regular measures) and Table 4(weighted

measures). From Table 3, it is worth noting that there are

classes more difficult than others. For instance: Insect,Desk-

phone, Biplane, Chair and Biped. All these classes share

a characteristic: they have a high intra-class variability. It

seems this variability is reflected in the partial views gener-

ated for the evaluation. Interestingly, regarding the weighted

measures (Table 4), the best mean query rank for the afore-

mentioned classes is obtained by the Sipiran-Bustos method.

This may be caused by the use of spin images, which are

more appropriate to describe the exact geometry of shapes.

6. Conclusions and Future Work

In this paper, the track SHREC’2013: Large-Scale Partial

Shape Retrieval Using Simulated Range Images is intro-

duced. We presented a new large-scale dataset composed of

a set of partial views from a target set of shapes. To the best

of our knowledge, this is the first attempt to evaluate partial

shape retrieval algorithms in a large-scale scenario. In addi-

tion, we introduced a novel weighted performance measures

which involves the complexity and difficulty of the queries.

Regarding the competition, in summary, ten teams registered

but only two teams finished the challenge.

Our results show that the dataset was very challeng-

ing. Firstly, the overall performance achieved was moderate

which is an indication that the problem is far from being

solved. Moreover, in our opinion, the dataset represents a

scenario for real-world applications because it was built by

simulating the real scanning process. Therefore, it is impor-

tant to realize this in order to find out the real capabilities

of existing algorithms. Secondly, efficiency and robustness

issues do matter. Obviously, for large-scale retrieval tasks, it

is necessary to have fast algorithms which are able to deal

with imperfections on meshes obtained from real devices.

As a consequence, we identify robust partial shape retrieval

that is able to scale to large data sets as a promising future

research direction. We identify additional interesting future

work in the generation of even more realistic retrieval bench-

marks. In particular, one may want to control the level of res-

olution of the acquisition process, or introduce various kinds

of data noises. In particular, varying lighting conditions, and

reflectance properties that influence the precision degrees of

3D adquisition, may be considered.
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Sofa 0.3333 0.3006 0.2418 0.3231 66.8528 0.3111 0.3000 0.2246 0.2890 78.4589

Biplane 0.1667 0.1437 0.1323 0.1728 42.0861 0.1555 0.1390 0.1290 0.1568 52.7812

Monoplane 0.2778 0.1732 0.1323 0.1851 54.5889 0.2334 0.1698 0.1178 0.1567 57.4475

Car 0.2777 0.2189 0.1552 0.2217 52.0389 0.2532 0.2098 0.1498 0.2034 68.8908

Bicycle 0.2778 0.1993 0.1372 0.1977 183.8000 0.2667 0.1890 0.1276 0.1670 208.9990

Table 4: Performance measures by classes (with partiality weight)

Classes
Li-Lu-Johan Sipiran-Bustos

NN FT ST MAP MQR NN FT ST MAP MQR

Bird 0.4980 0.2379 0.1978 0.2564 106.3946 0.4790 0.2264 0.1676 0.2408 92.1018

Fish 0.4390 0.2605 0.2129 0.2630 76.9117 0.4456 0.2610 0.1812 0.2142 81.7612

Insect 0.2805 0.2076 0.1826 0.2050 184.9242 0.3412 0.1879 0.1579 0.2130 112.5624

Biped 0.2787 0.2090 0.1799 0.2099 45.5872 0.2872 0.2008 0.1546 0.2014 42.1286

Quadruped 0.4309 0.1826 0.1396 0.2035 21.5022 0.4278 0.1798 0.1009 0.1793 28.0162

Bottle 0.3932 0.3296 0.2424 0.3382 37.3169 0.4034 0.3210 0.1810 0.3017 42.9774

Cup 0.3364 0.1741 0.1452 0.2097 27.8949 0.3566 0.1682 0.1368 0.1898 33.3401

Mug 0.3214 0.2758 0.2068 0.2481 73.9032 0.3334 0.2576 0.1689 0.2152 68.8716

Floorlamp 0.3824 0.1731 0.1421 0.1995 36.3119 0.4498 0.1561 0.1273 0.1918 44.4002

Desklamp 0.3847 0.2693 0.2034 0.2599 43.4686 0.3834 0.2708 0.1545 0.2290 38.1982

Cellphone 0.2775 0.1207 0.1150 0.1364 47.8120 0.2569 0.1212 0.0698 0.1236 45.9102

Deskphone 0.1742 0.2319 0.1755 0.2182 51.1168 0.1590 0.2137 0.1278 0.2232 54.1329

Bed 0.4424 0.1885 0.1429 0.2174 48.8286 0.4574 0.1754 0.1264 0.1896 56.1891

Chair 0.2737 0.2461 0.1897 0.2570 41.4864 0.2654 0.2186 0.1614 0.2276 35.8271

Wheel Chair 0.3785 0.2129 0.1641 0.2301 80.0715 0.4047 0.2108 0.1152 0.1987 73.3261

Sofa 0.3391 0.3035 0.2435 0.3268 54.5544 0.3118 0.2987 0.2076 0.3068 67.8172

Biplane 0.1715 0.1460 0.1335 0.1747 56.2540 0.2038 0.1353 0.1002 0.1464 58.1901

Monoplane 0.2791 0.1765 0.1354 0.1884 46.2011 0.2865 0.1560 0.0907 0.1690 42.8102

Car 0.2722 0.2169 0.1541 0.2192 35.8748 0.2567 0.2153 0.1249 0.2092 29.5642

Bicycle 0.2837 0.2010 0.1383 0.2006 204.2598 0.3081 0.2002 0.1090 0.1920 187.4510
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