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Abstract This work offers an overview of the state-of-the-art on the emerging area of 3D
object retrieval based on partial queries. This research area is associated with several applica-
tion domains, including face recognition and digital libraries of cultural heritage objects. The
existing partial 3D object retrieval methods can be mainly classified as: i) view-based, ii) part-
based, iii) bag of visual words (BoVW)-based, and iv) hybrid methods combining these three
main paradigms or methods which cannot be straightforwardly classified. Several methodo-
logical aspects are identified, including the use of interest points and the exploitation of 2.5D
projections, whereas the available evaluation datasets and campaigns are addressed. A thorough
discussion follows, identifying advantages and limitations.

Keywords Partial3Dobject retrieval . Interestpointdetection .View-based retrieval .Part-based
retrieval . Bag of visual words

1 Introduction

Partial 3D object retrieval addresses the search of 3D models which are similar to a query,
when the available information for the latter is not complete, as it is the case with range scans.
For each partial query, a partial 3D object retrieval method is required to return a list of
complete objects, retrieved from a database and ranked according to their similarity with the
query. The similarity assessed is partial and can be distinguished from global similarity in that
it implies a matching of only a part of the complete object with the query.
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The interest for partial retrieval algorithms has been significantly boosted by the wide
availability of 3D scanners, as well as by progress in 3D graphics technologies. This interest
has been further amplified by the advent of several application domains, such as face
recognition and digital libraries of cultural heritage (CH) objects, which require partial 3D
object retrieval capabilities. In this context, two milestone challenges exist: (i) scanned queries
can be rough and noisy; (ii) it is not straightforward to effectively match a partial query against
a complete 3D model, since there is a gap between their representations. This representation
gap complicates the extraction of a signature that will enable a matching between a complete
3D model and its partial counterpart.

This work aims to study the main properties of state-of-the-art partial 3D object retrieval
methods, as well as their retrieval performance. The methods under study can be roughly
classified as: i) view-based, ii) part-based, iii) bag of visual words (BoVW)-based, and iv)
hybrid methods combining the three main paradigms or methods which cannot be straightfor-
wardly classified. Starting from the methodologies and the experimental results presented,
advantages and limitations of each method are outlined, which can serve as a reference for
future research. Table 1 provides the definitions of several acronyms used throughout the text.
Table 2 summarizes the state-of-the-art methods on partial 3D object retrieval, with respect to
the methodological paradigms incorporated and the types of data addressed. Table 3 provides
an overview of pre-existing generic retrieval benchmarks, with information on their size,
number of classes, availability, as well as with references on related publications. Table 4
summarizes the experimental comparisons reported in the works to be reviewed. The used
benchmark datasets are provided along with the methods under comparison and the results
obtained in terms of the performance measures used in each work. The content of Tables 2, 3
and 4 will be elaborated in the sections to follow.

Table 1 Definitions of acronyms appearing in the text

Acronym Definition Acronym Definition

ARG Attributed Relation Graph MAP Maximum Average Precision

BoVW Bag of Visual Words MDS Multi-dimensional Scaling

CAD Computer-Aided Design MSB McGill Shape Benchmark

CH Cultural Heritage NDCG Normalized Discounted
Cumulative Gain

DCG Discounted Cumulative Gain NN Nearest Neighbor

DGI Depth Gradient Image P-R Precision-Recall

DSIFT Dense Scale Invariant Feature
Transform

PSB Princeton Shape Benchmark

EMD Earth Mover’s Distance PSO Particle Swarm Optimization

ERC Extremely Randomized
Clustering

ROC Receiver Operating
Characteristic

ESB Engineering Shape Benchmark RR Retrieval Rate

FT First Tier RT Retrieval Time

GPU Graphics Processing Unit SHREC Shape Retrieval Contest

HKS Heat Kernel Signature SIFT Scale Invariant Feature
Transform

ISDB International Standard for
Digital Broadcasting

ST Second Tier

LSP Local Surface Patch ZDFR Zernike-Depth-Fourier-Ray
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The remainder of this paper is organized as follows: in Section 2 we explore view-based
partial 3D object retrieval methods. Part-based and BoVW-based methods are explored in
Sections 3 and 4, respectively. Section 5 presents partial 3D object retrieval methods which are
either hybrid or hard to classify. Finally, Section 6 provides an in depth discussion on the
partial 3D object retrieval methods presented.

2 View-based methods

View-based 3D object retrieval methods are particularly relevant to the context of partial
retrieval, since an object view is closely associated with a range scan, one of the primary forms
of partial 3D object representation. In this light, even those view-based methods which have
been originally formulated for generic 3D object retrieval are of potential interest in a partial
retrieval context, assuming some modifications. In that respect, the recent extensive research in
generic view-based retrieval methods [26–34, 47, 75–77] is particularly relevant. Such
generic view-based schemes can be considered, following the idea of Daras’ and
Axenopoulos’ method (subsection 2.2), which has been proposed for both global and
partial retrieval. In the first case, a similarity metric derived from the sum of distances
between all possible query-target view pairs is used, whereas in the latter case simi-
larity is determined by the minimum of such distances.

2.1 3D object retrieval based on depth-buffer and silhouette relevance indices

Chaouch and Verroust-Blondet [11] have proposed a 2.5D object retrieval method which uses
range images as input. Their method is based on relevant indices derived from silhouette or
depth-buffers. As a relevance index which depends on the outer object silhouette, they use two

Table 3 Overview of benchmark datasets that have been used in the context of partial 3D object retrieval

Benchmark Availability Related
publication

Size
(#samples)

Number of
classes

ESB https://engineering.purdue.edu/PRECISE/
shrec08

[41] 867 44

ITI http://vcl.iti.gr/3d-object-retrieval/ [17, 18] 544 13

Hampson pottery http://www.ipet.gr/~akoutsou/benchmark/ [64] 384 16

MSB http://www.cim.mcgill.ca/~shape/benchMark/ [66] 445 19

PSB http://shape.cs.princeton.edu/benchmark/ [65] 1814 90

SHREC’07 watertight http://watertight.ge.imati.cnr.it/ [36] 400 –

SHREC’07 partial http://partial.ge.imati.cnr.it/ [52] 400 –

SHREC’09 partial http://www.itl.nist.gov/iad/vug/sharp/
benchmark/shrecPartial/

[21] 720 40

SHREC’10 large scale http://give-lab.cs.uu.nl/SHREC/
ULS3SRB/2010/

[72] 10000 54

SHREC’10 range scan http://www.itl.nist.gov/iad/vug/sharp/
contest/2010/RangeScans/

[22] 800 40

SHREC’11 range scan http://www.itl.nist.gov/iad/vug/sharp/
contest/2011/RangeScans/

– 1000 50

SHREC’13 partial http://dataset.dcc.uchile.cl/ [67] 7200 20
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Table 4 Summary of experimental comparisons reported in the literature

Related publication Benchmark Comparison results

Chaouch and Verroust-
Blondet [11]

PSB Enhanced depth-buffer-based method [11]:
NN 55.5, FT 29.6, ST 40.0, DCG 57.3.

Depth-buffer-based method of Vranic [73]:
NN 52.8, FT 28.5, ST 38.8, DCG 56.3.

Enhanced silhouette-based method [11]:
NN 60.5, FT 34.3, ST 44.2, DCG 60.2.

Silhouette-based method of Vranic [73]:
NN 59.2, FT 32.9, ST 41.8, DCG 58.9.

Daras and Axenopoulos [18] ITI, PSB, ESB Daras and Axenopoulos [18] outperforms the
methods of Vranic [73] and Ohbuchi et al.
[56], with respect to P-R.

Stavropoulos et al. [68] SHREC’07 watertight,
PSB

Stavropoulos et al. [68] outperforms the method
of Germann et al. [35], with respect to P-R.

Adan et al. [1] MSB Adan et al. [1]: RR 96.8, RT 3 min.
Johnson and Hebert [42]: RR 87.8, RT 400 min.

Chen and Bhanu [13] Ohio State University Chen and Bhanu [13]: RR 100.0, RT 89.42 s.
Johnson and Hebert [42]: RR 100.0,
RT 162.07 s.

Correa and Shapiro [16]: RR 100.0, RT 150.57 s.

Tierny et al. [70] SHREC’07 partial Tierny et al. [70] outperform Biasotti et al. [7]
and Cornea et al. [15], with an average
NDCG which is 14.1 % and 40.9 % higher,
respectively.

Agathos et al. [70] MSB, ISDB Agathos et al. [70]: NN 97.6/100.0,
FT 74.1/89.5, ST 91.1/95.8, DCG 93.3/97.2
(MSB/ISDB).

Papadakis et al. [44]: NN 92.5/84.9,
FT 55.7/54.1, ST 69.8/68.5, DCG 85.0/79.9
(MSB/ISDB).

Kim et al. [44]: NN 91.8/87.7, FT 65.2/69.9,
ST 78.3/84.8, DCG 89.1/88.1 (MSB/ISDB).

Also, Agathos et al. [70] outperforms the other
two methods, with respect to P-R.

Lavoué [46] SHREC’07 partial Lavoué [46] outperforms the methods of Tierny
et al. [70] and Toldo et al. [71], with respect to
NDCG.

Bronstein et al. [10] SHREC’10 large scale Bronstein et al. [10] outperform the methods of
Toldo et al. [71] and Lian et al. [50], with
respect to MAP (87.4 as opposed to 1.4 and
44.8, respectively) and ROC.

Li et al. [48] SHREC’07 partial Li et al. [48] outperforms the methods of Tierny
et al. [70] and Toldo et al. [71], with respect to
NDCG.

Furuya and Ohbuchi [24] PSB, MSB, ESB Furuya and Ohbuchi [24]: R-precision
55.8/76.4/42.5 (PSB/MSB/ESB)

Chen et al. [14]: R-precision 45.9/56.9/34.7
(PSB/MSB/ESB)

Kazhdan et al. [43]: R-precision 40.5/56.7/34.6
(PSB/MSB/ESB)

Sipiran et al. [67] SHREC’13 partial Li-Lu-Johan: NN 34.0, FT 21.06, ST 16.69,
MAP 22.3

Sipiran-Bustos: NN 34.76, FT 20.86, ST 13.34,
MAP 20.34

Multimed Tools Appl



alternatives: the first (Rα) is standard and involves the computation of the number of non-null
pixels on the image, i.e. the area of the projected surface of the 3D model on the corresponding
face of the bounding box:

Ra ¼ card Sab Sab ¼ 1; 0≤a; bj ≤N−1f g

where sab is the pixel value of the image at position (α,b) and N is the image size. To moderate
the influence of the area which in some cases may affect the retrieval performance, they
consider the square root of the relevance defined in the above equation. As a second alternative
for silhouette-based relevance index (Rc), they use the average cord of a 2D mesh, i.e. the
average length of all possible cords connecting two contour points:

Rc ¼
X

a¼0N−1

X
b¼0N−1

X
p¼0N−1

X
q¼0N−1

δcab⋅cpq
L L−1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a−pj j2 þ b−qj j2

q

δx:y ¼ 1 ifx ¼ y ¼ 1 and δx:y ¼ 0 otherwise

where cab is the pixel value at position (a,b) and L is the contour length. The pixels where cab=
1 define the outer contour of the silhouette.

Several sampling strategies have been considered for selecting the contour points used in
this calculation. These strategies include using all points of the outer contour of the silhouette,
points of high curvature or a subset of interest points, as in the work of Lowe [51]. However,
the authors note that this type of information can well represent the relevance for some
particular cases but can be much less efficient for many 3D models due to the unstable
behavior of such key points.

Chaouch and Verroust-Blondet also proposed two methods to compute the relevance
indices of depth-buffer images. The first one introduces the depth by taking the sum of all
values of the non-null pixels of the depth-buffer image, thus computing the volume enclosed
between the visible parts of the 3D object and the opposite plane of the bounding box:

Rd ¼
X

a¼0N−1

X
b¼0N−1

uab

where uab is the pixel value of the depth-buffer image at position (α,b).
The second relevance index proposed for depth-buffer images is the sum of the distances

between the center of mass of the 3D model and all its visible points:

Rg ¼ 1

2w

X
a¼0N−1

X
b¼0N−1

dab

dab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a− N

.
2

���
���

���
2
þ b− N

.
2

���
���

���
2
þ 2w uab−1

.
2

���
���
2

r

where 2w is the length of the sides of the extended enclosing bounding box.
Experiments were conducted on range images artificially acquired from the well-known

Princeton shape benchmark (PSB) [65]. The obtained results have been compared with the
silhouette and depth-buffer methods of Vranic [73] on the same database. Chaouch and
Verroust-Blondet report enhanced retrieval quality for both silhouette and depth-buffer-based
variants. In quantitative terms, the enhanced silhouette-based variant obtains NN 55.5, FT
29.6, ST 40.0, DCG 57.3, outperforming the silhouette-based method of Vranic, which obtains
NN 52.8, FT 28.5, ST 38.8, DCG 56.3. In a similar fashion, the enhanced depth-buffer variant
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obtains NN 60.5, FT 34.3, ST 44.2, DCG 60.2, outperforming the depth-buffer-based method
of Vranic, which obtains NN 59.2, FT 32.9, ST 41.8, DCG 58.9. In addition, the overall
computational cost has not been increased.

2.2 Fourier/Zernike/Krawtchouk-based method

Daras and Axenopoulos [17, 18] proposed a view-based 3D object retrieval method using
feature vectors comprising polar Fourier coefficient, Zernike and Krawtchouk moments. These
features are calculated either on binary images or on depth images extracted from 18 2D views,
which are taken from the vertices of a bounding 32-hedron. A pose estimation step based on
the work of Daras et al. [19] or Pu et al. [63] precedes view extraction. This step involves the
translation, scaling and rotation of the 3D model. The model is translated so that the center of
mass coincides with the center of the coordinate system and scaled in order to lie within a
bounding sphere of radius equal to one. Rotation estimation involves combining principal
component analysis with the visual contact area described in the work of Pu et al. [63], in order
to derive the three principal axes of the model. The actual viewpoints employed in the
calculations are determined by rotating 24 times in 90 degrees intervals around the three
principal axes. The method of Daras and Axenopoulos is summarized in Fig. 1.

Daras and Axenopoulos’ method can be applied for 3D object retrieval with complete or
partial queries. In the first case, the utilized dissimilarity measure sums the distances of
associated 2D views (Fig. 2), whereas in the case of partial retrieval, the minimum distance
between the query model and each 2D view is used. Experiments are performed on three

Fig. 1 Block diagram of the method of Daras and Axenopoulos [17]

Multimed Tools Appl



databases: (i) a database of 544 3D models classified into 13 classes, as compiled by the
Informatics and Telematics Institute (ITI), which is available online at http://vcl.iti.gr/3d-
object-retrieval/, (ii) the engineering shape benchmark (ESB) [41] which contains 867 3D
computer-aided design (CAD) models from the mechanical engineering domain, classified
into 44 classes and (iii) the well-known PSB. Daras and Axenopoulos’ method outper-
forms the methods of Chen et al. [14], Vranic [73], as well as the BoVW-based method
of Ohbuchi et al. [56]. In the more complete journal version of their work, Daras and
Axenopoulos [18] combined their feature vector with the spherical trace transform of
Zarpalas et al. [78], resulting in enhanced retrieval performance. This method has
participated in three tracks of the shape retrieval contest (SHREC)’09, namely the
tracks for: (i) structural shape retrieval [38], (ii) a new generic shape benchmark [4]
and (iii) partial 3D object retrieval [6].

2.3 Use of salient features in range images

Stavropoulos et al. [68] introduced a method for identifying the correspondence
between a range image and a full 3D model by searching for the camera viewpoint,
orientation, scale and internal geometry that would generate an image similar to the
query, as illustrated in Fig. 3. Instead of attempting to match the entire image, only
spatial distributions of salient points are compared. The salient points are extracted
following the theory of salience, as introduced by Hoffman and Singh [40]. A coarse-
to-fine, hierarchical approach is adopted for searching in the parameter space in order
to bypass exhaustive searching.

The framework of Stavropoulos et al. is experimentally tested on the dataset used in the
“watertight” track of SHREC’07 [36], as well as in the PSB. The obtained retrieval results
show that this framework outperforms the method of Germann et al. [35], including cases of
noise-infused or occluded 3D models. Moreover, for standard Intel-based workstations the
time dedicated for off-line preprocessing and on-line partial matching is only 1 sec and
20 msec, respectively.

2.4 Depth gradient images (DGIs)

Adan et al. [1] introduced and analyzed a 3D object retrieval strategy for scenes,
based on depth gradient image (DGI) representation. DGI synthesizes both surface and
contour information, aiming to avoid restrictions on the layout and visibility of each
object in the scene. Figure 4 summarizes this strategy. Let v be an arbitrary view on

Fig. 2 In the case of complete queries, the total dissimilarity between two 3D objects is the sum of the
dissimilarities of the corresponding views [17]
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the object, L be the set of pixels of depth image Id which represent the object and LH
be the set of pixels corresponding to the object contour. In addition, let p=ord(LH) be
the number of pixel of the contour and t=dim(diag(Id)) be the dimension of the
diagonal of the depth image. The DGI from viewpoint v, Gv, is a t×p matrix:

Gu i; jð Þ ¼ Id LN i; LH jð Þð Þð Þ−Id LH jð Þð Þ

where LN(i,LH(j)),i=1,2,…,t is the set of pixels that are in the normal direction to the
contour at the point LH(j), which are sorted from LH(j) towards the object interior. LN
can be sub-sampled in order to reduce the size of the DGI representation and limit
memory requirements. The depth values of a set of equally-spaced pixels in the
normal direction can thus be taken in the above equation. It is clear that Gυ is
invariant to changes in the observer distance. Gυ is a small image where the jth
column contains the set of depth gradients in the normal direction in LH(j), whereas
the ith row stores the gradients for points that are equidistant in the image to the
contour in their corresponding normal directions. Figure 4(a) shows an example of

Fig. 3 The algorithm of Stavropoulos et al. searches for the best match in parameter space that consists of all
possible positions and orientations of the camera [68]
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how depth-gradient values for one contour-point (on the left) and consecutive contour-
points along with their associated normal directions (on the right) are calculated.

DGI representation is suitable for characterizing both partial views and the complete object.
The global DGI model can be defined as follows:

G j; ið Þ ¼ Gu i
0
; j

0
� �

; i
0 ¼ MOD i; tð Þ; j 0 ¼ j;μ ¼ DIV i; tð Þ

where Gμ is the partial DGI obtained from the viewpoint μ . Thus, the global DGI model
consists of an image of dimension (k/t,p), which is duplicated in practice, so as to carry out an
efficient partial-global DGI matching. Figure 4(b) shows the global DGI for one object. Note
that this is a single image of 1M pixels, which synthesizes the surface information of the
complete object.

Promising retrieval performance (RR 96.8) is obtained by applying DGI on various scene
types, which include occlusion, injected noise and highly complex cluttered scenes. Moreover,
DGI outperforms spin-images [42] (RR 87.8) on Mian’s public dataset whereas it obtains
comparable performance to Mian’s tensor-shape method (RR 96.6) [54].

2.5 Use of panoramic views

Sfikas et al. [64] recently proposed a view-based method, extending PANORAMA, a generic
3D object retrieval method introduced by Papadakis et al. [61]. The method of Sfikas et al.
uses a panoramic view representation that is able to encode the 3D surface characteristics of
target objects onto a 2D image map. For this, a number of panoramic views of each object are
extracted on viewpoint axes that are defined by a dodecahedron, thus extending PANORAMA
to multiple viewpoint axes. Each axis defines three panoramic view cylinders (one for the axis
itself and two more for any two axes, so as to make up an orthonormal basis, along with the
first one). To obtain a panoramic view, the object is projected to the lateral surface of a cylinder
centered at the origin, with its axis parallel to one of the coordinate axes. For each cross section

Fig. 4 Building of the DGI representation: (a) depth gradients generated over a sampling direction when a
contour point is selected. DGI values inside and outside of the object are included, as well as a section of DGI
corresponding to a part of the contour and its integration in the DGI, (b) the global DGI model [1]
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of the cylinder, rays are cast to the cylinder center, and the respective distances crossed are
assigned to the points of the cross section. The cylindrical projection can be viewed as a 2D
image map. Figure 5 illustrates an example 3D object and its cylindrical projection. In the
same spirit, range image representations of query objects are mapped to the panoramic views,
and the algorithm identifies object matches by means of interest point correspondence. The
interest points are compared with the use of dense scale invariant feature transform (DSIFT)
descriptor [9].

Sfikas et al. experimented on a dataset of pottery models obtained from the Hampson
Archeological Museum collection of historical 3D objects [45]. They used models of low
resolution that were downloaded from the website of the museum, along with associated
metadata information, as a test bed for retrieval experiments. They artificially created a set of
20 partial queries by slicing and cap filling a corresponding amount of complete 3D objects.
The experimental results showed that their method is able to handle quite well the
problem of partial retrieval (NN 85.7, DCG 68.3) and illustrates stability in its
performance with respect to the difficulty of the problem. Figure 6 illustrates example
retrieval results obtained by Sfikas et al.

3 Part-based methods

Biederman [8] suggested that humans tend to recognize objects by analyzing the semantics of
their parts. This suggestion leads to the part-based paradigm in 3D object retrieval, which is
based on the hypothesis that two objects are similar, if they consist of similar parts. The
relevance of this approach to partial retrieval is obvious, if we consider that object parts are
actually an input form for partial retrieval.

3.1 Local surface patches (LSPs)

Chen and Bhanu [13] introduced LSPs for 3D object representation. Their method starts from
extracting feature points in range images and defines LSP descriptors [12] for each feature

Fig. 5 (a) An example 3D object and (b) its corresponding cylindrical projection on the z-axis [64]
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point with large shape variation, as measured by the shape index [20] (Fig. 7). Each LSP is
defined as the region consisting of a feature point and its neighbors.

For each patch, Chen and Bhanu calculate local surface properties, including a 2D
histogram, the surface type and the centroid. The 2D histogram (Fig. 8) consists of shape
indices and angles between the normal of the feature point and that of its neighbors. The
surface of a patch is classified into different types based on the mean and Gaussian curvatures
of the feature point. For every LSP, the mean and standard deviation of shape indices are
computed and used as indices to a hash table (Fig. 9). Potential associations between LSPs and
candidate models are hypothesized by comparing LSPs of a query and LSPs of a full 3D
model, followed by casting votes for those models containing similar surface descriptors.
Finally, a rigid transformation is estimated based on the corresponding LSPs, so as to enable
the calculation of the match quality between the hypothesized 3D model and the query.

Fig. 7 (a) A range image and (b) the image of its shape index. In (a), the darker pixels are further away from the
camera and the lighter ones are closer. In (b), the darker pixels correspond to concave surfaces and the lighter
ones correspond to convex surfaces [13]

Fig. 6 Sample queries from the pottery dataset. First column indicates the query model and results are illustrated
in ranking order [64]
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Experiments were performed on a database of real range data, collected by Ohio State
University. Comparisons with the spin-image [42] and the spherical spin-image [16] represen-
tations on real range data have shown that LSPs are as effective for the matching of 3D objects
as these two representations (all methods obtain RR 100.0), but are more efficient in finding
corresponding parts between a model-query pair, since LSPs require 89.4 s, spin-images
require 162.1 s and spherical spin-mages require 150.6 s, with the implementations and
hardware configurations used by the authors in their experiments. Unfortunately, the link of
the database, as referenced by the authors, is no longer valid and we did not manage to identify
a new URL.

3.2 Partial 3D shape retrieval by Reeb pattern unfolding

Tierny et al. [70] proposed a Reeb graph-based partial 3D object retrieval method, using their
earlier mesh segmentation method [69]. For each segment of the object a signature is
computed using its Reeb chart. Disk-like and annulus-like charts are considered. Disk-like
charts correspond to one local maximum of the graph with the local maximum located in the

Fig. 9 Structure of the hash table. Every entry in the hash table has a linked list which saves information about
the model LSPs and the accumulator records the number of votes received by each model [13]

Fig. 8 Illustration of a local surface patch (LSP). Feature point P is indicated in green and its neighbors N are
indicated in red [13]
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center of the chart and the boundaries on the outer circle of the disk. Disk-like charts
correspond to the fingers, whereas the annulus-like chart corresponds to the palm of a hand
object. Let ci be the disk-like chart of a segment. If φi is the mapping of ci to the canonical
planar domain D, then the unfolding signature lφi can be defined as follows:

lφi rð Þ ¼ Aci rð Þ
AD rð Þ

¼ Aci rð Þ
πr2

where r denotes a subset of the chart, and Aci, AD denote the total area of the subset in each of
the two domains. Let now cj be the annulus-like chart of the object. The signature can be
computed as follows:

lφj rð Þ ¼ Acj rð Þ
AD rð Þ

¼ Acj rð Þ
p r þ 1ð Þ2−p

The Reeb graph matching is performed using the above signature. A Reeb pattern is a part
of the Reeb graph which contains protrusion areas. The structural signature of a Reeb pattern
Pi is the couple (nD(Pi),nA(Pi)), where nD(Pi) and nA(Pi) are the numbers of the disk-like and
annulus-like Reeb charts in Pi, which are linked by the following equation with gpi denoting
the genus of the Reeb pattern:

nD Pið Þ ¼ nA Pið Þ þ 1−3gPi

Making use of the structural signature, the maximal common sub-graph is identified. The
final step of the method is matching of the Reeb patterns using the following similarity
function and a bipartite graph matching algorithm:

s cAi; cBj
� � ¼ 1−LN1 cAi; cBj

� �

where LN1 is the normalized L1 distance between the unfolding signatures of the set of matched
disk charts cAi and cBj.

Experiments were performed on the partial retrieval track of SHREC’07 [52] benchmark
database, demonstrating that the method of Tierny el al. outperforms the methods of Biasotti
et al. [7] and Cornea et al. [15] in terms of retrieval accuracy, with an average NDCG which is
14.1 and 40.9 % higher, respectively.

3.3 Retrieval of 3D articulated objects using a graph-based representation

Agathos et al. [2] proposed a graph-based representation method that decomposes objects
using the mesh segmentation method previously introduced by some of the authors [3].
Geodesic extrema of an object are considered as salient points identified by means of the
protrusion function, which depends on geodesic distances of all pairs of points in a neighbor-
hood and reaches its local maxima at the tips of mesh protrusions. The core partition is
approximated by starting from the minimum of the geodesic function and expanding the
partition. When the expansion is completed, the protrusion parts are separated from the core.
Boundaries are refined with a minimum cut algorithm to form the final segmentation.

After the segmentation step, each segment of the object is represented as a graph node and
adjacent segments are connected in the graph with an edge. Unary and pairwise features are
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assigned to each node and edge, respectively. The graph matching is based on the earth
mover’s distance (EMD) of the feature vectors. Unary attributes assigned to the nodes include
size, convexity, eccentricities of the ellipsoid approximating the component [3] and the
spherical harmonic descriptor vector [59]. The pairwise features assigned to graph edges are
the distance of the segment centroids and the angles that the two most significant principal
axes of the connected components form with each other. Before the matching of two graphs,
penalty nodes are inserted in the graph with the smaller number of nodes (equal to their
difference of cardinality).

Experiments are performed on the McGill shape benchmark (MSB) [66] database, which
consists of highly articulated shapes, and ISDB [25] database, showing that the retrieval
method of Agathos et al. outperforms the part-based method of Kim et al. [44] and the hybrid
descriptor of Papadakis et al. [60], in terms of retrieval accuracy. In quantitative terms, the
method of Agathos et al. obtains NN 97.6/100.0, FT 74.1/89.5, ST 91.1/95.8, DCG 93.3/97.2
in MSB/ISDB datasets, as opposed to NN 92.5/84.9, FT 55.7/54.1, ST 69.8/68.5, DCG 85.0/
79.9 for the method of Papadakis et al. and NN 91.8/87.7, FT 65.2/69.9, ST 78.3/84.8, DCG
89.1/88.1 for the method of Kim et al. Also, Agathos et al. outperform the other two methods,
with respect to P-R.

4 Bag of visual words-based methods

The past decade has seen the rise of the bag of visual words (BoVW) approach in computer
vision. In relevant literature, BoVW can also be found as bag of words, bag of features or bag of
visual features. BoVW methods have been applied for image classification, object detection,
image retrieval and even visual localization for robots. In visual information retrieval, the BoVW
approach defines that each sample contains a number of local visual features. Since every visual
feature, or collection of similar visual features, may appear with different frequencies on each
sample, matching the visual feature frequencies of two samples achieves correspondence.

Figure 10 provides a visual abstraction of the BoVW procedure, which can be summarized
as follows: (i) build vocabulary: extract features from all samples in a training set. Vector

Fig. 10 Process for BoVW image representation [55]
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quantize, or cluster, these features into a “visual vocabulary,” where each cluster represents a
“visual word” or “term.” In some works, the vocabulary is called the “visual codebook.” Terms
in the vocabulary are the codes in the codebook, (ii) assign terms: extract features from a test
sample. Use nearest neighbors or a related strategy to assign the features to the closest terms in
the vocabulary, (iii) generate term vector: record the counts of each term that appears in the
image to create a normalized histogram representing a “term vector” [55]. This term vector is
the BoVW representation of the sample.

Shape Google, as proposed by Bronstein et al. [10], is the one major 3D model object
retrieval method in the literature. Other recent notable contributions along the same line
include the methods of Furuya and Ohbuchi [24], Lavoué [46], Ohkita et al. [58], Li et al.
[49], Atmosukarto and Shapiro [5] and Li et al. [48]. It should be noted that from these BoVW-
based methods, those of Bronstein, Furuya and Ohbuchi, Lavoué, as well as of Li et al. [48],
have already been applied for partial retrieval. However, all methods feature ideas which are
potentially useful in a partial retrieval context.

4.1 Spatially sensitive BoVW methods

Lavoué [46] has presented an alternative 3D object retrieval method which also combines
standard BoVWand spatially-sensitive BoVW.His method relies on uniform sampling of feature
points based on Lloyd’s relaxation iterations. Each feature point is associated to a descriptor
defined as the Fourier spectra of a local patch, which is computed by projecting the geometry
onto the eigenvectors of the Laplace–Beltrami operator, so as to speed-up computations and
enhance discriminative capability.

The experimental evaluation of this method for partial retrieval has been performed on
SHREC’07 partial retrieval benchmark [52]. Each of the querymodels is composed of sub-parts
from two or three models from the testing set. A ground-truth classification of eachmodel of the
testing set as highly relevant, marginally relevant or non-relevant is provided for each query.
Lavoué’s method is shown to outperform the 3D object retrieval methods of Tierny et al. [70]
and Toldo et al. [71], as illustrated in the NDGC curves provided in Lavoué’s paper. The author
explains this on the basis that his method discards most of the structural information, hence the
topological changes due to the sub-part merging do not significantly affect the BoVW.
Moreover, Lavoué [46] has shown that standard and spatially-sensitive BoVW methods are
complementary since their combination provides a significant gain with regards to their
individual performances. In quantitative terms, the hybrid BoVW method obtains NN 91.8,
FT 60.0, ST 74.0, DGC 84.7, as opposed to NN 89.7, FT 56.7, ST 71.5, DGC 83.3 obtained by
the standalone spatial variation of BoVW, and NN 90.2, FT 59.0, ST 73.4, DGC 84.1 obtained
by the standalone standard variation of BoVW, in experiments conducted on SHREC’07.

A current limitation of Lavoué’s method, as the author admits, is that although it correctly
retrieves a model from a partial query, it does not perform the precise matching between the
corresponding sub-parts. A solution to perform this matching could have been to construct a
graphical structure over the set of feature points, i.e. a graph representation reflecting the attributes
and the relations of primitive elements (i.e. points, lines, polyhedra etc.) constituting the object, in
an organized fashion, and apply some kind of fast approximate subgraph isomorphism.

4.2 Shape google

Shape Google [10] is a 3D object retrieval method applicable on both meshes and point clouds,
which focuses on the retrieval of non-rigid objects. It starts by calculating a feature detector
and descriptor based on heat kernels of the Laplace-Beltrami operator. The descriptors derived
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are used to construct a BoVW vocabulary. This representation is invariant to isometric
deformations, robust under a wide class of perturbations, and allows one to compare shapes
undergoing different deformations. Bronstein et al. [10] take into consideration the spatial
relations between features in an approach similar to commute graphs, which has been shown to
enhance the retrieval performance. Finally, they adopt metric learning techniques, widely used
in the computer vision community and represent shapes as compact binary codes that can be
efficiently indexed and compared using the Hamming distance.

Figure 11 provides an overview of the Shape Google pipeline. The shape is
represented as a collection of local feature descriptors, either dense or computed at a
set of stable points, following an optional stage of feature detection. The descriptors are
then represented by “geometric words” from a “geometric vocabulary” using vector
quantization, which produces a shape representation as a BoVW or pairs of words, i.e.
“expressions”. Finally, similarity sensitive hashing is applied on the BoVW. Figure 12
visualizes the discriminative capability of the employed heat kernel-based BoVW.
Shape Google can be adopted as a framework with different descriptors and detectors,
depending on the application demands.

Shape Google has been tested on the large scale track of SHREC’10 [72], in which
the queries include multiple modifications and transformations of the same shape, such
as rescaling, induction of noise, sampling and partial queries. In the latter case, Shape
Google outperformed the methods of Toldo et al. [71] and Lian et al. [50], with a MAP
of 87.4 for Shape Google, as opposed to 1.4 for the method of Toldo et al. and 44.8 for
the method of Lian et al.

4.3 Global and local features combined with particle swarm optimization

Li et al. [48] proposed a partial 3D object retrieval method which utilizes both geodesic
distance-based global features and curvature-based local features, together with the BoVW
framework, in order to develop a generic 3D shape retrieval algorithm that can be used for both
non-rigid and partial 3D model retrieval. Curvature-based local features, geodesic distance-
based global features without multidimensional scaling (MDS), and MDS-based curvature-
based ZDFR features (where ZDFR stands for Zernike-Depth-Fourier-Ray-based features)
show different properties and retrieval performances in recognizing non-rigid and partial 3D
models. To automatically combine these three features, a meta similarity generation algorithm
based on particle swarm optimization (PSO) [23] has been proposed to fuse their distance
matrices (Fig. 13). This framework can be extended to integrate different or more
features, so as to develop other similar unified retrieval algorithms for both non-rigid
and partial 3D model retrieval.

Li et al. applied their framework on the partial retrieval track of SHREC’07 [36]. The
results of their experiments show that their framework outperforms the methods participating

Fig. 11 Overview of the Shape Google pipeline [10]
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in SHREC’07, as well as the methods of Tierny et al. [70], Biasotti et al. [7], Cornea et al. [15]
and Toldo et al. [71], as illustrated in the NDGC curves provided in the paper of Li et al.

Fig. 13 Overview of the method of Li et al.[48]

Fig. 12 Top row: examples of BoVW computed for different deformations of centaur (red), dog (blue), and
human (magenta). Note the similarity of BoVW of different transformations and dissimilarity of BoVW of
different shapes. Also note the overlap between the centaur and human BoVW, due to partial similarity of these
shapes. Bottom row: examples of spatially-sensitive BoVW computed for different deformations of human
(left and center) and elephant (right) [10]
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5 Other methods

This subsection presents partial 3D object retrieval methods that cannot be solely grouped in
one of the previous three categories.

5.1 Local feature histograms for range image classification

Hetzel et al. [39] explore a view-based method for the recognition of free-form objects in range
images. They combine a set of local features, pixel depth, surface normal and curvature metrics
in a multidimensional histogram, aiming to classify range scans, with pose-estimation as a
byproduct. For the representation of surface curvature, they use the shape index of Dorai and
Jain [20], which is also used in the previously presented local surface patch (LSP) method of
Chen and Bhanu [13].

For histogram comparison, Hetzel et al. employ both χ2-test-based histogram
matching and maximum a-posteriori probability estimation. On ideal test images, both
methods produce comparable results, with NN 93.58 for the χ2-test-based method and
NN 92.36 for the probabilistic method. However, the latter method is more capable to
deal with partial occlusions, with NN 11.46 for the χ2-test-based method, as opposed
to NN 31.88 for the probabilistic method, in the case of 80 % occlusions. In addition,
the latter method provides a measure of confidence for the obtained classification
result. Experiments were performed on a collection of synthetic range images, taken
from high-resolution polygonal models available on the authors’ web site. However,
Hetzel et al. do not perform comparisons with other methods in the presence of
occlusions.

5.2 3D search and retrieval from range images using salient features

Furuya and Ohbuchi [24] proposed an enhancement of an earlier 3D object retrieval method,
published by Ohbuchi et al. [57], which is based on BoVW and uses dense sampling for
interest point extraction, followed by the calculation of SIFT descriptors [51]. Their
earlier work outperformed state-of-the-art 3D object retrieval methods on MSB data-
base, which contains highly articulated but geometrically simple objects. However, it
only equaled the retrieval accuracy of state-of-the-art methods on PSB database, which
contains rigid, detailed models.

Furuya and Ohbuchi [24] identified that the aforementioned limitations of the earlier work
of Ohbuchi et al. were connected with the quality of the SIFT-based interest point extraction of
that method. Figure 14(a) illustrates this issue by depicting the interest points extracted by the
method of Ohbuchi et al. on a 3D model example. Furuya and Ohbuchi noted that the depth
image of the potted plant produced a large number of small-scale features near the leaves.
These features, being scale invariant, could match local geometrical features of other models
that are similar in shape, yet completely different in scale. Consequently, the potted plant could
potentially match models having completely different overall shape. On the other hand, an
important large scale feature, in this case a large trapezoidal shape of the pot, is underrepre-
sented. For simpler, less detailed shapes, e.g. those of MSB database, the original SIFT-based
interest point detector worked very well. However, for the PSB database, which contains
models having considerably more detail, the salient points cannot provide a balanced repre-
sentation of model features.

In order to cope with the limitations of the SIFT-based interest point extractor, Furuya
and Ohbuchi employed dense random sampling. For each image in the multi-scale image
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pyramid of the SIFT algorithm, the pixels to be sampled are drawn randomly from pixels
having non-zero intensity value. A range image is rendered with zero pixel value as its
background, and images in the SIFT pyramid are blurred according to their scale in the
pyramid. Thus, a pixel from an image in the SIFT pyramid that has non-zero value is
located on or near but not far from the image of the 3D model. As non-zero pixels are
different for each image in the SIFT image pyramid, the positions of samples are
different across scales in the SIFT pyramid. For comparisons, Furuya and Ohbuchi also
implemented another sampling strategy, which samples the image at regular grid points.
Figure 13b and c illustrate the interest points extracted by dense random sampling and
grid sampling, respectively. It can be observed that dense sampling located more samples
near the pot, whereas grid sampling is uniform, regardless of the image features across
image scales. Apart from dense sampling, Furuya and Obhuchi’s method adopted the
SIFT feature descriptors of Lowe [51], the k-means clustering approach for codebook
learning and the computationally efficient extremely randomized clustering (ERC)-tree of
Guerts et al. [37] for vector quantization. Computational cost is further reduced by
utilizing a graphics processing unit (GPU) implementation of SIFT feature extraction.

In their experiments, Furuya and Obhuchi used the PSB, MSB and ESB databases
to comparatively investigate various aspects of their BoVW-based 3D object retrieval
method, including codebook learning and encoding, sampling strategy and vocabulary
size. Their main conclusions are: (i) although slow (approximately 230 s are required
to learn a codebook of 1000 words), k-means clustering is preferable, since codebook
learning is needed only once, (ii) ERC-tree [37] is much more efficient than k-means
(at least 40 times faster) for nearest neighbor search, with slightly worse retrieval
accuracy (approximately 1.5 %), (iii) the dense sampling approach is much less
sensitive to vocabulary size than SIFT-based sampling, as illustrated in P-R curves
provided in the paper of Furuya and Ohbuchi, (iv) Ohbuchi and Furuya’s method
outperforms, among others, the methods of Ohbuchi et al. [57], Chen et al. [14], Wahl
et al. [74] and Kazhdan et al. [43] in all datasets. In quantitative terms, Furuya and
Ohbuchi obtain R-precision 55.8/76.4/42.5 in PSB/MSB/ESB datasets, respectively,
whereas Chen et al. obtain R-precision 45.9/56.9/34.7, Wahl et al. obtain R-precision
37.3/53.9/34.7 and Kazhdan et al. obtain R-precision 40.5/56.7/34.6, for the same
retrieval performance measures and the same datasets.

Fig. 14 Example of feature points using: (a) SIFT-based interest point detector, (b) dense interest points, (c) a
grid of interest points [24]
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6 Discussion

Table 2 summarizes the state-of-the-art methods on partial 3D object retrieval. It can be
observed that the majority of the related literature is devoted on structured data represented
by 3D meshes. These methods are also potentially applicable on unstructured data represented
as point clouds, since there is an intense research activity on 3D mesh generation algorithms,
which convert point clouds to meshes [53, 79].

Table 2 also reveals that six out of thirteen partial 3D object retrieval methods are
actually view-based, essentially working in 2.5D. This approach suits partial retrieval
in the sense that a 2D query model can be compared with all 2D projections of each
target model in order to keep the minimum distance associated with the most similar
projection, as suggested by Daras and Axenopoulos [17, 18]. It can also be recalled
that the earlier comparative study of Shilane et al. [65] concluded that the 2.5D object
retrieval methods, which were available at the time, outperformed 3D-based methods
in terms of retrieval accuracy.

Another conclusion drawn from Table 2 is that most partial 3D object retrieval methods are
based on descriptors calculated over interest points, either dense, or extracted by means of a
salient point detector. Furuya and Ohbuchi [24] and Ohkita et al. [58] argue in favor of using
dense points, although the appropriate strategy might be representation/application-
dependent.

The BoVW paradigm is represented with three recent works. In the case of the work of
Lavoué [46], his BoVW variations employ spatially sensitive information, which has been
shown to enhance retrieval performance. Li et al. [48] used BoVW in the case of their
curvature-based local features. It should be pointed out that local features are an intrinsic
element of BoVW. Ohkita et al. [58] suggested that a shape matching which is based on all
pairs of interest points of a query and a target model performs admirably well and only suffers
in terms of computational complexity. It is tempting to speculate that, despite its combinatorial
complexity, this approach could perhaps be used for matching instead of BoVW, when the
number of interest points is small enough to allow calculations for all respective pairs.

Several partial 3D object retrieval methods have been evaluated in pre-existing generic
retrieval benchmarks, such as the ESB, PSB and ISDB. An overview on such benchmarks,
with information on their size, number of classes, availability, as well as with references on
related publications, is provided in Table 3. It can be observed that SHREC tracks offer the
most recent benchmarks, which range from databases of range images and watertight models
to large scale databases. In 2007, SHREC has included a track specialized in partial retrieval.
The accompanying datasets have been used for evaluation in several works presented in this
survey. In 2009 and 2013, SHREC also included partial retrieval tracks [21, 67] whereas in
2010–2011, the same contest included tracks devoted to range scans [22]. However, in 2011
due to lack of participants, no results were published.

Table 4 summarizes the experimental comparisons reported in the reviewed works. The
used benchmark datasets are provided along with the methods under comparison and the
results obtained in terms of the performance measures used in each work. In cases of
comparisons performed by means of P-R or NDCG curves, which cannot be condensed in a
table, the means of performance evaluation and the “winner” method are apposed and the
reader is referred to the original papers for details. Very often in the experimental comparisons,
a partial 3D object retrieval method is shown to outperform a generic retrieval method, such as
the methods of Vranic [73], Papadakis et al. [60] and Johnson and Hebert [42]. However, it
should be kept in mind that some state-of-the-art partial 3D object retrieval methods aim to
address special object classes, as is the case with the method of Agathos et al. [2], which

Multimed Tools Appl



focuses on the retrieval of articulated objects, and the methods of Lavoué [46] and Bronstein
et al. [10], which focus on the retrieval of non-rigid objects.

Starting from the above discussion, several challenges associated with partial 3D object
retrieval can be identified, pinpointing research directions and future work:

i. there is a need for systematic comparative studies, since as can be observed in Table 4,
several state-of-the-art methods have not yet been compared with each other,

ii. the accuracy obtained by state-of-the-art partial retrieval methods is not yet sufficient for
several practical applications. For example, the competing methods in SHREC’13 merely
surpassed 20 % in FT,

iii. partial retrieval may well be used to cope with the difficulty and inefficiency of the 3D
digitization process by means of a predictive scanning system, which, starting from a
partially scanned query, may result in an accurate prediction of the complete object.
Predictive scanning opens a whole new range of possibilities for decreased acquisition
times, effort and cost. In addition it might be used to complement the information derived
from low-cost scanning devices, such as Kinect. The work of Pauly et al. [62] was a step
towards this direction,

iv. the formulation of hybrid methods combining multiple methodological paradigms, as is
the case with the work of Li et al. [48], which uses both local and global descriptors, or
with the work of Furuya and Ohbuchi [24], which is both view-based and BoVW-based,

v. research on bridging the gap between geometrical attributes and high-level semantic
information is still rather limited. The use of prior knowledge might be inevitable to
advance in this direction.
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