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Abstract In this paper, we present a method for partial matching and retrieval of 3D
objects based on range image queries. The proposed methodology addresses the retrieval
of complete 3D objects using range image queries that represent partial views. The
core methodology relies upon Bag-of-Visual-Words modelling and enhanced Dense SIFT
descriptor computed on panoramic views and range image queries. Performance evaluation
builds upon standard measures and a challenging 3D pottery dataset originating from the
Hampson Archaeological Museum collection.
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1 Introduction

Generic 3D object retrieval has considerably matured and a number of accurate and robust
descriptors have been proposed in the literature [7, 16, 26, 28, 34]. However, there are still
many challenges regarding the retrieval of 3D models that originate from specific domains
and/or exhibit special characteristics. One such domain is Cultural Heritage (CH), which
includes 3D models that usually deteriorate due to aging, whereas their shape is altered due
to environmental factors and, in most cases, they have only been preserved in the form of
incomplete artefacts.

The challenge with the partial data is that it is difficult to effectively match them against
a full 3D model representation. The representation gap complicates the extraction of a sig-
nature that will be, at least partially, similar when presented with a complete 3D model and
when presented with a partial query of a similar object.

We propose to bridge the representation gap by a common representation based on
features at interest points in the panoramic views of the 3D dataset models and the
range images of the partial queries, respectively. For the complete 3D models, we com-
pute a number of panoramic views on axes, which are perpendicular to the faces of a
dodecahedron. Then, we build a Bag-of-Visual-Words (BoVW) model, for the dataset
of complete 3D objects, that relies upon an enhanced Dense SIFT (e-DSIFT) descrip-
tor of the keypoints. Similarly, for the partial objects, we initially compute a range
image representation used as the query model for which the e-DSIFT descriptor is
computed.

The remainder of the paper is structured as follows. In Section 2, we discuss state-of-
the-art research on 3D model retrieval based on range image queries. Section 3 details the
proposed method and Section 4 presents experimental results achieved in the course of the
method’s evaluation. Finally, conclusions are drawn in Section 5.

2 Related work

Over the past few years, the number of works addressing the problem of partial 3D
object retrieval has increased significantly. Although this task still remains non-trivial, very
important steps have been made in the field.

Stavropoulos et al. [31] present a retrieval method based on the matching of salient fea-
tures between the 3D models and query range images. Salient points are extracted from
vertices that exhibit local maxima in terms of protrusion mapping for a specific window
on the surface of the model. A hierarchical matching scheme is used for matching. The
authors experimented on range images acquired from the SHape REtrieval Contest 2007
(SHREC’07) Watertight Models [13] and the Princeton Shape Benchmark (PSB) standard
[30] datasets.

Chaouch and Verroust-Blondet [5] present a 2D/3D shape descriptor which is based
on either silhouette or depth-buffer images. For each 3D model, six projections are cal-
culated for both silhouette and depth-buffers. The 2D Fourier transform is then computed
on the projection. The same authors propose, in [6], a method where a 3D model is
projected on the faces of its bounding box, resulting in six depth buffers. Each depth
buffer is then decomposed into a set of horizontal and vertical depth lines that are con-
verted to state sequences which describe the change in depth at neighboring pixels.
Experimentations were conducted on range images artificially acquired from the PSB
dataset.



Multimed Tools Appl

Shih et al. [29] proposed the elevation descriptor where six depth buffers (eleva-
tions) are computed from the faces of the 3D model bounding box and each buffer is
described by a set of concentric circular areas that give the sum of pixel values within
the corresponding areas. The models being used were also derived from the standard PSB
dataset.

Experimenting on the SHREC’09 Querying with Partial Models [9] dataset, Daras and
Axenopoulos [8] presented a view-based approach for 3D model retrieval. According to
their approach the 3D model is posed normalised and a set of binary (silhouette) and range
images are extracted from predefined views on a 32-hedron. The set of features com-
puted on the views are the Polar-Fourier transform, Zernike moments and Krawtchouk
moments. Each query image is compared to all the extracted views of each model of the
dataset.

Ohbuchi et al. [25] extract features from 2D range images of the model, viewed from
uniformly sampled locations on a view sphere. For every range image, a set of multi-scale
2D visual features is computed using the Scale Invariant Feature Transform (SIFT) [23].
Finally, the features are integrated into a histogram using the Bag-of-Features approach
[12]. The same authors enhanced their approach by pre-processing the range images, in
order to minimize interference caused by any existing occlusions,as well as by refining
the positioning of SIFT interest points, so that higher resolution images are favored [11,
24]. Their works have participated on both SHREC’09 Querying with Partial Models and
SHREC’10 Range Scan Retrieval [10] contests.

Wahl et al. [35] propose a four-dimensional feature that parameterises the intrinsic geo-
metrical relation of an oriented surface point pair (surflets). For a 3D model a set of surflet
pairs is computed over a number of uniformly sampled viewing directions on the sur-
rounding sphere. This work was one of the two contestants of the SHREC’10 Range Scan
Retrieval track.

Koutsoudis et al. [18, 19] presented a set of 3D shape descriptors designed for content
based retrieval of complete or nearly complete 3D vessels. Their performance evaluation
experiments were performed on a dataset that included among others a subset of Virtual
Hampson Museum 3D collection [17].

Bronstein et al. [4] introduced Shape Google, a 3D object retrieval method, which
focuses on the retrieval of non-rigid objects. The method starts by calculating a feature
detector and descriptor based on heat kernels of the Laplace-Beltrami operator. The descrip-
tors derived are used to construct a BoVW vocabulary. The spatial relations between features
are considered in an approach similar to commute graphs.

Lavoué [20] has presented an alternative 3D object retrieval method which combines
standard BoVW and spatially-sensitive BoVW. Lavoué’s method relies on a uniform
sampling of feature points, based on Lloyds relaxation iterations. Each feature point is asso-
ciated to a descriptor defined as the Fourier spectra of a local patch, which is computed
by projecting the geometry onto the eigenvectors of the Laplace-Beltrami operator, so as to
speed-up computations and enhance discriminative capability.

Li et al. [21] proposed a partial 3D object retrieval method which utilizes both geodesic
distance-based global features and curvature-based local features, together with the BoVW
framework, in order to develop a generic 3D shape retrieval algorithm that can be used for
both non-rigid and partial 3D model retrieval. This framework can be extended to integrate
different or more features, so as to develop other similar unified retrieval algorithms for both
non-rigid and partial 3D model retrieval. This work also includes a rather extended review
on the area.
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Sfikas et al. [27] presented a methodology for 3D object partial matching and retrieval
based on range image queries. The core methodology was based on Dense SIFT descrip-
tor computed on panoramic views. This work was the first to address the partial retrieval
of 3D pottery objects and still is the sole such application. In that respect, it provides a
baseline to evaluate the improvements introduced here. In this paper, that preliminary work
is extended in a two-folded fashion: first, enhancing the DSIFT descriptor with a his-
togram of depth values, computed in a neighborhood around each keypoint, resulting in
the e-DSIFT descriptor. Second, using the e-DSIFT descriptor in a Bag-of-Visual-Words
context.

3 Methodology

The main steps of the proposed methodology for partial 3D object retrieval via range image
queries are: (i) 3D model panoramic view computation, (ii) shape descriptor extraction from
each full 3D model of the dataset (off-line), (iii) range image computation for the par-
tial query model, (iv) shape descriptor extraction from the range image (on-line) and (v)
matching of the query descriptor against the descriptor of each 3D model of the dataset.

In the case of the complete 3D models, a number of panoramic views of each model
are extracted on viewpoint axes that are defined by a dodecahedron, thus, extending the
PANORAMA [26] method to multiple viewpoint axes.

3.1 Panoramic views extraction

In order to acquire a panoramic view of a dataset model, we project the model on the lateral
surface of a cylinder of radius R and height H = 2R, centered at the origin with its axis
parallel to one of the viewpoint axes (in this example the principal axis z, see Fig. 1a). We
set the value of R to 2dmax where dmax is the maximum distance of the model’s surface
from its centroid.

In the following, we parameterise the lateral surface of the cylinder using a set of points
s(φ, y) where φ ∈ [0, 2π ] is the angle in the XY plane, y ∈ [0, H ] and we sample the φ and
y coordinates at rates 2B and B, respectively (we set B = 128). We perform sampling of the

(a) (b)

Fig. 1 a A projection cylinder for the acquisition of a 3D model’s panoramic view and b the corresponding
discretization of its lateral surface to the set of points s(φu, yv)
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φ dimension at a sampling rate which is twice the rate of the y dimension. This is required
to take into account the difference in length between the perimeter of the cylinder’s lateral
surface and its height. Thus, we obtain the set of points s(φu, yv) where φu = u ∗ 2π/(2B),
yv = v ∗ H/B, u ∈ [0, 2B − 1] and v ∈ [0, B − 1]. These points are shown in Fig. 1b.

The next step is to determine the value at each point s(φu, yv) of the panoramic view.
The computation is carried out iteratively for v = 0, 1, . . . , B − 1, each time considering
the set of coplanar s(φu, yv) points, i.e. a cross section of the cylinder at height yv and for
each cross section we cast rays from its center cv in the φu directions. In order to capture the
position of the model surface, for each cross section at height yv we compute the distances
from cv to the intersections of the model’s surface with the rays at each direction φu.

Let pos(φu, yv) denote the distance of the furthest from cv point of intersection between
the ray emanating from cv in the φu direction and the model’s surface; then s(φu, yv) =
pos(φu, yv). Thus the value of a point s(φu, yv) lies in the range [0, R], where R denotes
the radius of the cylinder.

A cylindrical projection can be viewed as a 2D gray-scale image where pixels correspond
to the s(φu, yv) intersection points in a manner reminiscent of cylindrical texture mapping
[32] and their values are mapped to the [0,1] space. In Fig. 2a, we show an example 3D
model, aligned with the z axis, and in Fig. 2b the unfolded visual representation (panoramic
view) of its corresponding cylindrical projection s(φu, yv).

3.2 Enhanced DSIFT (e-DSIFT) descriptor computation

Once the panoramic views have been extracted, the enhanced DSIFT descriptor is calcu-
lated on them. The first step of the e-DSIFT computation, is the extraction of a number of
keypoints, for which the DSIFT descriptors are calculated. The original implementation by
Lowe [23] calculates interest points through the Difference of Gaussians (DoG) method,
which is geared towards enhancing the edges and other details present in the image. It has
been experimentally found that the calculation of the SIFT descriptors over the complete
image for a large number of randomly selected keypoints (frequently defined as Dense
SIFT/ DSIFT, in the literature), instead of selecting a limited number of interest points,
yields better results in terms of retrieval accuracy [2, 3, 11].

(a) (b)

Fig. 2 a An example 3D model and b its corresponding cylindrical projection on the z-axis (panoramic view)
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At each keypoint, an image descriptor is computed. The SIFT descriptor is defined as a
position-dependent histogram of local gradient directions around the keypoint. To achieve
scale invariance, the size of this local neighbourhood is normalised in a scale-invariant
manner. To achieve rotational invariance of the descriptor, the dominant orientation of the
neighbourhood is determined from the orientations of the gradient vectors in this neigh-
bourhood and is used for orienting the grid over which the position-dependent histogram is
computed.

A second feature calculated on the depth images is the histogram of depth values found
in an n-ring neighborhood around a keypoint [1]. At each keypoint, a histogram accumu-
lates the values of its adjacent pixels, with respect to their distance from the keypoint itself
(Fig. 3). The total number of histogram bins corresponds to the number of cocentric shell
sectors (selected neighborhood size). We have experimentally found that using a relatively
small neighborhood n for the computation of the histograms, i.e. 5 pixels, yields better
results than using a larger one. The keypoints selected for the computation of the histograms
are the same keypoints, where the DSIFT descriptor is calculated. To compensate for the
difference between the size of the depth values and DSIFT histograms, the first is resized
so that its number of bins becomes equal to the size of the DSIFT histogram (128 bins). The
intermediate values are determined via linear interpolation. The values stored in the bins of
each histogram correspond to the image intensity values of the depth image. The bins are
normalized by the total number of pixels added to the histogram.

3.3 Bag-of-Visual-Words modelling

Once the panoramic views extraction and the e-DSIFT descriptor calculation steps are
complete, the Bag-of-Visual-Words (BoVW) model for the dataset is built. In visual infor-
mation retrieval, the BoVW model defines that each image contains a number of local visual
features. Since, in the general case a collection of visual features appears with different
frequencies on different images, matching the visual frequencies on each image enables
correspondence. In our case, the SIFT descriptors are defined as the BoVW features.

The basic step in the process of building the BoVW model for the 3D model dataset is
the generation of a codebook (or a vocabulary), a collection of visual features that appear

Fig. 3 Sample image detail with
feature keypoint and n-ring
neighborhood indicated
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on each panoramic view image. The codebook is generated by considering the visual fea-
tures of a representative number of dataset models. To achieve greater flexibility, rather than
generating the codebook by selecting individual visual features of the models, the corre-
sponding panoramic views are clustered into several similar patches, the codewords. One
simple method is performing k-means clustering [22] over all the visual features. Code-
words are then defined as the centers of the learned clusters. The number of the clusters is
the codebook size. Thus, each patch in a panoramic image is mapped to a certain codeword
through the clustering process and the panoramic image can be represented by the histogram
of the codewords. In the proposed methodology, we have set the number of codewords to
80. Furthermore, the codebook of the BoVW model is built on 10 % of the complete 3D
model dataset, selected in proportion to the population of the classes.

Once the codebook generation is complete, the encoding/description of the 3D mod-
els in the dataset is performed using the corresponding codewords. In a similar manner,
for each panoramic view of the 3D model set, the visual features are computed and
matched to their closest codewords, by comparing them to the corresponding clusters,
generated in the previous step. Again, the k-means algorithm is used for matching. The
set of histograms describing the frequency of occurrence of the generated codewords,
for each 3D model’s panoramic views, is stored as the corresponding signature of the
3D model.

3.4 Query matching

In the case of query models, range images are computed from the depth buffer. The selected
size of sampling is B × B pixels. In a strategy similar to the histogram computation for
the panoramic views of the dataset 3D models, the queries are compared to the models of
the dataset. The e-DSIFT descriptor is extracted from the range image and based on the
generated BoVW model, a histogram describing the codebook frequencies of occurrence is
computed as the query’s descriptor.

Following feature extraction, the descriptor histogram for each query range image must
be matched against the corresponding descriptor histograms of each complete dataset 3D
model. To this end, the descriptor histogram of the range image is compared against every
descriptor histogram of a 3D model’s set of panoramic views, using as a metric the L2
distance. The minimum of these distances is the final distance between the query and the
target model.

4 Evaluation

For the experimental evaluation we have used a dataset related to the cultural heritage
domain which is a 3D pottery dataset originating from the Hampson Archaeological
Museum collection.

The Hampson Archaeological Museum collection is a major source of information on the
lives and history of pre-Columbian people of the Mississippi river valley [14]. The Centre
of Advanced Spatial Technologies - University of Arkansas worked on the digitisation of
numerous artefacts from the Hampson museum collection using a Konica-Minolta Vivid 9i
short-range 3D laser scanner. The digitisation was performed at a precision close to 0.2 mm.
The 3D digital replicas are covered by the creative common 3.0 license and are offered
for online browsing or downloading in both high (>1M facets) and low (<=25K facets)
resolutions [15].



Multimed Tools Appl

We have used 384 models of low resolution, that were downloaded from the website
of the museum along with associated metadata information, as a testbed for content based
retrieval and partial matching experiments. Initially the models were classified, based on
semantics, into 6 classes (Bottle, Bowl, Jar, Effigy, Lithics and Others). As this classification
did not ensure similarities based on shape within a given class, we performed an extended
shape-oriented classification. We initially organised the models into thirteen classes of
different populations (Bottles, Bowls 1 - 4, Figurines, Masks, Pipes, Tools, Tripod-Base
Vessels, Conjoined Vessels, Twin Piped Vessels and Others). In the sequel five of these
classes (all Bottles and Bowls classes) were further divided into 15 subclasses resulting in a
total of 23 distinct classes.

It should be pointed out that this is the maximum amount of image examples that
can be derived from the Hampson museum collection. Similar pottery datasets are not
publicly available, a fact that could be the main reason for the lack of past research in
retrieval methods of such objects. However, several state-of-the-art retrieval methods have
been experimentally validated on datasets of comparable sizes (e.g. Tierny et al. [33],
Stavropoulos et al. [31], Lavoué [20] have been applied on a dataset of 400 objects).
Figure 4 illustrates example 3D models of the pottery dataset used, indicative of its
diversity.

Since this dataset does not contain any partial 3D object that can be used as query, we
artificially created a set of 20 partial queries by slicing and cap filling a number of complete
3D objects, originating from those classes that are densely populated. The partial queries
comprise objects with a reduced surface compared to the original 3D object by a factor
which ranges from 40 % to 25 % with a step of 5 %.

Fig. 4 Example 3D models of
the pottery dataset used
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As an update to the benchmark dataset, we have created a new categorization which takes
more into consideration the shape characteristics of the 3D models and thus being more
suitable for 3D object retrieval purposes. This new classification is composed of 16 classes.
Table 1 shows the newly defined classes along with their cardinalities.

Our experimental evaluation is based on Precision-Recall (P-R) plots and five quan-
titative measures: Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-measure
(E) and Discounted Cumulative Gain (DCG) [30] for the classes of the corresponding
datasets. For every query model that belongs to a class C, recall denotes the percentage
of models of class C that are retrieved and precision denotes the proportion of retrieved
models that belong to class C over the total number of retrieved models. The maxi-
mum score is 100 % for both quantities. Nearest Neighbor (NN) indicates the percentage
of queries where the closest match belongs to the query class. First Tier (FT) and Sec-
ond Tier (ST) statistics, measure the recall value for the (D − 1) and 2(D − 1) closest
matches respectively, where D is the cardinality of the query class. E-measure combines
precision and recall metrics into a single number and the DCG statistic weights cor-
rect results near the front of the list more than correct results later in the ranked list
under the assumption that a user is less likely to consider elements near the end of the
list [30].

In Fig. 5 we illustrate the average P-R scores for the presented 3D model retrieval method
using the artificially created partial queries of the complete pottery dataset (for both catego-
rizations). The proposed method is compared to the previously presented approach in [27].
Results are presented for various amounts of partiality. Figure 6 illustrates query examples
and the corresponding list of the retrieved 3D models for the proposed method, as well as
for the method of [27].

Table 2 shows the results obtained in terms of the five quantitative measures by the base-
line method of [27] (first part) and the proposed method (second and third part). The latter
is applied on the initial version of the dataset (second part), in order to allow comparisons

Table 1 Categorization of the updated dataset

No Class name Cardinality

1 Appendages 19

2 Ball-like-short-neck 11

3 Bottles-wide-body-long-neck 12

4 Bottles-wide-prism-body-long-neck 30

5 Bottles-wide-body-medium-neck 39

6 Bottles-wide-body-short-neck 55

7 Ducks 20

8 flat-long 6

9 Open 87

10 Open-Curved 9

11 Other 44

12 pipes 2

13 Sphere-like long neck 11

14 Tooth 33

15 Tripod Base 4

16 Twins 2
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Fig. 5 Average P-R scores for the pottery dataset originating from the Hampson Archaeological Museum
collection. Illustrated is the performance of the proposed method, as well as the previous method [27],
obtained using queries with increasing available surface (25–40 %) with respect to the surface of the original
complete 3D models

with the baseline method of [27], as well as on the updated version of the dataset (third part),
in order to reflect more accurately the actual retrieval performance obtained. The results are
apposed for four different levels of partiality (25–40 %). In the case of the baseline method,
it can be observed that the retrieval performance is rather low for 25 % partiality. More-
over, the performance obtained is not consistently increasing with the relative size of the

Fig. 6 Example retrieval results from the pottery dataset. At each row, a partial query (column 1) and a
ranked list of the retrieved 3D objects (columns 2–8) are shown
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Table 2 Five quantitative measures for the presented 3D object retrieval methodology, using partial queries
on the pottery dataset. All measures are normalized

Partiality NN FT ST E DCG

Method [27]

25 % 0.23 0.227 0.388 0.185 0.587

30 % 0.428 0.289 0.495 0.228 0.655

35 % 0.619 0.372 0.536 0.327 0.713

40 % 0.857 0.288 0.508 0.237 0.683

Proposed Method

25 % 0.619 0.416 0.626 0.309 0.721

30 % 0.619 0.494 0.639 0.363 0.760

35 % 0.666 0.510 0.671 0.385 0.773

40 % 0.666 0.518 0.673 0.387 0.774

Proposed Method - Updated Dataset

25 % 0.605 0.516 0.640 0.360 0.743

30 % 0.625 0.524 0.649 0.368 0.755

35 % 0.722 0.525 0.653 0.387 0.780

40 % 0.722 0.575 0.699 0.418 0.805

query. On the other hand, it can be derived that the proposed method is able to satisfacto-
rily handle the problem of partial matching. Even when only one quarter of the surface of
original model is available in the query, the results are acceptable. The addition of the depth
values histogram, as well as the Bag-of-Visual-Words modelling has significantly increased
the performance of the proposed method by an average of 13 % over all measures. Fur-
thermore, it is clear that the numeric results exhibit a more coherent variation with respect
to the partiality level of the 3D models. Finally, the retrieval performance obtained when
using the updated version of the dataset is improved, since the classification of this version
is shape-oriented.

The proposed method was tested on a Core2Quad 2.5 GHz system, with 6 GB of RAM,
running Matlab R2012b. The system was developed in a hybrid Matlab/C++/OpenGL
architecture. The average computational time for the creation of the Bag-of-Visual-Words
model (for the complete dataset) is approximately 3 min (7 min including panoramic views
extraction), however this constitutes an offline procedure. The average computational time
for computing the retrieval list of a single query (including range image extraction) is
approximately 2 seconds.

5 Conclusions

We have presented a method for partial matching based on Bag-of-Visual-Words mod-
elling using enhanced DSIFT computed on panoramic views and range images queries.
This method is able to encode the continuous characteristics of the partial 3D models into
a 2D representation, thus preserving model structure. The performance of the method is
evaluated on a pottery dataset originating from the Hampson Archaeological Museum col-
lection of historical artefacts. We have shown that using the proposed methodology, we
can attain retrieval results which are not severely affected by the reduction in 3D model
surface.
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