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Abstract

We present a new method for the completion of partial globally-symmetric 3D objects, based on the detection

of partial and approximate symmetries in the incomplete input dataset. In our approach, symmetry detection is

formulated as a constrained sparsity maximization problem, which is solved efficiently using a robust RANSAC-

based optimizer. The detected partial symmetries are then reused iteratively, in order to complete the missing

parts of the object. A global error relaxation method minimizes the accumulated alignment errors and a non-

rigid registration approach applies local deformations in order to properly handle approximate symmetry. Unlike

previous approaches, our method does not rely on the computation of features, it uniformly handles translational,

rotational and reflectional symmetries and can provide plausible object completion results, even on challenging

cases, where more than half of the target object is missing. We demonstrate our algorithm in the completion of 3D

scans with varying levels of partiality and we show the applicability of our approach in the repair and completion

of heavily eroded or incomplete cultural heritage objects.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Digital acquisition of 3D objects is an important task in
several domains, including computer graphics, computer vi-
sion and cultural heritage preservation. However, optical 3D
acquisition systems often produce incomplete datasets, due
to occlusions, unfavourable surface reflectance properties or
geometric restrictions that prevent capturing the target object
from certain angles. Therefore, it is clear that object comple-
tion algorithms play a major role during the 3D acquisition
process, in order to properly fill any missing parts from the
digitized dataset.

Furthermore, in the context of cultural heritage, object
completion algorithms can be used to suggest plausible
completions for objects with missing parts, which is one
of the main motivations behind our work. When used in
conjunction with fractured object reassembly algorithms
[HFG∗06,MAP15], this allows for the creation of automated
repair systems that can present to the archaeologist a number
of plausible reassemblies and completions, in order to pro-
vide visual aids for restoration tasks. The digital expansion
of the input object can even be exploited for the fabrication
of the missing parts to physically complete the artefact.

Many methods in the literature focus on the completion of
relatively small missing parts, thus mostly addressing small
defects (holes) in the first use case that we have described. In
this paper, we focus on the completion of partially scanned
or incomplete 3D objects, where a significant portion of the
target shape is missing from the input. Our approach exploits
the fact that many natural or man-made objects exhibit some
form of symmetries. By detecting such symmetries, missing
geometry can be filled by replicating parts of the existing
input object. However, this process can be very challenging,
especially when the symmetries involved are not perfect. We
successfully address these issues, by introducing an object
completion pipeline that is based on a new method for partial
and approximate symmetry detection.

1.1. Contributions

Our contributions can be summarized as follows:

• We present a mathematical formulation of the partial and
approximate symmetry detection problem that is based on
the maximization of the sparsity of a residual distance
vector, subject to the constraint that at least k elements

should not be zero (Sec. 3.1).
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• We propose a RANSAC-based registration method to effi-
ciently solve the underlying global optimization problem
and detect the available symmetries (Sec. 3.2).

• We introduce a pipeline that uses the detected partial
symmetries to complete the missing parts of a globally-
symmetric object. This process includes a global relax-
ation of the accumulated error and a non-rigid deforma-
tion of the replicated parts, to better handle approximate
symmetries (Sec. 4).

The key strengths of our approach is that it can directly
operate on point clouds, it does not rely on the computation
of features or rich local descriptors and uniformly exploits
translational, rotational and reflectional partial symmetries.
An additional advantage of our method is that it can be im-
plemented with few additions to an existing surface registra-
tion system, facilitating the adoption of our approach.

We demonstrate our method in the completion of partial
3D scans of approximately symmetrical objects, where miss-
ing parts are reliably predicted with our approach, even when
more than half of the object is missing from the input. We
also present an application of our method in the context of
cultural heritage, where our completion method is used to
synthesize the missing parts of partially reassembled objects.

2. Related Work

Object completion is a challenging topic that has gained at-
tention recently with the proliferation of scanning devices.
The methods that deal with this problem can be roughly di-
vided into two general categories. The methods in the first
category use external reference objects for the completion.
For example, Pauly et al. [PMG∗05] proposed to complete
a 3D scan using similar objects from a repository. After re-
trieving the most similar object to the query, a non-rigid reg-
istration step was applied in order to fit both geometries as
much as possible. This approach has been later improved by
Li et al. [LAGP09]. These completion methods are orthogo-
nal and can be combined with our approach, as we demon-
strate later in this paper. Also, Huang et al. [HGCO∗12] pro-
posed an object completion algorithm based on the regis-
tration with feature-conforming fields. Missing regions are
completed by extrapolating the existing shape, which is not
always correct, and at least two input shapes are required to
do the completion, whereas our method needs only one.

The second category of methods try to obtain enough
information for completion from the input object itself,
using self-similarity. We can identify two sub-types of
self-similarities that have been exploited so far: self-
correspondences and self-symmetries. The use of self-
correspondences is exploited in the sense of finding a good
set of local correspondences that can be used to transfer ge-
ometry to the unknown geometry. Harary et al. [HTG14a]
proposed the use of a variation of the Heat Kernel Signa-

ture [SOG09] to find candidate matches. With the set of

candidates, the method used an ICP-like algorithm to copy
the corresponding geometry. Similarly in [HTG14b], the au-
thors included user interaction to help the completion pro-
cess. In this case, the user provides four points as hint for
the completion of a feature curve. Then, the algorithm per-
forms an automatic filling of the missing geometry using the
self-correspondences obtained with diffusion descriptors.

On the other hand, if the input object exhibits some form
of symmetry, it is also possible to use this characteris-
tic to tackle the problem of completion. Thrun and Weg-
breit [TW05] defined a probabilistic measure to score the
existence of symmetries in range scans. The method was
applied for the completion of partial views of scanned ob-
jects. Similarly, Zheng et al. [ZSW∗10] proposed finding re-
peated structures (translational symmetries) in LiDAR data.
The algorithm was applied to complete 3D urban scenes
from sparse point clouds. Xu et al. [XZT∗09] defined an al-
gorithm to find the intrinsic reflectional symmetry axis of
a shape. The algorithm was able to deal with missing parts
mainly due to the use a voting scheme of local features. The
method was applied to roughly determine the missing parts
of objects with non-rigid transformations. Likewise, Jiang et
al. [JXCZ13] devised an algorithm to detect intrinsic sym-
metries using the curve skeleton in point clouds. The algo-
rithm was also shown to produce approximate completion in
objects with non-rigid transformations. More recently, Sipi-
ran et al. [SGS14] proposed an algorithm to detect reflec-
tional symmetries in objects with large missing geometry.
The algorithm finds symmetric correspondences, which are
subsequently used to produce candidate reflectional planes.
The limitation of all the aforementioned approaches lies in
the use of features, which are not guaranteed to exist in
many practical object examples. The method proposed in
this paper does not rely on the presence of features in the in-
put shape and can be applied directly on unstructured point
clouds, making our algorithm more general.

Our work is also related to more general methods that
aim to detect symmetries on 3D data. A comprehensive ex-
position of this subject can be found in the survey by Mi-
tra et al. [MPWC13]. In the case of global symmetry de-
tection, many approaches have been studied such as ex-
haustive search in rotational space [ZPA95], spherical har-
monics coefficients [KFR04, KKP13] and 3D Pseudo-polar
Fourier Transform [BAK10]. More recently, Korman et
al. [KLAB15] devised a global algorithm to approximately
find most of the symmetries of a 3D object with theoreti-
cal guarantees. The problem with these approaches is the
assumption that the object is complete and the centroid of
the object is a fixed point of the symmetries. It is clear that
with incomplete objects, the centroid of the real object is not
known, and therefore the problem of detecting symmetries
is harder. In this direction, methods that use local informa-
tion have been devised. Some interesting approaches include
voting scheme of local features [MGP06,LCDF10,XZJ∗12]
and graph matching [THW∗14].
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3. Partial and Approximate Symmetry Detection

At the core of our completion pipeline is a new approach for
the detection of partial symmetries. In this section we first
present a mathematical formulation of the problem, based
on sparsity-inducing norms, and then we present a method
to solve it efficiently, based on a robust RANdom SAmple

Consensus (RANSAC) algorithm.

3.1. Mathematical Formulation

We say that a geometric object M is symmetric with respect
to a transformation T , if M = T (M). However, very few nat-
ural or man-made objects exhibit a perfect symmetry that
follows this very strict definition; most of the time, there are
deviations from a precise symmetry transformation. To en-
able a more general definition, that encompasses these cases
of approximate symmetry, we introduce a distance function
d(X ,Y ) that measures the distance between object X and Y .
We can now state that two objects are approximately sym-
metrical if d(M,T (M))≤ ε.

There are many choices for the distance function d. As
discussed in the recent survey by Mitra et al. [MPWC13],
most methods use variants of squared or Hausdorff dis-
tances. In our approach, since we rely on the symmetry for
the completion of a partial object, we use a distance function
that measures the amount of overlap between the surface M

and T (M). To this end, we define the vector of residual dis-

tances z ∈ R
n, whose elements are defined as:

zi(T ) = φ(T (xi),M), xi ∈ M

The overlap can then be measured as the ℓ0-norm of the
residual vector z between the two surfaces, giving the fol-
lowing distance definition:

d(M,T (M)) = ‖z‖0, (1)

where the ℓ0-norm ‖.‖0 counts the number of non-zero el-
ements in a vector and the function φ(x,M) measures the
distance of an arbitrary point x ∈ R

3 to the surface M. In
particular, φ(x,M) is defined as a binary metric, which is
one for the points in space whose distance to the surface M

is lower than a threshold ε and zero otherwise. Such a metric
is commonly used in Largest Common Pointset (LCP) prob-
lems, when the ℓ0-norm is used instead of the ℓ2 one.

In the context of object completion, we are only interested
in detecting partial symmetries. In particular, the objects M

and T (M) should not have a complete overlap, in order to use
the non-overlapping points for the completion of the final
shape. We can formulate this requirement as the following
minimization problem:

arg min
T

d(M,T (M)),

subject to d(M,T (M))/n ≥ k,
(2)

where n is the total number of points in surface M and the pa-
rameter k controls the minimum percentage (or fraction) of

Figure 1: k-sparse registration maximizes the sparsity of the

vector of residual distances between two surfaces, but intro-

duces the constraint that at least k% of the elements should

be non-zero. For k = 0, the result is equivalent to standard

registration. For k > 0, the method enforces partial overlap,

even for identical surfaces.

non-overlapping points in the detected symmetry. In prac-
tice, this equation maximizes the sparsity (number of zero
elements) of the residual vector z, but also keeps at least
k−percent non-zero elements. We use the term k-sparse to
refer to a vector with these properties.

3.2. k-Sparse Optimization

The key observation of our approach is that Equation 2 de-
scribes the alignment of the input surface with a transformed
copy of itself. By keeping the alignment transformation rigid
(rotation and translation), we can detect symmetries by us-
ing well-known global rigid registration algorithms, with the
additional modification that at least k-percent of the surface
points should not be overlapping. Reflectional symmetries
can be handled similarly, by registering the input object with
the reflection of itself.

Based on this simple observation, we solve Equation 2
using the well-known Super4PCS method [MAM14], a fast
global registration algorithm for point sets, which runs in op-
timal linear time and is robust to outliers. Super4PCS first se-
lects a random set B of 4-points, called a basis, in the source
surface and then efficiently extracts a list of all 4-point sets
in the target surface that are approximately congruent with
B. For each set of congruent 4-points in this list, a candidate
transformation which aligns these points with the basis B is
computed analytically [Ume91, ELF97] and then tested for
validity using a voting scheme. In this validation procedure,
the points of the input surface are transformed according to
the candidate transformation and then the distance is com-
puted according to Equation 1.

Parameter Sensitivity. In order to take our constraint into
account (keep at least k-percent non-zero elements), the most
trivial approach is to simply discard all candidate transfor-
mations for which the distance d(M,T (M)) is less than the
parameter k. This approach effectively enforces partial over-
lap in the registered surfaces, as shown in Figure 1, and the
computed partial symmetry transformation can be used for
the completion of the input object. However, in our experi-
ments we have found that this approach leads to very high

c© 2015 The Author(s)

Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



P. Mavridis, I. Sipiran, A. Andreadis & G. Papaioannou / Object Completion using k-Sparse Optimization

Figure 2: An overview of our object completion pipeline. An

optimization method first detects the partial symmetry with

the highest score, the input object is iteratively replicated

based on this symmetry, global error relaxation corrects the

accumulated errors and non-rigid registration applies local

deformations in order to handle approximate symmetry.

parameter sensitivity, where k needs to be manually tweaked
depending on the input dataset, in order to compute the de-
sired symmetry.

A much more robust solution is to discard the candidate
transformations Tc which are close to the optimal alignment
transformation Topt and satisfy the following inequality:

σ(Tc,Topt)≤ εt ,

where the function σ(Tc,Topt) is a distance metric between
two transformation matrices and εt is a user defined param-
eter. In this approach, k is not directly specified, but it is
implied by the parameter εt , which enforces the amount of
partial overlap. Various metrics can be used for the function
σ(Tc,Topt). The metric that we have used in our experiments
computes the Euclidian norm between the two vectors that
correspond to the elements of the two transformation matri-
ces, when the size of the input object is normalized. In our
experiments we have found that this approach is not sensitive
to the parameter εt , especially when working with feature-
rich objects with prominent geometric features. In fact, most
examples in this paper use a value of εt = 0.15.

4. Completion Pipeline

The registration-based partial symmetry detection approach
that we have described in the previous section is used as part
of a larger pipeline that predicts the missing parts of an ob-
ject. An overview of this pipeline is shown in Figure 2. In
the remainder of this section we describe each one of the
processing steps in more detail.

4.1. Iterative Replication

After detecting the partial symmetry transformation T , the
input object M0 and T (M0) are merged, in order to form
a new object (M′ = M0 ∪T (M0)). The main idea of our ap-
proach is that some of the missing regions in M0 will be com-
pleted with information from T (M0). However, M′ might
still have some parts missing. In this case, we use an itera-
tive completion scheme, defined by the following formula:

Figure 3: Iterative completion of a partially reassembled

cultural heritage object using our algorithm. Our method

has properly detected the underlying discrete rotational sym-

metry of the embrasure shape and progressively fills the

missing parts, until the method converges.

Mk = Mk−1 ∪T
k(M0), k ≥ 1, (3)

where Mk denotes the completed object after iteration k. An
example of this iterative procedure is shown in Figure 3.

The algorithm stops when the prediction converges
(d(Mk,Mk−1)< ε, where d is defined in Equation 1) or after
a user-defined amount of iterations. Convergence can be ex-
pected only for objects that exhibit rotational or reflectional
symmetries. For objects with translational symmetries, such
as a segment of a fence (see Fig. 9-left), a maximum number
of iterations should be set.

Using this iterative completion scheme, our algorithm
needs to detect the desired partial symmetry transformation
T only once, and this information is reused in all subsequent
iterations. Therefore, the cost of each additional iteration is
minimal.

4.2. Global Error Relaxation

The partial symmetry transformation T , which is computed
with the algorithm in Section 3.2, aligns the input object M0

with one part of the replicated object T (M0). However, this
transformation might include an alignment error, which is
accumulated and propagated after each iteration of our com-
pletion scheme defined in Equation 3. This can create large
problems in rotationally symmetric objects, where the first
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Figure 4: Completion of a pottery vessel from a single

partial scan using our approach. After multiple iterations,

alignment errors are accumulated and propagated in the

replicated geometry. A global error relaxation approach

(multi-view ICP) is used to improve the alignment.

and the last repeated segments might not align properly, as
shown in Figure 4. For this reason, we perform a global error

relaxation by applying a multi-view rigid Iterative Closest

Point algorithm [CM92, BM92]. This step highly improves
the alignment of the replicated geometry.

4.3. Non-Rigid Alignment

Many natural or man-made objects exhibit an approximate
symmetry, due to deviations in the biological growth, impre-
cisions in the manufacturing process or stochastic fluctua-
tions in physical processes. In such cases, the rigid symme-
try transformation T cannot perfectly align the overlapping
parts of the input object M0 and T (M0). A typical example is
shown in Figure 5, where our algorithm is used for the com-
pletion of a chair, which is not perfectly symmetric, thus the
replicated geometry is not aligned correctly with the input
one. To better handle these cases, we introduce a non-rigid
registration method, after the global error relaxation that we
have previously described. This step, deforms the replicated
geometry in order to better match the input data set, improv-
ing the reliability of our approach in cases of approximate
symmetry.

Various non-rigid registration methods in the bibliogra-
phy can be used. In our implementation, we use an adapta-
tion of the deformation model that was described by Pauly
et al. [PMG∗05], with improvements in the handling of large
datasets and in the correspondence determination. To better
handle large data sets (dense point clouds), the desired de-
formation is first computed in a low resolution version of the
input surface, which is generated using uniform Poisson sub-
sampling, and then is transferred to the full resolution data
set. In order to improve the quality of the closest-point cor-
respondences, we use an iterative rigidity relaxation scheme
[LSP08], where the desired deformation is computed over
multiple iterations, starting with a high rigidity value, which
is then relaxed in the subsequent iterations.

Figure 5: Completion of a partial chair object with our

method. Many objects exhibit approximate symmetries,

which create alignment errors in the replicated geometry.

Our approach properly handles these cases using non-rigid

registration.

Figure 6: Successful completion of a cultural heritage ob-

ject. Left: The original object is damaged and hevily eroded,

especially in the region highlighted by the red square. Right:

Our method properly detects the underlying reflectional

symmetry of the object and restores the damaged parts by

replicating the geometry of the intact regions.

5. Results

In this section we demonstrate our algorithm in the com-
pletion of cultural heritage objects and partial 3D scans with
varying levels of partiality. We also evaluate the performance
of our method for these tasks.

Since many cultural heritage objects exhibit some form of
symmetry, one of the main motivations of our work was to
exploit this fact in order to complete any potentially miss-
ing parts or restore heavily eroded surfaces. In this context,
Figure 3 demonstrates how our algorithm can properly de-
tect the discrete rotational symmetry in the partial embra-

sure shape and progressively complete the object after three
iterations. Similarly, in Figure 6 our algorithm exploits the
reflectional symmetry of the column base shape, in order to
restore a heavily damaged or eroded region. These two ob-
jects were scanned from the archeological site of the Nidaros
Cathedral in Trondheim. In Figure 7 we demonstrate our al-
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Figure 7: Completion of partially reassembled objects. Our

method handles both smooth feature-less and feature-rich

shapes and successfully completes the missing parts.

gorithm in the completion of additional partially reassem-
bled objects. These experiments indicate that our method can
properly handle both feature-rich and also smooth feature-
less surfaces.

The reassembled objects that we examine in this section
were broken into multiple parts and the datasets that we
use are the direct output from the automatic fragment re-
assembly algorithm that was presented by Mavridis et al.
[MAP15], without any preprocessing. This means that the
internal fracture regions that connect the broken parts re-
main in the input dataset and are treated as outliers by our
algorithm. This is a good demonstration of the robustness of
our method. In contrast, the method proposed by Sipiran et
al. [SGS14], requires a preprocessing step, in order to elim-
inate the internal contact surfaces and produce a manifold
mesh.

It is worth noting that, when the input dataset includes
damaged or eroded surfaces, we disable the non-rigid defor-
mation stage in our pipeline. This is required, because the
desired behaviour for the replicated geometry is to cover,
and thus repair, any missing or eroded parts. In contrast, if
the non-rigid deformation is enabled, the replicated geome-
try will be deformed in order to better match the underlying
damaged parts, which defeats the purpose of the restoration.
For this reason, the non-rigid registration is only enabled
when the input dataset consists of partial 3D scans.

A similar application of our method is the completion of
partial 3D scans. In Figures 4 and 8 we demonstrate the re-
sults of our algorithm in the completion of pottery vessels of
various shapes from a single partial scan. The input partial
scans cover only 20 to 30% of the complete object. Our algo-
rithm properly detects the continuous rotational symmetry in
the input objects and provides plausible completion results.
It is worth noting that the completed pottery objects retain
the details and irregularities of the input scans, which are
not perfect surfaces of revolution. This completion approach
for pottery objects is more general and provides more plausi-

Figure 8: Completion of a pottery vessel from a single par-

tial scan. Even though the input scan covers only roughly

30% of the complete object, our approach detects the un-

derlying rotational symmetry and successfully completes the

missing geometry.

ble results than previous methods [CM02] that extract a pro-
file curve and a symmetry axis from the input data and pre-
dict the missing shape using surfaces of revolution. Figure
5 presents the successful completion of a chair object using
reflectional symmetry. Figure 9 demonstrates our method on
the completion of various partial shapes. It should be noted
that, while only the fence example uses a purely transla-
tional symmetry, even the rotational and reflectional exam-
ples include a translational component in the calculated par-
tial symmetries, because the centroid of the incomplete input
is not the same as the centroid of the complete shape.

In Figure 10 we test our method in the completion of a
wheel-cap object with varying degrees of partiality. When
operating with fewer data, more iterations are required by
our algorithm to compute the final object and as a result, the
accumulated registration errors are higher. This is reflected
in the RMS error measurements against the ground truth ob-
ject. In practice, even when only 25% of the desirable object
is provided as input, our method provides plausible comple-
tion results.

In Figure 10 we also provide a comparison with another
symmetry-based completion method, proposed by Sipiran et
al. [SGS14]. This approach automatically detects and uses
the highest scoring symmetry plane to complete the missing
part of an object. For the 25% and 50% partiality cases, this
method augments the input data, but the object is still not
complete. In this case, a natural choice is to apply the algo-
rithm iteratively, until the object is completed. However, by
definition the resulting object after the first iteration is per-
fectly symmetric, thus the highest scoring symmetry plane
cannot be used to further augment the available data and
the method naturally fails. The same problem also prevents
the algorithm from working on the 75% partiality case. It is
clear that a symmetry plane with a lower score should be
used. Our approach can automatically select such plane us-
ing the “k-sparse” constraint, without relying on user input.
Furthermore, our approach is not limited to planar symme-
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Figure 9: Completion of various partial objects using our method. The insets show the partial input shapes. Translational

symmetry is used for the fence shape (three iterations), while the other examples use reflectional symmetry.

Figure 10: Completion of a partial wheel cap object with

varying degrees of partiality and comparison with [SGS14].

r denotes the Hausdorff RMS distance from the ground truth.

try, and can properly perform the completion based on the
rotational symmetry of the object.

Figure 11 explores the effect of parameter εt in the re-
sults. When operating on objects with prominent geometric
corners and features, our method is not sensitive to the pa-
rameter εt . On the other hand, for smooth surfaces, the effect
of εt is similar to the effect of the parameter k, as illustrated
in Figure 1. As an example, when operating on smooth pot-
tery scans, this parameter affects the number of iterations
required to get the complete object.

5.1. Performance

In most application of our algorithm, the completion of par-
tial objects can be performed offline, thus the runtime per-
formance was not the main priority of our research. Table 1

Input Shape εt =0.15 εt =0.35 εt =0.55

Figure 11: When operating on objects with prominent geo-

metric corners and features, our method is not sensitive to

the parameter εt ∈ [0,1]. For smooth objects, the behavior is

similar to the one illustrated in Figure 1.

Dataset # points Congruent Sets Run-time

Embrasure (Fig. 3) 496K 225K 47
Chair (Fig. 5) 209K 112K 64
Col-Base (Fig. 6) 260K 346K 77
Vessel (Fig. 8) 40K 56k 12

Table 1: Runtime performance in seconds of our symmetry

detection approach for datasets in this paper.

shows the processing time for the data sets presented in this
paper. While our method does not offer instantaneous com-
pletion, the overall processing times are practical. The run-
time performance heavily depends on the number of points
in the input dataset and the number of congruent 4-point sets
that are detected during the symmetry detection. All mea-
surements were performed on an Intel Core i7-3820 CPU at
3.6GHz using a single processing thread.

5.2. Discussion and Limitations

Completion of the remaining holes. A common limitation
of all completion methods that are based on self-similarity
is that they cannot reproduce details or geometric structures
that are completely missing from the input. In the example
shown in Figure 12, the lower part of the vessel is completely
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missing from the input partial scan, thus it is also missing
from the prediction that was computed with our symmetry-
based completion algorithm.

To better handle such cases, our approach can be com-
bined with traditional template-based completion, in order
to fill any remaining missing parts using information from a
similar template object. This requires non-rigidly deforming
the template in order to match the output of the symmetry-
based completion. Our system already incorporates a non-
rigid registration component (Section 4.3), and this step can
be performed by the same algorithm. The template object
can be either provided manually or retrieved from a database
of reference objects [SPS14].

When a template object is not available, a smoothness
prior based method, such as Poisson reconstruction, can be
used instead. Our symmetry-based completion is orthogonal
to these approaches, and their combination produces a more
reliable pipeline, that is able to properly handle a wider va-
riety of input cases.

Semi-automatic completion. Equation 2 defines a global
optimization problem that searches for the best (in terms of
the residual distance - Equation 1) symmetry transformation
that meets the specified constraints. However, it might be de-
sirable to find more than one symmetry transformations and
have the user manually select the one that is more appro-
priate for the specific object completion task. For example,
this approach can provide more completion options to a cul-
tural heritage expert. To this end, Super4PCS can be trivially
modified to return the N best candidate transformations that
meet the constraints, instead of returning only the first one,
with the additional constraint that the distance between the
returned transformations should be at least εt . All comple-
tion results in this paper were computed with the automatic
approach.

Selective Replication. A limitation of our approach is that
the iterative replication scheme that we have described in
Equation 3 replicates the whole input, restricting our method
to the completion of globally symmetric objects. However,
in some cases, only parts of the objects should be replicated,
e.g. to avoid repeating the handles or the spout of a ves-
sel. To properly handle these cases of partially symmetric
objects, our approach can be combined with a segmenta-
tion algorithm, in order to replicate only specific segments
of the input. The selection of the segments that should be
replicated can be either based on user input [GTB14], or
can be determined automatically for some types of input ob-
jects [HKG11].

Feature-driven alignment. Our partial and approximate
symmetry detection algorithm is based on a modified fea-
tureless registration algorithm (Section 3.2). The fact that
we are not using features makes our algorithm suitable for
use in smooth featureless surfaces, such as the ones often
found in pottery, and also greatly simplifies the implemen-
tation. However, the use of features can potentially reduce

Figure 12: Top: Completion of a pottery vessel from a sin-

gle scan. Bottom: Symmetry-based completion cannot re-

produce the lower part of this vessel, since it is completely

missing from the input. Our method can be combined with

template-based completion to fill the remaining parts.

the search space and improve the overall performance, when
operating on feature-rich surfaces. Furthermore, features can
further improve the alignment of the replicated geometry,
when the desired local minima depend on small geometric
details that can be potentially missed by our featureless vot-
ing scheme. To better handle these cases, an interesting di-
rection of research for the future is to take advantage of fea-
tures in our completion pipeline.

6. Conclusions

We have presented a new method for the completion of par-
tial 3D objects, which is based on the detection of partial and
approximate symmetries. The proposed algorithm uniformly
exploits translational, rotational and reflectional symmetries
and provides reliable completion results, even when more
than half of the target object is missing. We have demon-
strated that our approach is suitable for the completion of in-
complete cultural heritage objects and partial 3D scans with
varying levels of partiality.
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