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Partial 3D object retrieval has attracted intense research efforts due to its potential for a wide range of
applications, such as 3D object repair and predictive digitization. This work introduces a partial 3D object
retrieval method, applicable on both point clouds and structured 3D models, which is based on a shape
matching scheme combining local shape descriptors with their Fisher encodings. Experiments on the
SHREC 2013 large-scale benchmark dataset for partial object retrieval, as well as on the publicly available
Hampson pottery dataset, demonstrate that the proposed method outperforms seven recently evaluated
partial retrieval methods.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Several methods have been proposed for partial 3D object retrieval
(P3DOR) in the last five years [1]. Still, as noted in the recent com-
parative study of Sipiran et al. [2], the problem is very challenging and
far from being solved. Apart from limitations in retrieval performance,
most existing P3DOR methods require structured 3D data as input,
despite the fact that a variety of sensors (e.g. Velodyne spinning
LIDAR) provide their output in point cloud form.

P3DOR is usually based on shape matching in a local fashion.
Such an approach is motivated by the observation that a partial
query and its corresponding complete model are by definition
expected to be locally similar. However, apart from localized shape
information, the global shape of each partial query is intuitively
expected to provide an additional cue for P3DOR. The bag-of-visual-
words (BoVW) framework provides a tool for deriving global shape
representations from local shape descriptors and has already been
successfully employed for global or partial 3D object retrieval [3,4].

Despite their advantages, the existing BoVW-based P3DOR
methods [1] have not sufficiently addressed the partiality of the
query object since they tend to uniformly consider the frequency of
occurrence of all available codewords. However, codewords char-
acterizing a complete 3D model may not characterize its associated
partial query, as schematically described in Fig. 1. Note that apart
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from the case illustrated in Fig. 1, where some codewords associated
with the target model are completely absent from the partial query,
another potential case considered concerns some codewords with a
frequency of occurrence which differs between the partial query
and the target model. A more selective weighting of codeword
distribution, adapted to the partiality of each query, is expected to
enhance the performance in the partial retrieval task.

Lavoué [4] introduced a BoVW-based P3DOR alternative, which
combines the standard and the spatially sensitive BoVW approach.
However, this method relies on the basic k-means BoVW variant,
whereas it employs a simple L1-based distance for shape matching,
which uniformly considers the frequency of occurrence of all
available codewords. Bronstein et al. [3] proposed another spatially
sensitive BoVW-based P3DOR method which employs the scale
invariant heat kernel signature (SI-HKS) [5] descriptor. Instead of
using uniform distance metrics, similarity-sensitive hashing (SSH) is
used, in order to adjust weighting by considering the training set as
a whole. Still, such an approach is not adaptive to the codeword
frequency of occurrence in each specific partial query. Moreover,
both methods of Lavoué and Bronstein et al. require structured
query input and cannot be applied in the case of point clouds,
without employing a point cloud-to-mesh conversion stage.

The BoVW-based work of Li et al. [6] recently employed a
scheme for adaptive weighting of shape distance terms related to
multiple descriptors, which is based on particle swarm optimiza-
tion (PSO) [7]. In this scheme, PSO is performed offline and
accordingly the resulting weights are not adapted to the codeword
g of differential fast point feature histograms for partial 3D
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Fig. 1. Some visual words of the target model (e.g. red square) can be under-
represented in the partial queries. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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distribution of each particular partial query. Moreover, the weights
determined by PSO are only locally optimal [8].

Fisher encoding [9,10] improves the retrieval performance over
standard BoVW, by means of difference encoding and subtracting the
mean of a Gaussian fit to all observations. The resulting measures
comprise the Fisher vector, which has been shown to provide a
generalized, enhanced version of a variant of k-means-based BoVW:
the vector of locally aggregated descriptors (VLAD) [11]. As demon-
strated by Jegou et al. [11], information which is not distinctive for
each sample (i.e. it is also shared by other samples) is approximately
discarded from the Fisher vector. Moreover, Fisher encoding requires
much smaller vocabularies and has been associated with enhanced
retrieval performance [11,12]. It has also been supported in a recent
comparative study [13], when compared to the basic k-means-based
BoVW and the support vector encoding [14].

The proposed P3DOR method, which can be applied on both
point clouds and structured 3D models, is based on a hybrid shape
matching scheme, defined so as to account for both local and
global shape similarities, as well as to address the partiality of the
query object. We introduce the differential fast point feature his-
togram (dFPFH), which extends the FPFH point cloud descriptor
[15] in order to more accurately capture local geometry transitions.
Global shape similarity is estimated by means of a weighted dis-
tance of Fisher vectors. A non-uniform weighting of both local and
global distances is employed in order to reduce the influence of
the most dissimilar pairs, following the intuition that certain parts
or codewords of the target object can be missing or under-
represented in the partial query. Overall, local and global dis-
tances, which are derived for multiple scales, are combined to
obtain a ranked list of the most similar complete 3D objects.

Experimental evaluation on the SHREC 2013 large-scale bench-
mark dataset for partial object retrieval [16] supports the proposed
method against five recently evaluated P3DOR methods [2], with
respect to standard retrieval performance measures. Additional
experimentation on the publicly available Hampson pottery dataset
provides a real-world application scenario in the cultural heritage
(CH) domain, along with extra favorable comparisons with two
recent P3DOR applications [17,18], that have been evaluated on this
dataset. Two preliminary conference versions of this work have
been accepted for publication. A variant which only uses global
Fisher vectors and uniform weighting for P3DOR [17] and a variant
which uses both local descriptors and Fisher vectors [19]. Compared
to the latter version, this paper provides a more complete pre-
sentation of the related literature and methodology, whereas it
incorporates more detailed experimentation and analysis, including
evaluation of computational cost and additional experiments with
real partial queries, obtained by the Breuckmann Optoscan scanner.
Please cite this article as: M.A. Savelonas, et al., Fisher encodin
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The remainder of this paper is organized as follows: Section 2
presents related work on local shape descriptors and P3DOR.
Sections 3 and 4 describe the shape representation and matching
components of the proposed method, respectively. The experi-
mental evaluation including comparisons with state-of-the-art
P3DOR methods is presented in Section 5. Conclusions and
future research directions are discussed in Section 6.
2. Related work

This section provides an overview of local shape descriptors, as
well as of state-of-the-art in P3DOR.

2.1. Local shape descriptors

There has already been a considerable amount of research in
local 3D shape descriptors. One of the most popular is the spin-
image [20], which has been widely applied on both structured and
unstructured data. A spin-image of an oriented point is a 2D
representation of its surrounding surface, which is constructed on
a pose-invariant 2D coordinate system by accumulating the coor-
dinates of neighboring points. However, Steder et al. [21] have
shown that range value patches are more reliable than spin-
images. Spin-images also do not explicitly take empty space into
account. For example, in the case of a square plane, the spin
images for points in the center and for corners would be identical.

Ohbuchi et al. [22] introduced the multiple orientation depth
Fourier transform descriptor (MODFD) in the context of an
appearance-based 3D object retrieval method. MODFD encompasses
model projections from 42 viewpoints so as to cover all possible view
aspects. The method of Ohbuchi et al. is designed for ill-defined model
representations, most notable of which is the polygon soup.

Normal aligned radial features (NARF) have been introduced by
Steder et al. [23] as an interest point extraction method, along
with a feature descriptor in 3D range data. The interest point
extraction method has been designed with two specific goals:
(i) the selected points are supposed to be in positions where the
surface is stable, so as to ensure a robust estimation of the normal,
and where there are sufficient changes in the immediate vicinity,
(ii) the outer shapes of objects as seen from a certain perspective
are used, considering that the focus is on partial views.

Kernel descriptors provide a principled approach for converting
pixel attributes to patch-level features. They were initially proposed
for RGB images, and have not been used for depth maps and point
clouds until the work of Bo et al. [24]. In this work, the match kernel
framework involves the following main steps: (i) pixel attributes are
defined, (ii) match kernels are designed to measure the similarities
of image patches, based on the defined attributes, and (iii)
approximate, low-dimensional match kernels are determined.
Besides using gradient and local binary patterns in their framework,
the authors have also developed size, PCA and spin-based kernel
descriptors, which capture diverse yet complementary cues.

Point feature histograms (PFH) [25] have been introduced as
point cloud descriptors. They are calculated over a neighborhood
centered at each point of interest, encoding patterns of point
distances. This type of information is the closest one to point
coordinates, as provided in raw point cloud input data. PFH [25]
and its more efficient sibling, fast PFH (FPFH) [15], have been
proposed by Rusu et al. as pose invariant local shape descriptors,
which represent underlying surface model properties. They rely
upon geometrical relations between k nearest neighbors, defined
by means of 3D point coordinates (x, y, z) along with estimated
surface normals (nx, ny, nz).

Most local shape descriptors, with MODFD being an exception,
have not been initially proposed for 3D object retrieval. The most
g of differential fast point feature histograms for partial 3D
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usual application addressed is object recognition in scenes,
whereas PFH has been proposed for registration. In principle, there
is nothing prohibitive in applying the same descriptors for 3D
object retrieval.
2.2. Partial 3D object retrieval

Most P3DOR methods can be roughly classified as: (i) view-
based, with prominent examples in [26–28], (ii) part-based
[29,30], (iii) BoVW-based [3,4,6], and finally (iv) hybrid methods
combining these three main paradigms [18,31]. Five recent P3DOR
methods, encompassing elements of these categories, were
recently compared on SHREC 2013 large-scale partial retrieval
benchmark:

� Two methods incorporating 2D-3D alignment [32], as well as
entropy-based adaptive view clustering [33]. We refer to these
methods as ‘SBR2D-3D’ and ‘SBR-VC’, respectively. SBR2D-3D
employs a sketch-based algorithm based on 3D model features
and 2D relative shape matching. For each target model, it
precomputes the view context and relative shape context fea-
tures of a set of densely sampled views. For the query model, it
generates its silhouette feature view and then similarly computes
its view context and relative shape context features. Based on the
view context of the silhouette feature view and the sample views
of the query model, it performs a query-target alignment by
short listing several model views to correspond with the silhou-
ette feature view. Finally, query-target matching is based on the
shape context matching between the silhouette feature view of
the query model and the candidate sample views of the target 3D
model. SBR-VC employs a visual complexity metric, which is
based on the viewpoint entropy distribution of multiple sample
views of the 3D model. The metric is used to adaptively decide
the number of the representative views to perform fuzzy k-
means view clustering. This is followed by a more accurate and
parallel relative shape context matching.

� Twomethods using data-aware partitioning [34] and BoVW [2]. We
refer to these methods as ‘Data-aware’ and ‘S-BoVW’, respectively.
The data-aware method employs feature detection by means of
Harris 3D keypoints in the Euclidean space using adaptive cluster-
ing [35]. The minimum enclosing spheres of the detected keypoints
is used to define model partitions. Both local and global shape
representations are derived by means of the DESIRE descriptor [36],
with the former derived from shape partitions and the latter
derived from overall shape. S-BoVW starts from local point cloud
descriptors, which include rectangular and polar spin images [37],
shape contexts [38] and FPFH [15], in order to calculate the
codewords using k-means clustering.

� A method proposed in [16], which uses spin images and
signature quadratic form distance. We refer to this method as
‘SQFD’. SQFD starts from Harris 3D keypoints to build a feature
set composed of normalized local descriptors. Next, a local
clustering algorithm [39] is applied to obtain a set of represen-
tative descriptors. Shape matching is performed with the
signature quadratic form distance.

In addition, two recent P3DOR methods have been applied on
the publicly available Hampson pottery dataset:

� A panoramic, view-based method, proposed in [18]. We refer to
this method as ‘Panoramic’. Panoramic uses an enhanced
variant of the dense scale invariant feature transform (SIFT)
descriptor [40], calculated on panoramic views of each 3D
model. The resulting feature vectors are encoded by means of
k-means-based BoVW.
Please cite this article as: M.A. Savelonas, et al., Fisher encodin
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� A method proposed in [17], which is a preliminary conference
version of this work and addresses partial retrieval by means of
Fisher encoding in a purely global fashion. We refer to this
method as ‘Global Fisher’. Global Fisher applies an adaptive
variant of the FPFH, which depends on point cloud density,
followed by Fisher encoding.
3. Shape representation

PFH represents a point cloud in a local fashion by analyzing the
relationships between the normals of pairs of neighboring points. It
has been originally defined as follows: (i) for each point p, all of its
neighbors enclosed in the sphere of a given radius r are selected
(r-neighborhood), (ii) for every pair of points pi and pj (ia j) in the
r-neighborhood of p and their PCA-estimated normals ni and nj (pi
being the point with a smaller angle between its associated normal
and the line connecting the points) [41], a Darboux uvn frame
(u¼ ni, v¼ ðpi�pjÞ � u, n¼ u� v) is defined and the angular var-
iations of ni and nj are computed as follows: α¼ u � nj,
ϕ¼ u � ðpj�piÞ=Jpj�pi J , θ¼ arctanðw � nj;u � njÞ. The histograms
which constitute the PFH descriptor have b binning subdivisions for
each one of α, ϕ and θ angle, where b is implementation-
dependent. This leads to a histogram size equal to 3b.

The fast point feature histogram (FPFH) [15] has been proposed in
order to accelerate PFH computations by employing a subset of
neighboring points for histogram calculation. For a given query point
pq, its single point feature histogram (SPFH) values are first estimated
by creating pairs between itself and its r-neighbors. This is repeated for
all points in the object, followed by re-weighting of the SPFH values
using the SPFH values of r-neighbors, in order to create the FPFH for pq.

In this work, FPFH is extended in order to capture local geo-
metric transitions by measuring the differences in feature histo-
grams, which are associated with concentric spheres. The pro-
posed FPFH extension, namely differential FPFH (dFPFH) has 6b
bins (the standard 3b bins associated with a concentric sphere of
radius r plus the histogram of 3b bins, which quantifies the tran-
sitions of FPFH in a ribbon around r):

dFPFHðqp; rÞ ¼ ½FPFHðqp; rÞ ΔFPFHðqp; rÞ� ð1Þ
where ΔFPFHðqp; rÞ ¼ FPFHðqp; routerÞ�FPFHðqp; rinnerÞ. Fig. 2 pro-
vides an intuitive explanation of dFPFH. In the case of the smooth
surface of the cup illustrated in Fig. 2(a), the FPFH histograms of
the two concentric spheres are rather similar, resulting in histo-
gram differences approximating zero. On the other hand, the
irregularity of the ant surface in Fig. 2(b) is reflected in much
larger differences of the FPFH histograms.

Each object may well be scanned using various types of scan-
ning equipment, from various distances or with different settings,
resulting in multiple point cloud densities. Aiming to alleviate the
effects of this variability on retrieval performance, we introduce
two extra preprocessing steps: (i) the input object is downsampled
with voxelized grid filtering, in which all points within a voxel are
approximated by their centroid. Multiscale information can be
derived by considering multiple voxel sizes, (ii) the neighborhood
radius r considered in dFPFH calculations is adaptively estimated
for each point cloud as a linear function of the mean point distance
over all r-neighborhoods. It should also been noted that dFPFH is
scale invariant, as is the case with its originating descriptor, PFH.
The latter has been shown by Rusu et al. [42].
4. Shape matching

The dFPFH-based shape representation described in the previous
section is used for shape matching. A hybrid scheme is proposed,
g of differential fast point feature histograms for partial 3D
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Fig. 2. A schematic representation of dFPFH: (a) smooth surfaces result in similar
FPFH histograms for the concentric spheres (FPFHðrouterÞ � FPFHðrinner Þ) and histo-
gram differences approximating zero, (b) irregular surfaces result in much larger
differences of the FPFH histograms.
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which incorporates the results of two distinct processes: (i) local shape
similarity assessment by averaging the minimum weighted distances
associated with pairs of dFPFH values calculated on the partial query
and the target object respectively, (ii) global shape similarity assess-
ment by means of a weighted distance of Fisher vectors.

4.1. Local shape similarity assessment

Aiming to assess the local similarity between the partial query
object Q and each complete object T from the repository, we define
the mean-minimum distance dm as follows:

dmðQ ; TÞ ¼meanqp AQ ðmintp AT ðLd1ðqp; tpÞÞÞ ð2Þ

where qp is a point of Q, tp is a point of T, N and M denote the
number of points of Q and T, respectively, whereas Ld1 denotes the
Manhattan distance L1 between the dFPFH histograms of qp and tp.
This strategy is justified by considering that the similarity of the
partial query Q with T is not associated with the distance of his-
tograms of all possible pairs of points ðqp; tpÞ, but only with the
distance of pairs of histograms of similar points. The average of
this distance forms dm. We selected L1 over other distance alter-
natives (e.g. L2) based on experimentation.

In addition, considering that in Eq. (2) the minimum of Ld1 for
each qp depends on a single pair of points, we introduce the
weighted mean-minimum distance dmw, in which Ld1 is replaced
by a weighted average of the k smaller distances:

dmwðQ ; TÞ ¼mean
qp AQ

ð1=kÞ
X

i ¼ 1;2;…;k

wiLd1ðqp; tpðiÞÞ
" #

ð3Þ

where tp(i), i¼ 1;2;…; k are the first k points of object T, when all
points of T are sorted in increasing order with respect to their
distance from qp. The weights wi ¼ ð1�ði=kÞÞ are linearly decreas-
ing, starting from the pair with the smaller distance (i¼1). This
weighting amplifies the influence of the more similar pairs of
points, among the selected k pairs, whereas it ensures a smooth
transition to zero, which is the weight associated to those points
which are not among the k selected. We selected linearly
decreasing weighting over other alternatives (e.g. quadratic
decrease), since it is associated with less calculations and leads to
comparable results, as found after experimentation.

4.2. Global shape similarity assessment

Aiming to assess the global similarity between the partial query
object Q and each object T from the repository, we employ Fisher
encoding, extending the purely global Fisher approach that has been
proposed in [17]. The use of Fisher encoding instead of standard BoVW
Please cite this article as: M.A. Savelonas, et al., Fisher encodin
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approaches has been experimentally supported in a recent compara-
tive study [13]. A Gaussian mixture model (GMM) is estimated from
local shape descriptors using an expectation maximization algorithm.
The resulting GMM defines the visual codebook used [9,10].

Given a set of N dFPFH descriptors x1;…; xNARD, which are used
for training, a GMM pðxjθÞ is the probability density on RD given by

pðxjθÞ ¼
XK
k ¼ 1

pðxjμk;ΣkÞπk ð4Þ

pðxjμk;ΣkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞD detΣk

q e� 1
2ðx�μkÞTΣ � 1

k ðx�μkÞ ð5Þ

where K is the number of Gaussian components used, θ is the
vector of model parameters ðπ1;μ1;Σ1;…;πK ;μK ;ΣK Þ, including the
prior probability values πkARþ (which sum to one), the means
μkARD, and the positive definite covariance matrices ΣkARD�D of
each Gaussian component. The covariance matrices are assumed to
be diagonal, so that the GMM is fully specified by ð2Dþ1ÞK scalar
parameters. Soft data-to-cluster assignments extend the binary
assignments to k-means in basic BoVW and can be defined as

qki ¼
pðxi jμk;ΣkÞπkPK
j ¼ 1 pðxi jμj;Σ jÞπj

; k¼ 1;…;K ð6Þ

Fisher encoding [10] captures the average first- and second-
order differences between the local descriptors and the centers of
a GMM, which can be thought of as a visual codebook. For the kth
GMM, where k¼ 1;…;K , the following vectors are defined:

uk ¼
1

N
ffiffiffiffiffiffi
πk

p
XN
i ¼ 1

qikΣ
�1=2
k ðxi�μkÞ ð7Þ

vk ¼
1

N
ffiffiffiffiffiffiffiffi
2πk

p XN
i ¼ 1

qik½ðxi�μkÞΣ �1
k ðxi�μkÞ�1� ð8Þ

In uk and vk, the approximate location of the descriptors in each
region is encoded, relatively to the mean and the variance, respectively.
The division by

ffiffiffiffiffiffiffiffi
2πk

p
can be interpreted as a BoVW inverse document

frequency term: the weights of frequent descriptors are reduced [11].
The Fisher encoding of the set of local feature vectors is then

given by the concatenation of uk and vk for all K components,
giving an encoding of size 2DK

f ¼ ½uT
1; v

T
1;…uT

K ; v
T
K � ð9Þ

In the case of the basic BoVW, 2D times fewer visual words are
required to obtain a vector of the same length.

Both vectors, uk and vk, have size equal to the size of the local
feature vector, i.e. 6b¼66, considering that b¼11 binning sub-
divisions are used. It can be derived from Eq. (9) that the resulting
Fisher vector f has size equal to 2� 66� K ¼ 132� K .

Intuitively, the originating complete object of Q and its most
similar complete object T are expected to have similar Fisher
vectors. Therefore, it is natural to assume that the most dissimilar
pairs of Fisher components between Q and T are associated with
the GMMs that are over-represented in those parts of T that are
missing from Q. Starting from this consideration, we define the
weighted Fisher vector distance dFw, in a similar fashion to dmw,
as:

dFwðQ ; TÞ ¼
 
1=KÞ

X
j ¼ 1;2;…;K

wf jLf1ðQ ðjÞ; TðjÞ
!

ð10Þ

where Lf1ðQ ðjÞ; TðjÞÞ is the L1 distance of the respective Fisher vec-
tors fQ ðjÞ, fT ðjÞ. The pairs ðfQ ðjÞ; fT ðjÞÞ are sorted in increasing order
with respect to their distance. The weights wf j ¼ ð1�ðj=KÞÞ are
linearly decreasing, starting from the pair with the smaller distance.
This weighting reduces the influence of the more dissimilar pairs of
g of differential fast point feature histograms for partial 3D
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Fig. 3. The pipeline of the proposed method.
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Fisher components in the distance calculation. As is the case with
Eqs. (2) and (3), the use in Eq. (10) of both L1 and linearly decreasing
weighting is supported by preliminary experimentation.

4.3. Hybrid shape similarity assessment

For each voxel size vs considered in the voxelized gridding fil-
tering step described in Section 3 (where s¼ 1;2…; S, with S being
the number of voxel sizes considered), the hybrid distance dhybridð
Q ; T ; sÞ is a weighted sum of dmw(s) and dFw(s), defined according
to Eqs. (2) and (10) by substituting dmw and dFw with dmw(s) and
dFw(s), respectively:

dhybridðQ ; T ; sÞ ¼wodmwðsÞþdFwðsÞ ð11Þ

where wo adjusts the relative influence of local and global shape
matching distances. The overall multiscale distance dmultiscale,
which is used to obtain a ranked list of complete 3D objects, is a
weighted sum:

dmultiscaleðQ ; TÞ ¼
X

s ¼ 1;2;…;S

wsdhybridðQ ; T ; sÞ ð12Þ

where the weights ws adjust the relative influence of each scale s
considered.

Fig. 3 shows the distinct components of the proposed pipeline
for partial 3D object retrieval.
Fig. 4. Samples of the SHREC 20
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5. Evaluation

Experiments are performed on two publicly available benchmark
datasets. The first dataset has been used in SHREC 2013 track for large
scale partial 3D object retrieval [16]. The target set has been created
from 360 shapes, organized into 20 classes of 18 objects per class. On
the other hand, the process of range scan acquisition from the objects
of the target set has been simulated in order to obtain a set of partial
views. This process results in 7200 queries, associated with varying
levels of partiality. Fig. 4 shows some samples from the target set of
SHREC 2013. Recently, a more extensive comparison of five state-of-
the-art methods has been performed on the same dataset [2].

The second benchmark dataset used for the evaluation is related to
the CH domain and consists of 3D pottery models originating from the
Virtual Hampson Museum collection (http://hampson.cast.uark.edu).
It is publicly available and has already been used for the evaluation of
two state-of-the-art methods [17,18]. The dataset consists of 384
models classified to 6 distinct geometrically defined classes (bottle,
bowl, jar, effigy, lithics and others), which can further be divided in 23,
more precisely defined, sub-classes. 21 partial queries have been
artificially created by slicing and cap filling complete 3D models. The
partial queries used in our experiments have a reduced surface com-
pared to the original 3D object, which is associated with 25% partiality.
Fig. 5 shows some examples of pottery models used in this dataset.
Apart from experiments with artificially created queries, additional
13 benchmark dataset [2].

g of differential fast point feature histograms for partial 3D
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Fig. 5. Example 3D models of the pottery dataset used (http://hampson.cast.uark.edu).
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experiments are performed with real queries, obtained with Breuck-
mann Optoscan scanner. For the creation of the real queries, derivative
vessels were constructed by a professional potter, using the Hampson
models as a template.

Experimental evaluation is based on precision–recall (P–R) plots and
five quantitative measures: nearest neighbor (NN), first tier (FT), second
tier (ST), discounted cumulative gain (DCG) and mean average precision
(MAP). More details on these measures can be found in [16,18].

The proposed method has been developed on a hybrid Matlab/
Cþþ architecture. The experiments have been performed on an
Intel Core i7 workstation, operating at 3.5 GHz with 16 GB of RAM.

Interestingly, it has been observed that by separately employ-
ing local and global shape similarity, the retrieval performance in
SHREC 2013 is significantly lower (FT approximately equal to 15%
and 18%, respectively) than the one obtained by the proposed
hybrid approach (FT 28%), verifying that complementary infor-
mation is derived from these distinct processes.

Based on preliminary experiments, parameter settings have been
determined as follows: the linear coefficients adaptively associating
the radii of the concentric spheres of dFPFH to the mean point dis-
tance are r¼ 2:7, router ¼ 13:6 and rinner ¼ 13:1, respectively (Eq. (1)).
In addition, k ¼ 3 (Eq. (3)) and K ¼ 10 GMMs were found to be
sufficient for the construction of the visual codebook, leading to Fisher
vectors of 2� 66� 10¼ 1320 components. k-means pre-clustering
by means of Lloyds' variant [43] has been used to initialize GMM
construction. The signed square root function has been applied to the
resulting Fisher vectors, followed by L2 normalization. The weight wo

(Eq. (11)) has been set to 0.4. Finally, the number of scales considered
is S¼3, with respective voxel sizes equal to 0.1, 0.3 and 0.5 and
weights ws ¼ 0:4; 1:0; and 0:4, respectively (Eq. (12)).

Based on our preliminary experiments, we also performed a
parameter sensitivity analysis. Fig. 6 presents the FT obtained for
experiments on both SHREC 2013 and Hampson, when K, k, wo and ro
vary. From Fig. 6 it can be derived that the optimal settings, as well as
the pattern of dependency, are rather consistent between the two
datasets. In the case of K and k, the optimal values are almost identical
(the slight differences in the optimal value of K are associated with
Please cite this article as: M.A. Savelonas, et al., Fisher encodin
object retrieval, Pattern Recognition (2016), http://dx.doi.org/10.1016
marginal effects on retrieval performance). It can also be derived that
the proposed method is not sensitive in the exact value of wo and ro,
since the FT obtained in both SHREC 2013 and Hampson, for a wide
range of values, allows the proposed method to outperform state-of-
the-art, as it can be seen by comparing: (i) the FT illustrated in Fig. 6e
and g, with the FT presented in Table 1 (comparisons with state-of-
the-art in SHREC 2013), (ii) the FT illustrated in Fig. 6f and h, with the
FT presented in Table 2 (comparisons with state-of-the-art in Hamp-
son). Moreover, as is the case for wo, we found that for triples of ws in
the range [0.1,1.0], the FT may change up to approximately 2%. Simi-
larly, router and rinner follow the same pattern with ro. Finally, we found
that weighting as defined in Eq. (3) and (10) allows a performance
boost of approximately 1.5–2.5% with respect to FT, when compared
with uniformly weighted L1-based retrieval. Overall, it can be derived
that when working with new datasets, the parameter settings used
here are expected to lead to nearly optimal retrieval performance.

Table 1 presents the retrieval performance, as quantified by NN, FT,
ST and MAP, which was obtained by the proposed method and five
state-of-the-art methods on SHREC 2013 benchmark dataset. It can be
noticed that the proposed method achieves the highest performance
with respect to all metrics. Fig. 7 illustrates the average P–R scores for
all retrieval methods. The proposed method and the data-aware
method obtain the highest precision values, with each of these two
methods having the advantage for different recall ranges.

Table 2 presents the retrieval performance, as quantified by NN,
FT, ST and DCG, which was obtained by the proposed method and
two state-of-the-art methods on the Hampson pottery dataset. It
should be noted that in this case we use DCG instead of MAP, since
this measure was used for the evaluation of the Panoramic [18]
and Global Fisher [1] methods. In addition, an accuracy of three
decimal digits is maintained, as in these works. Finally, we present
results obtained on queries associated with 25% partiality. The
proposed method achieves the highest retrieval performance with
respect to all measures considered. This is verified in Fig. 8, which
illustrates the average P–R scores for all retrieval methods.

Fig. 9 illustrates example ranked lists obtained in the case of
the Hampson pottery dataset.
g of differential fast point feature histograms for partial 3D
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Fig. 6. Retrieval performance (FT) obtained on SHREC 2013 and Hampson datasets, for varying values of: (a and b) K, (c and d) k, (e and f) wo and (g and h) ro.

Table 1
The results of the proposed method, along with 5 state-of-the-art methods on
SHREC 2013 benchmark dataset.

Method NN FT ST MAP

Proposed 0.3856 0.2772 0.2135 0.2851
SBR-2D-3D 0.3535 0.2290 0.1808 0.2455
SBR-VC 0.3218 0.2065 0.1638 0.2199
Data-aware 0.3457 0.2495 0.2088 0.2836
Polar spin images 0.0931 0.0809 0.0768 0.0968
SQFD 0.3108 0.2043 0.1576 0.1978

Table 2
The results of the proposed method, along with two state-of-the-art methods on
the Hampson pottery dataset.

Method NN FT ST DCG

Proposed 0.952 0.460 0.642 0.778
Global Fisher 0.952 0.320 0.461 0.694
Panoramic 0.619 0.416 0.626 0.721
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Experiments were also performed with 25 real queries
obtained by using the Breuckmann Optoscan scanner, in order to
demonstrate the applicability of the proposed method on a real
digitization scenario.1 Table 3 presents the retrieval performance
and Fig. 10 illustrates the average P–R scores obtained for both
1 This set will be publicly available.
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23-class and 6-class classifications. These results show that
although the proposed method outperforms state-of-the-art in
two benchmark datasets, still cannot obtain high retrieval perfor-
mance in a certain real-world scenario. In this respect, the remark
in the comparative study of Sipiran et al. [2], that P3DOR is very
challenging and open to future solutions, is still valid.

The time required for the offline calculation of Gaussian mixture
models depends on dataset size. In the case of Hampson pottery
dataset, this time is approximately 1 min. For each 3D model, local
descriptor calculation requires 781 ms, Fisher vectors calculation
g of differential fast point feature histograms for partial 3D
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requires 2749 ms, distance matrix calculation requires 482 ms and
the calculation of the ranked list requires 29 ms. In total, the online
process for each partial query is approximately 4 s.
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Fig. 7. Average P–R for all retrieval methods applied on SHREC 2013.
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Fig. 8. Average P–R for all retrieval methods applied on the Hampson pottery
dataset, for queries of 25% partiality.

Fig. 9. Example ranked lists obtained by the proposed 3D object retrieval method in the
upper row, whereas the corresponding top-6 objects retrieved are shown below.
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It should be stressed that unlike the methods applied in SHREC
2013 and the Panoramic method, which are mesh-based, Global Fisher
and the proposed method require only raw point cloud information.
6. Conclusions

This work presents a P3DOR method, applicable on both point
clouds and structured 3D models, which is based on a hybrid shape
matching scheme, incorporating both local and global shape similarities
for multiple scales. The main contributions of the proposed method
address both local shape descriptor and partial retrieval aspects:

� The newly proposed dFPFH descriptor, which extends the well-
known FPFH, in order to more accurately capture local geo-
metric transitions,

� The use of an adaptive radius for dFPFH neighborhood, which
depends on point cloud density,

� The use of a hybrid shape matching scheme, which incorporates
local information directly derived from local shape descriptors,
as well as global shape information derived from Fisher vectors,

� The definition of similarity that relies upon a weighted mean-
minimum distance, as well as upon a weighted Fisher vector
distance, both addressing the partiality of the 3D object query,

� The first application of Fisher encoding, instead of the popular
k-means-based BoVW, in 3D object retrieval.

The experimental evaluation of the proposed method on the
large-scale P3DOR benchmark dataset of SHREC 2013, as well as on
the Hampson pottery dataset leads to the following conclusions:
case of the Hampson pottery dataset. Examples of partial queries are shown in the

g of differential fast point feature histograms for partial 3D
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Table 3
Retrieval results of the proposed method on the Hampson pottery dataset with 25
real queries obtained by Breuckmann Optoscan scanner.

Method NN FT ST DCG

Proposed-6 0.641 0.351 0.554 0.712
Proposed-23 0.524 0.199 0.321 0.562
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Fig. 10. Average P–R of the proposed method applied on the Hampson pottery
dataset, for 25 queries obtained by Breuckmann Optoscan scanner. ‘Proposed-23’
and ‘Proposed-6’ correspond to 23-class and 6-class classification, respectively.
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� Local and global shape similarity information, derived in mul-
tiple scales, act in a complementary fashion, maximizing the
achieved retrieval performance when combined,

� The proposed P3DOR method outperforms state-of-the-art in terms
of retrieval performance, when applied in SHREC 2013 dataset,

� The proposed method outperforms two recent CH applications
of P3DOR, when applied in the Hampson pottery dataset.

Although the proposed method achieves state-of-the-art retrie-
val performance, the results remain far from perfect in absolute
numbers, especially in the case of partial scans obtained with
Breuckmann Optoscan scanner. In this respect, P3DOR remains a
very challenging problem, which is open to future solutions. Hybrid
retrieval methods combining multiple techniques for shape simi-
larity assessment provide a promising direction for P3DOR [2].
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