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Abstract
This work introduces a partial 3D object retrieval method, applicable on both meshes and point clouds, which
is based on a hybrid shape matching scheme combining local shape descriptors with global Fisher vectors. The
differential fast point feature histogram (dFPFH) is defined so as to extend the well-known FPFH descriptor
in order to capture local geometry transitions. Local shape similarity is quantified by averaging the minimum
weighted distances associated with pairs of dFPFH values calculated on the partial query and the target object.
Global shape similarity is derived by means of a weighted distance of Fisher vectors. Local and global distances
are derived for multiple scales and are being combined to obtain a ranked list of the most similar complete 3D
objects. Experiments on the large-scale benchmark dataset for partial object retrieval of the shape retrieval contest
(SHREC) 2013, as well as on the publicly available Hampson pottery dataset, support improved performance of
the proposed method against seven recently evaluated retrieval methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—

1. Introduction

The main challenge inherent in partial 3D object retrieval
relates to the difficulty in effectively quantifying the sim-
ilarity between a partial query and a complete 3D model.
Most partial 3D object retrieval methods rely on local shape
descriptors calculated over feature points, either dense, or
extracted by means of a salient point detector. Such an ap-
proach is suited to partial retrieval, considering that a par-
tial query and its originating complete model are intuitively
expected to be identical in a local fashion. Local shape de-
scriptors, apart from being used for the estimation of lo-
cal shape similarity, can also be employed in an order-
less fashion within the context of the bag of visual words
(BoVW) paradigm, so as to derive global shape signatures.
BoVW methods achieve state of the art performance in
3D object retrieval, with several major works appearing re-
cently [CDF∗04], [OD11], [STP13].

Fisher encoding [PD07] improves over the retrieval per-
formance of standard BoVW, by means of difference encod-
ing and subtracting the mean of a Gaussian fit to all obser-
vations. The resulting measures comprise the Fisher vector,
which facilitates the assessment of global shape similarity by

means of standard distance measures. This encoding can be
computed from much smaller vocabularies at a lower com-
putational cost [TGSS14]. It has also been supported in a
recent comparative study [CLVZ11], when compared to the
basic k-means/vector quantization or the support vector en-
coding [ZYZH10].

The proposed partial 3D object retrieval method, which
can be applied on both point clouds and meshes, is based on
a hybrid shape matching scheme, defined so as to account for
both local and global shape similarity, as well as to address
the partiality of the query object. We introduce the differ-
ential fast point feature histogram (dFPFH), which extends
the well-known FPFH descriptor [RBB09] in order to more
accurately capture local geometry transitions. Local shape
similarity is quantified by averaging the minimum weighted
distances associated with pairs of dFPFH values calculated
on the partial query and the target object. This strategy aims
to discard dissimilar dFPFH pairs, which can intuitively be
attributed to parts of the target object which are missing from
the partial query. On the other hand, global shape similarity
is derived by means of a weighted distance of Fisher vectors.
Weighting of both local and global distances is defined so as
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to reduce the influence of the most dissimilar pairs, follow-
ing once more the aforementioned intuition. Overall, local
and global distances, which are derived for multiple scales,
are being combined to obtain a ranked list of the most similar
complete 3D objects.

Experimental evaluation on the large-scale benchmark
dataset for partial object retrieval of the shape retrieval
contest (SHREC) 2013 [SMB∗13] support the proposed
method against five recently evaluated partial 3D object
retrieval methods [SMB∗14], with respect to standard re-
trieval performance measures. Additional experimentation
on the publicly available Hampson pottery dataset pro-
vides a real-world application scenario in the cultural her-
itage (CH) domain, along with extra favourable compar-
isons with two recent partial 3D object retrieval applica-
tions [SPS14], [SPK∗14], that have been evaluated on this
dataset.

2. Related Work

This section provides an overview of local shape descriptors,
as well as of state-of-the-art in partial 3D object retrieval.

2.1. Local shape descriptors

The spin-image [JH99], is the first major local shape de-
scriptor. A spin-image of an oriented point is a 2D repre-
sentation of its surrounding surface, which is constructed
on a pose-invariant 2D coordinate system by accumulating
the coordinates of neighbouring points. Normal aligned ra-
dial features (NARF) [SGVB09] combine an interest point
extraction method, along with a feature descriptor in 3D
range data. Kernel descriptors [BRD11] provide a principled
way to turn pixel attributes to patch-level features and are
able to generate rich features from various recognition cues.
Besides using gradient and local binary patterns in their
framework, the authors developed three more depth kernel
descriptors, namely size, PCA and spin. Point feature his-
tograms (PFH) [RBMB08], are directly applicable on point
clouds, avoiding the need for mesh generation. PFH and its
more efficient sibling, fast PFH (FPFH) [RBB09], encode
patterns of point distances within a neighbourhood.

2.2. Partial 3D object retrieval

Most partial 3D object retrieval methods can be
roughly classified as: (i) view-based, with promi-
nent examples in [SMM∗10], [DA09] and [LMM13],
(ii) part-based [TVD09], [APP∗10], (iii) BoVW-
based [BBGO11], [Lav12], [LGJ14], and finally
(iv) hybrid methods combining these three main
paradigms [SPK∗14], [FO09]. Five recent partial 3D
object retrieval methods, encompassing elements of these
categories, were recently compared on the large-scale
benchmark dataset of SHREC 2013:

• two methods for range scan-based 3D model retrieval
by incorporating 2D-3D alignment [LJ], as well as by
entropy-based adaptive view clustering [LLJ13]. We refer
to these methods as ‘SBR2D-3D’ and ‘SBR-VC’, respec-
tively,

• two methods using data-aware partitioning [SBS13] and
BoVW [SMB∗14]. We refer to these methods as ‘Data-
aware’ and ‘S-BoVW’, respectively,

• a method proposed in [SMB∗13], which uses spin images
and signature quadratic form distance. We refer to this
method as ‘SQFD’.

In addition, two recent partial 3D object retrieval methods
have been applied on the publicly available Hampson pottery
dataset:

• a panoramic, view-based method, proposed in [SPK∗14].
We refer to this method as ‘Panoramic’,

• a method proposed in [SPS14], which addresses partial
retrieval by means of Fisher encoding in a purely global
fashion. We refer to this method as ‘Global Fisher’.

3. Shape Representation

In its original form, PFH is computed as follows: i) for each
point p, all of its neighbours enclosed in the sphere of a given
radius r are selected (r-neighborhood), ii) for every pair of
points pi and p j (i 6= j) in the r-neighborhood of p and their
PCA-estimated normals ni and n j (pi being the point with a
smaller angle between its associated normal and the line con-
necting the points) [Rus09], a Darboux uvn frame (u = ni,
v = (pi − p j)× u, n = u× v) is defined and the angular
variations of ni and n j are computed as follows: α = u · n j,
φ = u · (p j − pi)/||p j − pi||, θ = arctan(w · n j,u · n j). The
histograms which constitute the PFH descriptor have b bin-
ning subdivisions for each one of α, φ and θ angle, where b
is implementation-dependent. This leads to a histogram size
equal to 3b.

Fast point feature histogram (FPFH) [RBB09] has been
proposed in order to accelerate PFH computations by em-
ploying a subset of neighbouring points for histogram cal-
culation. For a given query point pq, its single point feature
histogram (SPFH) values are first estimated by creating pairs
between itself and its r-neighbours. This is repeated for all
points in the dataset, followed by re-weighting of the SPFH
values using the SPFH values of r-neighbours, in order to
create the FPFH for pq.

We extend FPFH in order to capture local geometric tran-
sitions by measuring the differences in feature histograms,
associated with concentric spheres. Our FPFH extension,
namely differential FPFH (dFPFH) has 6b bins (the standard
3b bins associated with a concentric sphere of radius r plus
the histogram of 3b bins, which quantifies the transitions of
FPFH in a local ribbon around r):

dFPFH(qp,r) = [FPFH(qp,r) ∆FPFH(qp,r)] (1)
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where ∆FPFH(qp,r) = FPFH(qp,router) − FPFH(rinner).
Figure 1 provides an intuitive explanation of dFPFH. In
the case of the smooth surface of the vessel illustrated in
Fig. 1a, the FPFH histograms of the two concentric spheres
are rather similar, resulting in histogram differences approx-
imating zero. On the other hand, the irregularity of the vessel
surface in Fig. 1b is reflected in much larger differences of
the FPFH histograms.

(a) (b)

Figure 1: A schematic representation of dFPFH: (a) smooth
surfaces result in similar FPFH histograms for the concentric
spheres (FPFH(router) ≈ FPFH(rinner)) and histogram dif-
ferences approximating zero, (b) irregular surfaces result in
much larger differences of the FPFH histograms.

Each object may well be scanned using various types of
scanning equipment, from varying distances or with differ-
ent settings, resulting in varying point cloud densities. Aim-
ing to alleviate the effects of this variability on retrieval per-
formance, we introduce two extra filtering steps: (i) the in-
put object is downsampled with voxelized grid filtering, in
which all points within a voxel are approximated by their
centroid. Multiscale information can be derived by consid-
ering multiple voxel sizes, (ii) the neighbourhood radious r
considered in dFPFH calculations is adaptively estimated for
each point cloud as a linear function of the mean point dis-
tance over all r-neighbourhoods.

4. Shape Matching

For shape matching, we incorporate the result of two paral-
lel processes: (i) local shape similarity assessment by aver-
aging the minimum weighted distances associated with pairs
of dFPFH values calculated on the partial query and the tar-
get object, (ii) global shape similarity assessment by means
of a weighted distance of Fisher vectors.

4.1. Local shape similarity assessment

Aiming to assess the local similarity between the partial
query object Q and each complete object T from the reposi-
tory, we define the mean-minimum distance dm2 as follows:

dm2(Q,T ) = meanqp∈Q(mintp∈T (Ld1(qp, tp))) (2)

where qp is a point of Q, tp is a point of T, N and M denote
the number of points of Q and T, respectively, whereas Ld1
is the Manhattan distance L1 of the dFPFH histograms of
qp and tp. This strategy is justified by considering that the
similarity of the partial query Q with T, is not associated
with the distance of histograms of all possible pairs of points
(qp, tp), but only with the distance of pairs of histograms of
similar points. The average of this distance forms dm2. We
selected L1 over other distance alternatives (e.g. L2) based
on experimentation.

In addition, considering that in Eq. 2 the minimum of Ld1
for each qp depends on a single pair of points, we introduce
the weighted mean-minimum distance dm2

w, in which Ld1 is
replaced by a weighted average of the k smaller distances:

dm2
w(Q,T ) = meanqp∈Q[(1/k) ∑

i=1,2,...,k
wiLd1(qp, tp(i))]

(3)
where tp(i), i = 1,2, ...,k are the first k points of object T,
when all points of T are sorted in increasing order with
respect to their distance from qp. The weights wi = (1−
(i/k)) are linearly decreasing, starting from the pair with the
smaller distance (i=1). This weighting amplifies the influ-
ence of the more similar pairs of points, among the selected
k pairs, whereas it ensures a smooth transition to zero, which
is the weight associated to those points which are not among
the k selected. We selected linearly decreasing weighting
over other alternatives (e.g. quadratic decrease), since it is
associated with less calculations and leads to comparable re-
sults, as found in our preliminary experimentation.

4.2. Global shape similarity assessment

Aiming to assess the global similarity between the par-
tial query object Q and each object T from the repository,
we employ Fisher encoding, extending the purely global
Fisher approach that has been proposed in [SPS14]. The use
of Fisher encoding instead of standard BoVW approaches
has been experimentally supported in a recent comparative
study [CLVZ11]. A Gaussian mixture model (GMM) is es-
timated from local shape descriptors by means of an expec-
tation maximization algorithm. The resulting GMM defines
the visual codebook used [PD07], [SPMV13].

Given a set of N dFPFH descriptors x1, ...,xN ∈RD, which
are used for training, a GMM p(x|θ) is the probability den-
sity on RD given by

p(x|θ) =
K

∑
k=1

p(x|µk,Σk)πk (4)
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p(x|µk,Σk) =
1√

(2π)DdetΣk
e−

1
2 (x−µk)

T
Σ
−1
k (x−µk) (5)

where K is the number of Gaussian components used, θ =
(π1,µ1,Σ1, ...,πK ,µK ,ΣK) is the vector of model parameters,
including the prior probability values πk ∈ R+ (which sum
to one), the means µk ∈ RD, and the positive definite covari-
ance matrices Σk ∈ RD×D of each Gaussian component. The
covariance matrices are assumed to be diagonal, so that the
GMM is fully specified by (2D+1)K scalar parameters. Soft
data-to-cluster assignments are defined as

qki =
p(xi|µk,Σk)πk

∑
K
j=1 p(xi|µ j,Σ j)π j

,k = 1, ...,K (6)

Fisher encoding [SPMV13] captures the average first and
second order differences between the local descriptors and
the centres of a GMM, which can be thought of as a soft
visual codebook. For the k-th GMM, where k = 1, ...,K, the
following vectors are defined

uk =
1

N
√

πk

N

∑
i=1

qikΣ
−1/2
k (xi−µk) (7)

vk =
1

N
√

2πk

N

∑
i=1

qik[(xi−µk)Σ
−1
k (xi−µk)−1] (8)

The Fisher encoding of the set of local feature vectors is
then given by the concatenation of

f = [uT
1 ,v

T
1 , ...u

T
K ,v

T
K ] (9)

Considering that both vectors, uk and vk, have size equal
to the size of the local feature vector, i.e. 6b = 66, consid-
ering that b = 11 binning subdivisions are used, it can be
derived from Eq. (6) that the resulting Fisher vector f has
size equal to 2×66×K = 132×K.

Considering that the originating complete object of Q and
its most similar complete object T are intuitively expected to
have similar Fisher vectors, it is natural to assume that the
most dissimilar pairs of Fisher components between Q and
T, are associated with the GMMs that are over-represented in
those parts of T that are missing from Q. Starting from this
consideration, we define the weighted Fisher vector distance
dF2

w , in a similar fashion to dm2
w, as:

dF2
w(Q,T ) = (1/K) ∑

j=1,2,...,K
w f jL f 1(Q( j),T ( j)) (10)

where L f 1(Q( j),T ( j)) is the L1 distance of the respective

Fisher vectors L1(fQ( j), fT ( j)). The pairs (fQ( j), fT ( j)) are
sorted in increasing order with respect to their distance. The
weights w f j = (1− (j/K)) are linearly decreasing, starting
from the pair with the smaller distance. This weighting re-
duces the influence of the more dissimilar pairs of Fisher
components in the distance calculation. As is the case with
Eq. 2 and Eq. 3, the utilization in Eq. 10 of both L1 and lin-
early decreasing weighting is supported by preliminary ex-
perimentation.

4.3. Hybrid shape similarity assessment

For each voxel size vs considered in the voxelized gridding
filtering step described in Section 3 (where s = 1,2...S, with
S the number of voxel sizes considered), the hybrid distance
dhybrid(Q,T,s) is a weighted sum of dm2

w(s) and dF2
w(s), de-

fined according to Eq. 2 and Eq. 10 by substituting dm2
w and

dF2
w with dm2

w(s) and dF2
w(s), respectively:

d2
hybrid(Q,T,s) = wodm2

w(s)+dF2
w(s) (11)

where wo adjusts the relative influence of local and global
shape matching distances. The overall multiscale distance
dmultiscale, which is used to obtain a ranked list of complete
3D objects, is a weighted sum:

d2
multiscale(Q,T ) = ∑

s=1,2,...,S
wsd2

hybrid(Q,T,s) (12)

where the weights ws adjust the relative influence of each
scale s considered.

Figure 2 shows the distinct components of the proposed
pipeline for partial 3D object retrieval.

5. Evaluation

Experiments are performed on two publicly available
benchmark datasets. The first dataset has been used in
SHREC 2013 track for large scale partial 3D object re-
trieval [SMB∗13].The target set has been created from 360
shapes, organized into 20 classes of 18 objects per class. On
the other hand, the process of range scan acquisition from the
objects of the target set has been simulated in order to obtain
a set of partial views. This process results in 7200 queries,
associated with varying levels of partiality. Figure 3 shows
some samples from the target set of SHREC 2013. Recently,
a more extensive comparison of five state-of-the-art methods
has been performed on the same dataset [SMB∗14].

The second benchmark dataset used for evaluation is re-
lated to the CH domain and consists of 3D pottery mod-
els originating from the Virtual Hampson Museum collec-
tion (http://hampson.cast.uark.edu). It is publicly available
and has already been used for the evaluation of two state-
of-the-art methods [SPS14], [SPK∗14]. The dataset consists

c© The Eurographics Association 2015.



M. Savelonas et al. / Partial 3D Object Retrieval combining Local Shape Descriptors with Global Fisher Vectors

Figure 2: The pipeline of the proposed method.

Figure 3: Samples of the SHREC 2013 benchmark
dataset [SMB∗14].

of 384 models classified to 23 distinct geometrically de-
fined classes. 21 partial queries have been artificially created
by slicing and cap filling complete 3D models. The partial
queries used in our experiments have a reduced surface com-
pared to the original 3D object, which is associated with 25
% partiality. Figure 4 shows some examples of pottery mod-
els used in this dataset.

Experimental evaluation is based on precision-recall (P-
R) plots and five quantitative measures: nearest neigh-
bour (NN), first tier (FT), second tier (ST), discounted
cumulative gain (DCG) and mean average precision
(MAP). More details on these measures can be found
in [SMB∗13], [SPK∗14].

Figure 4: Example 3D models of the pottery dataset used
(http://hampson.cast.uark.edu).

The proposed method has been developed on a hybrid
Matlab/C++ architecture. The experiments have been per-
formed on an Intel Core i7 workstation, operating at 3.5 GHz
with 16 GB of RAM.

Parameter settings have been experimentally determined
as follows: the linear coefficients adaptively associating the
radii of the concentric spheres of dFPFH to the mean point
distance are r = 2.7, router = 13.6 and rinner = 13.1, respec-
tively (Eq. 1). In addition, k = 3 (Eq. 3) and K = 10 GMMs
were found to be sufficient for the construction of the visual
codebook, leading to Fisher vectors of 2× 66×10 = 1320
components. k-means pre-clustering by means of Lloyds’
variant [Llo82] has been used to initialize GMM construc-
tion. The signed square root function has been applied to the
resulting Fisher vectors, followed by L2 normalization. The
weight wo (Eq. 11) has been set to 0.4. Finally, the number of
scales considered is S = 3, with respective voxel sizes equal
to 0.1, 0.3 and 0.5 and respective weights ws = 0.4,1.0,0.4
(Eq. 12).

Interestingly, it has been observed that by separately em-
ploying local and global shape similarity, the retrieval per-
formance in SHREC 2013 is significantly lower (FT approx-
imately equal to 15% and 18%, respectively) than the one
obtained by the proposed hybrid approach (FT 28%), veri-
fying that complementary information is derived from these
parallel processes. Moreover, weighting as defined in Eq. 3
and Eq. 10 allows a performance boost of approximately
1.5-2.5% with respect to FT, when compared with uniformly
weighted L1-based retrieval. Finally, our preliminary exper-
imentation showed that for values of wo and ws in the range
[0.1,1.0], the retrieval performance may change up to ap-
proximately 2%, with respect to FT.

Table 1 presents the retrieval performance, as quantified
by NN, FT, ST and MAP, which was obtained by the pro-
posed method and five state-of-the-art methods on SHREC
2013 benchmark dataset. It can be observed that the pro-
posed method achieves the highest performance with respect
to all metrics. Figure 5 illustrates the average P-R scores for
all retrieval methods. It should be noted that the results pre-
sented for the state-of-the-art methods are the ones presented
in [SMB∗14].

Table 2 presents the retrieval performance, as quanti-
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Method NN FT ST MAP

Proposed method 0.3856 0.2772 0.2135 0.2851
SBR-2D-3D 0.3535 0.2290 0.1808 0.2455
SBR-VC 0.3218 0.2065 0.1638 0.2199
Data-aware 0.3457 0.2495 0.2088 0.2836
Polar spin images 0.0931 0.0809 0.0768 0.0968
SQFD 0.3108 0.2043 0.1576 0.1978

Table 1: The results of the proposed method, along with
5 state-of-the-art methods on SHREC 2013 benchmark
dataset.

fied by NN, FT, ST and DCG, which was obtained by the
proposed method and two state-of-the-art methods on the
Hampson pottery dataset. It should be noted that in this case
we use DCG instead of MAP, since this measure was used
for the evaluation of the Panoramic [SPK∗14] and Global
Fisher [SPS14] methods. In addition, an accuracy of three
decimal digits is maintained, as in these works. Finally, we
present results obtained on queries associated with 25% par-
tiality. The proposed method achieves the highest retrieval
performance with respect to all measures considered. This is
verified in Fig. 6, which illustrates the average P-R scores
for all retrieval methods.

Method NN FT ST DCG

Proposed method 0.952 0.460 0.642 0.778
Global Fisher 0.952 0.320 0.461 0.694
Panoramic 0.619 0.416 0.626 0.721

Table 2: The results of the proposed method, along with two
state-of-the-art methods on the Hampson pottery dataset.

Figure 7 illustrates example ranked lists obtained in the
case of the Hampson pottery dataset.

It should be stressed that unlike the methods applied in
SHREC 2013 and the Panoramic-based method, which are
mesh-based, the proposed method requires only raw point
cloud information.

6. Conclusions

This work presents a partial 3D object retrieval method, ap-
plicable on both meshes and point clouds, which is based
on a hybrid shape matching scheme, incorporating both lo-
cal and global shape similarity for multiple scales. The main
contributions of the proposed methodology involve both lo-
cal shape descriptor, as well as partial retrieval aspects:

• the definition of dFPFH, which extends the well-known
FPFH descriptor, in order to capture local geometric tran-
sitions,

Figure 7: Example ranked lists obtained by the proposed
3D object retrieval method in the case of the Hampson pot-
tery dataset. Examples of partial queries are shown in the
upper row, whereas the respective top-6 objects retrieved are
shown below.

• the use of a hybrid shape matching scheme, which in-
corporates local information directly derived from local
shape descriptors, as well as global shape information de-
rived from Fisher vectors,

• the definition of a weighted mean-minimum distance, as
well as of a weighted Fisher vector distance, both address-
ing the partiality of the 3D object query.

The experimental evaluation of the proposed method on
the large-scale benchmark dataset for partial object retrieval
of SHREC 2013, as well as on the Hampson pottery dataset
leads to the following conclusions:

• local and global shape similarity information, derived in
multiple scales, act in a complementary fashion, maximiz-
ing the achieved retrieval performance when combined,

• the proposed partial 3D object retrieval method achieves
state-of-the-art performance, when applied in SHREC
2013 dataset,

• the proposed method outperforms two recent CH appli-
cations of partial 3D object retrieval, when applied in the
Hampson pottery dataset.

Although the proposed method achieves state-of-the-art
retrieval performance, the results remain far from perfect
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in absolute numbers. In this respect, the remark in the
comparative study presented in [SMB∗14], that the problem
of partial 3D object retrieval is very challenging and open
to future solutions, is still valid. Hybrid retrieval methods
combining multiple techniques for shape similarity assess-
ment provide a promising direction to the partial 3D object
retrieval problem.
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Figure 5: Average P-R for all retrieval methods applied on SHREC 2013.

Figure 6: Average P-R for all retrieval methods applied on the Hampson pottery dataset, for queries of 25% partiality.
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