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Abstract

In this paper, we present a new approach for generic 3D shape retrieval based on a mesh partitioning scheme. Our method combines
a mesh global description and mesh partition descriptions to represent a 3D shape. The partitioning is useful because it helps us
to extract additional information in a more local sense. Thus, part descriptions can mitigate the semantic gap imposed by global
description methods. We propose to find spatial agglomerations of local features to generate mesh partitions. Hence, the definition
of a distance function is stated as an optimization problem to find the best match between two shape representations. We show
that mesh partitions are representative and therefore it helps to improve the effectiveness in retrieval tasks. We present exhaustive
experimentation using the SHREC’09 Generic Shape Retrieval Benchmark.
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1. Introduction

Three-dimensional objects are a valuable resource in many
fields such as engineering and medicine. They can represent
the shape of a real object in a suitable way in order to be used
by computers. The versatility of this representation has resulted
in an increasing interest of the scientific community in several
related topics. For instance: shape analysis, shape processing,
modeling applications, and so on. In addition, it is currently
possible to find massive and publicly available 3D data. For
example the Google Sketchup collection, for which its use is
becoming a common practice. For these reasons, the search for
efficient and effective tools for this kind of data is imperative in
order to support future applications.

In particular, the content-based similarity search of 3D ob-
jects has received much attention in recent years. This can be
performed without relying on additional information for search-
ing, only using the provided shapes. Additionally, many fields
(for example medicine [1, 2], CAD/CAM [3], etc.) have ben-
efited from the large amount of approaches proposed to over-
come the problem of 3D matching. Nevertheless, the problem
remains challenging and it is far from being completely solved.
Moreover, part of the problem resides in the possibility of defin-
ing a suitable similarity measure between 3D models.

In this paper, we consider the problem of generic shape re-
trieval. A common approach to facing this problem is to com-
pute an intermediate representation (feature vectors or graphs,
for instance) and subsequently defining the similarity of two ob-
jects as the similarity of their representations. In this direction,
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there are methods that exploit the visual similarity, the statis-
tical properties of 3D measures, or the possibility of defining
transform functions on the data, just to name a few. However,
one of the most critical problems is the semantic gap. That is,
the intermediate representation may not be able to capture all
the needed information of a shape and therefore the effective-
ness of searching may be seriously affected.

A previous study by Bustos et al. [4] showed that some fea-
tures could well represent certain classes of objects and further-
more, some features could be complimentary in representing
a shape. This is because algorithms cover only a part of the
possible spectrum of characteristics such as shape, silhouette,
or intrinsic properties. Thus, a natural extension of classic ap-
proaches was the combination of features for improving the ef-
fectiveness of retrieval. Approaches in this direction have been
previously presented by Bustos et al. [5], Vranic [6], and Pa-
padakis et al. [7], all of them with promising results. However,
the semantic gap is still latent in this approach as any possible
combination of features could not represent important charac-
teristics to discriminate between objects.

A more recent approach is the combination of global and
part-based information. The idea is to combine features ex-
tracted from an entire object with features extracted from parts
of an object. Some techniques have been presented so far by
Li and Johan [8], Bustos et al. [9], and Schreck et al. [10]. All
of these techniques share a common aspect: the part-based fea-
tures come from a fixed partitioning of the objects. Although it
was possible to improve the effectiveness with respect to using
only global features, the fixed partitioning limits the possibil-
ity of having truly distinctive parts. This opens up a question
on how to define a new kind of partitioning dependent on the
shape information.

We believe that the use of local features can enhance the
use of global features in shape retrieval. That is, we are try-
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Figure 1: Two globally dissimilar chairs. Note that the chair at right is taller than the left one. Nevertheless, it is possible to find
similarities between their parts, which can be exploited to improve the similarity measure between the two objects.

ing to mitigate the effect of the semantic gap. For instance, a
common fact is having two objects with different appearance in
the same class. Obviously, a global feature could differ in those
objects. However, in a local sense, it is still possible to find cor-
respondences between parts, so we can take advantage of this
fact to improve the similarity measure (see Fig. 1). Therefore,
the discriminative power of local features combined with global
features could help to improve the effectiveness in the similarity
search.

In this paper, we propose a shape retrieval method using a
data-aware partitioning algorithm. Our idea is to exploit the lo-
cal characteristics of objects to determine discriminative parts.
Thus, each object is represented by its global feature and a set of
features extracted from parts. The partitioning method relies on
finding robust local features (namely keypoints) on the object’s
surface and subsequently determining the parts where there is
a high concentration of keypoints (for instance, a human shape
commonly has many features located in hands, feet, and head).
Beyond techniques which made use of the bag of features ap-
proach to aggregate local descriptors for retrieval, our method
is the first attempt in combining global an local features found
in a data-adaptive way for generic shape retrieval.

Our main contribution is three-fold:

e We propose a model partitioning algorithm based on lo-
cal features. Regions on the surface with high concentra-
tion of local features will be selected as parts.

e We combine the global feature with features obtained
from parts and define a combined distance to assess the
similarity. The distance between global features is per-
formed as usual. The distance between sets of parts is
stated as an optimization problem. In addition, we pro-
pose a geometrical consistency criterion which can be
formulated within the same optimization problem.

e We evaluate our approach using a well-known, estab-
lished benchmark dataset and appropriate performance
measures.

Our approach is a generic, simple framework by which global
and local descriptors can be combined in a data-adaptive way.
The approach is able to provide on average, an improvement

over the retrieval effectiveness of state of the art global descrip-
tors. A careful, systematic analysis of the results is performed
to assess in detail the magnitude of the improvement, relating
it with global-only methods, and identifying classes of models
for which the method is particularly effective. We test our ap-
proach using a state-of-the-art local interest point detector with
desirable properties in combination with two robust view-based
descriptors. Our approach is flexible in that it can accommodate
further, possibly application-specific, object segmentation and
description schemes, if needed.

Our paper is organized as follows. Section 2 briefly presents
the state of the art in generic shape retrieval. Section 3 describes
our partitioning algorithm based on local features. Section 4
is devoted to the matching methods and the definition of our
similarity measure. Section 5 describes our experiments and
presents the discussion of our results. Finally, Section 6 draws
the conclusions.

2. Related work

The interest in 3D model retrieval has resulted in a large
amount of proposed techniques to overcome the problem. One
of the most studied approaches is to convert a 3D model into
a more convenient representation for comparison, for example
feature vectors. Then, the comparison can be done by defin-
ing a distance between those representations. For generic shape
retrieval, this approach has received attention due to the effi-
ciency of computing distances between vectors. In this section,
we provide a brief description of the state of the art related to
descriptors for generic shape retrieval and possible combina-
tions to improve the performance. For a comprehensive study,
surveys by Bustos et al. [11] and, Tangelder and Veltkamp [12]
are an excellent resource.

Classic methods for 3D shape retrieval can be classified
in three groups: view-based, histogram-based, and transform-
based. This classification is based on how a feature is extracted
from the shape. View-based methods transform a 3D shape into
a set of 2D views and subsequently we can apply image tech-
niques to describe the obtained views. For example, the Depth
Buffer method [13] computes six views corresponding to the
six faces of the bounding cube of an object. Each view stores



the projected distances from the object to the projection plane.
Then, each view is represented by Fourier coefficients and the
final vector is the concatenation of the six obtained views. An-
other example is the PANORAMA descriptor [14], which com-
putes three views taken from the lateral faces of cylinders ori-
ented according with the coordinate axes. Similar to the Depth
Buffer, each lateral face encodes the distance from the object to
the face. Then, Fourier and Wavelets coeflicients are extracted
from each view, which form the final descriptor.

Histogram-based methods summarize shape properties in
order to use them as features. For instance, Shape Distribu-
tions [15] is a method that computes several geometric proper-
ties (distances between pairs of surface points, angles between
three random surface points, etc). The method consists of sam-
pling a large amount of points on the shape surface and subse-
quently measuring some property. Each value obtained for the
chosen property is accumulated in a histogram. Thus, the his-
togram represents an approximation of the distribution of the
property and it is expected to be distinctive for each object.

Transform-based methods consist of converting the geomet-
ric information by using some mathematical transformation prior
to the feature extraction. The goal of applying a transformation
is to enhance some information which is not evident in the Eu-
clidean space. In particular, in 3D model retrieval, there is an
interest for spherical harmonics to extract features from shapes.
Vranic proposed the ray-based descriptor [13] by using a spher-
ical function which is able to capture the behavior of the rays
starting in the origin and the intersections with the shape. Simi-
larly, Kazhdan et al. [16] used spherical harmonics frequencies
along with the Gaussian Euclidean Distance Transform in a vol-
ume representation of a shape.

An interesting and new approach is the combination of dif-
ferent descriptors to improve the performance of individual de-
scriptors. The basic idea is that different descriptors could ex-
tract complementary features and their combination could lead
to improvements. Bustos et al. [5] proposed to dynamically
combine several descriptors using a weighting scheme depen-
dent on the query. Similarly, Vranic [6] proposed to combine
three descriptors: Silhouette, Ray-based and Depth-Buffer. This
combination (which was called DESIRE) improved the perfor-
mance of the individual descriptors. On the other hand, Pa-
padakis et al. [7] suggested combining 2D and 3D features to
improve the performance of retrieval. As a 2D feature, the au-
thors proposed to use the Depth Buffer method and as 3D fea-
ture, they proposed to use spherical harmonics transform for
spherical functions obtained from the shape.

The aforementioned combination methods consist of some-
how combining two or more description methods. However,
these techniques still rely on the global shape for the calcula-
tion of each descriptor. Recent approaches have considered the
combination of global information and part-based information.
Li and Johan [8] used global an local radial distances to describe
a shape. First, the method computes a radial distance descrip-
tor by uniformly dividing the surface of a sphere containing the
object. The division considers bins at different angle intervals
and the average distance of each bin to the object is stored on
it. Second, the local component of the method consists of uni-

formly dividing the bounding cube of the object into N X N X N
cells. For each vertex on the shape, the method computes the
minimum distance to the cell centers and the distance is as-
signed to the vertex. Finally, thirteen views are extracted using
the assigned distances as RGB values. The distance between
two shapes with this representation is measured pair-wise be-
tween global and local descriptions.

Also, Bustos et al. [9] proposed a simple partitioning scheme
in order to combine it with global descriptors. Given a shape,
the method computes a global descriptor for it. Next, the shape
is divided in eight parts according to the eight octants obtained
with the coordinate axes in the 3D Euclidean space. Finally,
the method computes a descriptor for each part. To measure the
distance of global-partial representations, the authors evaluated
several weighting schemata where adaptive weighting showed
the best performances. Similarly, Schreck et al. [10] also took
the octant partition as a basis. Nevertheless, this new technique
considered the matching of the parts as a bipartite graph match-
ing problem. In addition, the authors tested the use of different
numbers of parts. Interestingly, it was shown that not using all
parts (6 or 7 depending on the dataset) outperformed the re-
trieval performance.

Regarding the use of local features to decompose a 3D shape,
several approaches have been proposed for non-rigid and par-
tial shape retrieval. Toldo et al. [17] proposed to apply a spec-
tral clustering to decompose a mesh into regions. Each region
was further described with information such as the shape in-
dex, radial geodesic distances and normal directions. The final
representation was obtained using a multi-level bag-of-features
approach. On the other hand, Shapira et al. [18] presented
a technique for describing mesh segments. The segmentation
is hierarchically performed using SDF histograms [19]. Next,
contextual information is used in order to improve the matching
between parts. A bipartite graph is used to measure the context-
aware distance between two objects. In addition, mesh decom-
position is recently being used as an alternative to 3D shape
matching and retrieval. Litman et al. [20] defined maximally
stable components on meshes using geometry diffusion. Simi-
larly, Sipiran and Bustos [21] used a clustering in the geodesic
space to define key-components on meshes.

Our method can be considered as a combination of local and
global approaches for the problem of generic shape retrieval.
Specifically, we aim at evaluating if the performance of global
descriptors can be improved by using a mesh decomposition
approach.

3. Data-aware 3D Partitions

Previous approaches have tried to use 3D mesh partitions
as input in retrieval tasks. In this section, we present a parti-
tion algorithm based on finding groups of discriminative local
features. Our method does not guarantee disjoint or complete
partitions. However, as it uses interest points detected on the
mesh for partitioning, we believe that the resulting fragments
are representative enough. Therefore, the partitions can be use-
ful for improving the matching between two 3D models.

Our method consists of three steps:



o Interest point detection. We aim at selecting a small set
of points on the mesh surface. We consider that a vertex
is interesting if it has an outstanding geometric structure
in comparison with its neighborhood.

o Clustering of interest points. We perform a clustering
in order to find groups of interest points under some con-
straints.

o Cluster-based partition. We use the resulting clusters
for defining representative partitions for matching.

3.1. Interest point detection

There is no agreement about what an interest point is and
how it can be formally defined. We will define an interest point
as a mesh’s vertex whose geometric structure is different from
its neighborhood. Note that the robustness of the method will
depend on how the geometric structure is measured and how it
can support variations such as noise or missing data. In particu-
lar, for a general-purpose 3D object retrieval system, we require
arobust and fast method. This is because shapes can come from
several sources, so there are no guarantees with respect to man-
ifoldness, noise, resolution, and so on.

‘We use the Harris 3D method [22] to select the set of inter-
est points in a mesh. This technique has proven to be effective
and robust against several transformations. In particular, it has
been shown to deliver good repeatability (localization) in light
of different scales, noise, and other model transformations [23].
This is a desirable property in that the Harris detector can be
expected to find comparable interest points for inclusion in the
similarity function. Also, in [24] it was shown that the Harris
detector provides points on the surface which are comparable to
keypoints annotated by humans. Furthermore, in the same re-
port, it was noted that the Harris 3D method offers a good num-
ber of features compared to other algorithms. For example, it
delivers less interest points than Mesh saliency and SD-corners;
and it delivers more features than Heat Kernel Signatures [24].
Therefore, we consider the Harris detectors to not only provide
repeatable, but also, meaningful interest points which are ex-
pected useful for the similarity function. In addition, the detec-
tor is fast enough, and it can be easily used without detriment
to the retrieval time. Briefly, the Harris 3D method can be sum-
marized with the following steps:

e It determines a neighborhood around each vertex. The
neighborhood can be spatial (all points lying inside a 3D
sphere centered in a vertex), adaptive (all points form-
ing rings around a vertex and a certain geodesic distance
from the vertex), and rings (all points around a vertex re-
garding the number of rings).

e Then the method finds a canonical local system by apply-
ing PCA to the neighborhood.

e After that, the algorithm fits a quadratic surface on the
normalized neighborhood.

o Subsequently, it computes derivatives on the fitted sur-
face. Gaussian functions are used for smoothing deriva-
tives. By using integration between the derivatives and
the Gaussians, the method is robust to local geometric
changes.

o Then the method constructs (using the derivatives) the
auto-correlation function needed to evaluate the Harris
operator. Subsequently, a response is computed for each
vertex.

o Finally, it selects a set of vertices as interest points by ap-
plying some criteria on the vertex’s response. The orig-
inal method proposed two criteria: a number of vertices
with the highest response, or an spatial criterion for well
distributed interest points.

In this paper, we use the Harris 3D method for computing
the vertex’s response, and subsequently we select the vertices
with the highest response. In Section 5, we evaluate the effect
of the selection of keypoints in the performance of our retrieval
method.

3.1.1. Control of mesh resolution

Note that the Harris 3D method depends on local neigh-
borhoods around a vertex. Nevertheless, generic 3D shapes
could come from different sources where their primary goal was
not the analysis or processing. It is therefore common to find
objects with bad triangulations. Moreover, many meshes are
optimized for rendering, so regular portions of them are rep-
resented by large triangles. It poses a problem for 3D anal-
ysis, where meshes with regular triangulations are preferably
needed. Therefore, it is necessary to control the size of the
neighborhoods prior to the interest point detection. In addition,
our goal is to ensure a consistent neighborhood computation
along the entire mesh.

We implement the algorithm for control of mesh resolution
proposed by Johnson [25]. This algorithm assumes the spacing
between vertices as the resolution to be improved. More specif-
ically, the mesh resolution is the median of the edge length his-
togram. The goal is to decrease the edge length spread (or vari-
ance) of the histogram around a desired resolution. To accom-
plish this goal, the algorithm performs local operations over the
edges which are too large (split operation) or too small (col-
lapse operation). Each edge is associated with a weight which
combines its length difference with the desired mesh resolution
and the geometric shape change if any operation is performed.
Finally, a greedy strategy performs local operations guided by
a priority queue defined over the weights. An example of our
implementation is shown in Fig. 2

3.2. Clusters of Interest Points

Once we have computed the interest points for a mesh, our
goal is to use them for extracting representative partitions. The
main idea is to find clusters of interest points in the 3D space, so
each cluster would define a portion of the mesh which is inter-
esting and distinctive. We propose an adaptive clustering algo-
rithm taking into account the intra-cluster and the inter-cluster
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Figure 2: Effect of mesh resolution: Shape with bad triangulation (a) and its poorly distributed edge length histogram (b). Shape
processed with the mesh resolution algorithm (c) and its improved edge length histogram.

structure of the clusters which generate the mesh partitions. In
addition, we add a constraint regarding the number of elements
per cluster. It allows us to discard interest points which do not
belong to any cluster, and therefore they should not be part
of the partition representation. Our algorithm is derived from
Leow and Li [26], and is presented in the Algorithm 1.

The adaptive clustering algorithm uses two distance thresh-
olds R, S, and the minimum number of points in a cluster N,
as parameters. The algorithm scans Ifer times the set of points
trying to find clusters which hold two criteria: the distance be-
tween each point within a cluster to its centroid is not larger
than S (intra-cluster constraint), and the distance between clus-
ter’s centroids is not smaller than R (inter-cluster constraint).
In addition, if after a scan, the number of points inside a clus-
ter is less than N,,, the cluster is discarded. Also, the points of
the small cluster are pushed back in the point collection for the
next iteration. If a cluster has more than N,, points, its centroid
is updated.

Note that there may exist points which never hold with the
cluster constraints, and those points are simply discarded. We
are interested in groups of interest points, because these could
be in a representative part of the mesh. Hence the behavior
of discarding isolated points is important for our purposes, be-
cause those points could be noise and therefore would not rep-
resent an important feature of the mesh.

Another important aspect is the flexibility of the adaptive
clustering algorithm with respect to the obtained number of
clusters. The number of clusters depends on the point distri-
bution and the cluster parameters. This is an advantage because
each object would have a different number of clusters depend-
ing of their interest points. In this way, each object would have
a data-aware flexible representation.

The presented clustering algorithm determines a spatial par-
titioning of the keypoints where clusters are always circle-shaped.
Hence, we also tested the DBSCAN [27] algorithm for cluster-
ing which has a different functionality. DBSCAN is a density-
based algorithm which is able to detect clusters of arbitrary
shapes and it is based on proximity and density concepts. How-
ever, after experimentation, we found that it was difficult to cor-
rectly define the density thresholds for this algorithm. In addi-
tion, in many of our experiments, DBSCAN computed very few
clusters per shape, underestimating the representational power

of the interest points.

3.3. Partitioning and Description

Our partitioning algorithm is quite simple. For each cluster
of interest points, we proceed as follows:

o The algorithm computes the smallest 3D sphere contain-
ing all points within the cluster. We used a linear pro-
gramming algorithm for this purpose [28]. The outputs
of this step are the center of the sphere and the radius.

o Next, we extract the portion of the mesh lying inside of a
3D sphere formed by the previously computed center and
the radius scaled by a factor of ¢ (we study the effect of
¢ in Section 5). It can be done by scanning the complete
set of vertices and verifying which vertex lies inside the
sphere. However, this can be computationally expensive
for large meshes. Here we use an improved method. We
build a kd-tree with all vertices of the mesh, and thus a
range search is performed using as query the center of
the sphere and the radius. Note that the kd-tree needs to
be built only once, and it can be used for each partition
by changing the query. Finally, the method builds a new
mesh using the set of points inside the sphere and their
associated faces.

For description, we compute a global descriptor for the en-
tire model and subsequently compute a global descriptor for
each partition. Formally, given an object O, its representation
is defined as

12 ‘
So =1{(s0, Po)lso € R" and Pp = {py, pps - - - P}, Po € R"},
where s¢ is a n-dimensional descriptor representing the com-
plete object, Py is a set of m n-dimensional descriptors repre-
senting each partition. Figure 3 depicts an example of some
partitions obtained with our algorithm.

4. Matching

At this point, we need to define a distance between two rep-
resentations as shown previously. Given two 3D objects O and
Q, each with their representations:
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Figure 3: Three examples of partitions obtained with our method using the parameter configuration used in Sec. 5.2.

So =1{(s0, Po)lso € R" and Py = {pp, pp.- ... Py}, Pp € R"} and

S ={(sg. Po)lsg € R" and Py = {py,. py. - - . Pph Py € R},
where O has m partitions, and Q has k partitions. Our goal
in this section is to define an appropriate distance d(S o, S o),
which measures the dissimilarity between two objects using
their representations. The main problem is how to define a dis-
similarity between two sets of descriptors with different lengths.

In this paper, we only consider a linear combination be-
tween the global-to-global distance and the partition-based dis-
tance. That is

d(S0.S 0) = pllso = sgll2 + (1 = )d(Po, Po), ey

where 0 < u < 1 weights the contribution of the involved terms.

4.1. Integer Linear Programming

The matching problem is how to find a correspondence set
between two collections of descriptors. Clearly, this problem is
difficult because it is not possible (at least not within a reason-
able time) to evaluate all possible combinations of correspon-
dences. We will state the problem using a linear programming
formulation for searching for a feasible solution.

We define an indicator variable as follows

(i j) = {1, if pl, @atches pJQ 2
0  otherwise.

Note that [x| = m X k, that is each element in Py could be
matched with each element in Py. Let’s think of x as a bi-
nary string of length m X k. The number of configurations for
x is 2 which allows us to figure out the complexity of the
problem. Obviously, if m and k are large enough, the number
of possible matches increases exponentially. Nevertheless, we
can add some constraints to the problem. For instance, if pio is
already matched to ij, then p‘b should not be matched to any
other element in Pp. Formally, if x(7, j) = 1, then }] jx(, NHN=1
and therefore also }; x(i, j) = 1.

We use the indicator variable x to formulate an objective
function as follows

£ = Y0 = phla-xG, j), 3)
ij

where the goal is to find the optimum x* which minimizes f(x).
Formally,

X = argmin, f(x), €]

subject to

Z x(i, /) = 1 and Z x(@,j)=1Vi, j
J

1

Moreover, we can consider the optimum f(x*) as the dis-
similarity function d(Po, Pg). However, the optimum f(x*) de-
pends on the number of matches, reaching lower values when
Po and Py have a few elements. In order to overcome this prob-
lem, we normalize the value of the optimum, and we obtain the
final dissimilarity measure:

S
min(|Pol, |Pgl)
Note that the normalization in Eq. 5 also contributes to main-

tain the symmetry of the distance. This is an important aspect
if one considers indexing the distance for fast searching.

d(Po, Po) = &)

4.1.1. Numerical Aspects
To numerically solve the Eq. 4, we define a matrix of dis-
tances

CG, ) = Py = Pl 6)
where each element of this matrix stores the L, distance be-
tween descriptors from Py and Pg. Thus, the problem of find-
ing x* in Eq. 4 can be stated as a binary linear programming
problem

Ax<b
min C” x such that { A, x = b,, @)

X
x is binary



Algorithm 1 Adaptive Clustering

Set of points P

Inter-cluster distance R
Intra-cluster distance S
Require: Minimum number of elements per cluster Nm
Require: Number of iterations Iter
Ensure: Set of clusters C = {Cy,...

Require:
Require:
Require:

’Cm}

1: Let C a set of clusters
2:C«0

3: for j « 1 to Iter do
4: for each p € P do
5: Let C; be the closest cluster to p with distance d.
6: If C = 0 then d = 2R.

7: if d > R then

8 Create a new cluster C,,,, with p as element.
9: Insert C,,,, into C.
10: elseif d < S then

11: Insert point p into C;.
12: end if

13: Remove point p from P.
14: end for

15: for each cluster C; in C do

16: if |C;| > Nm then

17: Update centroid for C;
18: else

19: Insert each point in C; into P.
20: Remove C; from C.
21: end if

22: end for

23: end for

24: Return C

where C and x are linearized versions of themselves, A and b
represent linear inequality constraints, and A, and b, represent
linear equality constraints. In fact, the constraints ; x(i, j) =
Land }}; x(i, j) = 1 need to be placed in the linear constraints.

The solution for the problem in Eq. 7 is given by a branch-
and-bound algorithm which tries to solve it using LP-relaxation
approaches [29].

4.2. Integer Quadratic Programming

The linear programming formulation finds the best set of
correspondences only regarding the dissimilarity between de-
scriptors in Pp and Pgy. The problem with this formulation is
that it discards the spatial information of the partitions from
which the descriptors come. Obviously, our algorithm does not
ensure consistency in the spatial sense. In this section, we en-
rich our previous formulation by adding spatial consistency be-
tween descriptors.

Recalling the indicator variable x. If we have two corre-
spondences x(i, j) = 1 and x(i’, j) = 1, one can expect that the
spatial relationship between fragments i and i’ from shape O is
quite similar to the spatial relationship between fragments j and
J' from shape Q. Of course, the idea is to minimize the differ-
ence between spatial distances of partitions, while maintaining

the dissimilarity between descriptors. Therefore our new for-
mulation for Eq. 3 is

F = Y 19, 1) - d2G, G, PG, )+

Lt

o )
B Y Pl = pplla-xti, j)
ij

where d?(i, i") is the spatial distance between fragments i and i’
from the object O, @ and 8 are weights to set the contribution of
the spatial consistency and the descriptor dissimilarity, respec-
tively. In addition, the new formulation is subject to the same
constraints as Eq. 4. Finally, we can use the new formulation to
find an optimum x* and therefore we will use the same distance
as shown in Eq. 5.

Regarding the spatial distances, during the process of find-
ing the partitions, we compute distances between the centers of
the spheres which generate the partitions. In this way, the algo-
rithm makes available the spatial information in the matching.

4.2.1. Numerical Aspects

To numerically solve Eq. 4 using the objective function in
Eq. 8, we define a matrix with the distance differences as fol-
lows

D, LA, J'Y) = d9 G, i) = dE G, ), C)

where {i, j} denotes the linear index of the pair (i, j). Clearly,
we need to consider the complete set of spatial relationships
between pairs of partitions. The dimension of the matrix D is
mk X mk. Thus, the problem of finding x* in Eq. 8 can be stated
as a binary quadratic programming problem

] Ax<b
min ExTDx + C"x such that {A,,x = b,, (10)

X
x is binary

where C and the constraints were defined in Eq. 7.

The solution for the problem in Eq. 10 is also given by
a branch-and-bound algorithm with LP-relaxation, but in this
case using a quadratic objective function [30].

5. Experiments

In this section, we present our experiments and results. The
section is organized as follows. Section 5.1 presents the experi-
mental setup, in addition to the dataset and evaluation measures.
Section 5.2 presents a study of the contribution of partition
matching in the overall method. Section 5.3 presents a sensitiv-
ity analysis of parameters. Section 5.4 discusses the effective-
ness of our method in a class-by-class analysis. Section 5.4.1
investigates the correlation between effectiveness and important
aspects such as number of vertices and number of parts. Finally,
Section 5.4.2 presents results using the PANORAMA descrip-
tor.



5.1. Experimental setup

For our experiments, we use the SHREC’2009 generic bench-
mark [31]. This benchmark contains 720 shapes organized in
40 classes with 18 shapes per class. To evaluate the retrieval
effectiveness of our method, we use common measures in the
retrieval community such as mean average precision (MAP),
nearest neighbor (NN), first tier (FT) and second tier (ST). Briefly,
we describe each measure as follows:

e Mean Average Precision (MAP): Given a query, its aver-
age precision is the average of all precision values com-
puted in each relevant object in the retrieved list. Given
several queries, the mean average precision is the mean
of average precision of each query.

e Nearest Neighbor (NN): Given a query, it is the precision
at the first object of the retrieved list.

e First Tier (FT): Given a query, it is the precision when
C objects have been retrieved, where C is the number of
relevant objects to the query.

e Second Tier (ST): Given a query, it is the precision when
2*C objects have been retrieved, where C is the number
of relevant objects to the query.

In the retrieval experiments, each object in the collection is
used as query, and subsequently we average the measures for
each object to obtain the effectiveness for the entire dataset.

Regarding the descriptors, in this paper, we tested the DSR
and PANORAMA descriptors. Each time we describe a mesh
using the these descriptors, the input mesh is normalized in
pose (rotation, translation and scale) prior to the description.
As DSR is faster to compute than PANORAMA, we preferred
to use DSR for presenting a detailed study of our approach.
Subsequently, we use PANORAMA to validate our results.

5.2. The role of partition matching

The goal of this section is to show the contribution of the
partition matching in the distance computation. Recall the def-
inition of our distance in Eq. 1. Our distance is a linear combi-
nation between global distance (using the DSR descriptor) and
partition distance. The contribution of the partition distance in
the final distance depends on the parameter u. So we conducted
an experiment to measure the effect of y in the effectiveness of
the proposed distance.

We test different values for u in the interval [0, 1] and in-
vestigate the best value according to the obtained MAP. As our
objective is to evaluate only the effect of u, we fixed the values
for any other parameter (see Section 5.3 for a sensitivity analy-
sis about parameters). Next, we show a summarized description
of the parameters used in this experiment:

o For the Harris 3D algorithm, we select 200 keypoints for
each object.

Table 1: MAP values for different values of y (values are in
[0,100] scale)

u LPM QPM

0 939 514
0.1 15.06 6.51
0.2 2193 842
03 2920 11.26
04 3590 14.99
0.5 41.14 1997
0.6 4490 26.20
0.7 4749 33.63
0.8 48.93 4147
0.9 49.52 47.79
1.0 49.10 49.10

e For the clustering algorithm, we consider the length of
the diagonal of the minimum bounding box of an object
(diag) to define the spatial parameters: R and S. Thus,
R =0.1 xdiag, S = 0.2 xdiag, Nm = 10, and Iter = 10.
Note that the R and S parameters vary for each object.
The Nm and Iter parameters were set empirically.

e The scale factor of the sphere radius in the patch extrac-
tion step was set to 1.

e In addition, @ and 8 in Eq. 8 are 1.

We compare our two proposals, linear programming match-
ing (LPM) and quadratic programming matching (QPM) with
a baseline algorithm (GM), which only uses the global descrip-
tors for retrieval (note that GM is a special case of our proposed
distance when u = 1).

Table 1 shows the MAP for several values of yu, using both
techniques LPM and QPM. The best result for LPM is obtained
in u = 0.9 with 49.52. This value shows an improvement with
respect to using only global descriptors. Note that u = 1.0 rep-
resents the GM baseline approach, as it considers a total contri-
bution of the global descriptor distance. It is worth noting that
the best MAP value for LPM is obtained through a large contri-
bution of the global distance. In contrast, the incorporation of
geometric consistency in the QPM approach does not seem to
contribute to the effectiveness. Nevertheless, the shown MAP
values are an average of the entire dataset. This can bring up the
fact that it is possible that certain classes exploit the geometric
consistency. We dedicate the Section 5.4 to study this situation.

We also show a recall-precision plot for the different config-
urations of u (see Fig. 4). Note the improvement of our method
when u = 0.9 in contrast to other values, even when global
matching is used (1 = 1). Moreover, the precision improve-
ment is visible in every recall value, so it confirms the results in
Table 1.

5.3. Sensitivity Analysis

In this section, we evaluate several parameters of our method
in order to find the best configuration. We take the finding of
the previous section as a starting point . That is, all results
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presented in this section were computed for u = 0.9. The pa-
rameters to be evaluated are:

¢ Keypoint selection: we evaluate six configurations taken
into account a fixed number of keypoints (200, 300, and
400) or a number of keypoints as a ratio of the number
of vertices on the mesh (at ratios 1%, 2% and 4%). In
the presented results, we use the labels /P-200, IP-300,
1P-400, IP-0.01, IP-0.02, and IP-0.04, respectively.

¢ Clustering parameters: we evaluate three configura-
tions regarding the spatial constraints of the clustering
algorithm. In our experiments, we use the diagonal of
the bounding box of an object (diag) as reference to the
clustering parameters. Thus, it is possible to associate the
clustering parameters with the size of an object. We de-
fine three configurations corresponding to small, medium,
and large clusters. The configurations are defined as fol-
lows (in the presented results, the diag factor is discarded
to facilitate the reading):

— Small clusters: R = 0.1 X diag, S = 0.2 X diag.
— Medium clusters: R = 0.15 X diag, S = 0.3 X diag.
— Large clusters: R = 0.2 X diag, S = 0.4 X diag.

o Scaling factor for partition: we evaluate three different
scaling factors for the radius of the partitioning sphere.
We use 1.0, 1.25, and 1.5.

As we are interested in studying the impact of the param-
eters in our approach, we present results using all the afore-
mentioned evaluation measures. In addition, we discuss that ef-
fect in the Linear Programming Matching (LPM) and Quadratic
Programming Matching (QPM) separately.

Figure 5 shows the mean average precision for LPM us-
ing all possible combinations of parameter configurations. Note
that regardless of the used keypoint selection, LPM gives better
results when small clusters are used. In addition, the mean aver-
age precision decreases when the size of clusters is increased. It

means that large partitions are more unstable compared to small
partitions. It sounds logical, since small clusters are expected
to be compact agglomerations of keypoints, and therefore the
region containing them can be considered as a representative
partition for an object. In contrast, large clusters allow distant
keypoints to belong to the same cluster. As a result, the proba-
bility of a keypoint to belong to any cluster is high. Therefore,
isolated keypoints (possibly due to noise) could be influencing
the generation of poor partitions.

Interestingly, the scaling factor for partition is very related
to the previous finding. The scaling factor is used to extract the
partitions after the clustering algorithm. So if the scaling factor
is large, the partition will be large too. Again, by looking at
Fig. 5, small values of ¢ give the best results. Therefore, we can
confirm that there is a inverse relation between partition size
and effectiveness.

Another important point is that, for each plot, the best mean
average precision was obtained when we selected a number of
keypoints in accordance with the number of vertices. In fact,
the highest MAP was 0.4977, obtained with IP-0.02, R = 0.1,
S =0.2, and § = 1.0. The reason to choose this in contrast to
a fixed number of keypoints is evident. With a fixed number of
keypoints, it is not possible to guarantee a good representation
for a shape. This fact conditions the representativeness power
of the keypoints, because it is likely that when we took a fixed
number of keypoints per model, this amount can be large for
some models and small for others. On the other hand, the adap-
tive alternative seems to be a good choice taking into account
that an object can have an arbitrary number of vertices.

Also, we present results for nearest neighbor (NN), First
Tier (FT), and Second Tier (ST) in Fig. 6, 7 and 8, respectively.
The NN measure evaluates the capacity of an algorithm to re-
trieve a relevant object in the first position of the retrieved list.
The highest value 0.7958 was obtained using a fixed number of
keypoints (400), small clusters (R=0.1, S = 0.2) and the small-
est scaling factor (1.0). On the other hand, our results about FT
and ST show a similar behavior as MAP. That is, higher values
are obtained when clusters are small, and the scaling factor for
a partition is small. The highest value 0.4665 for FT was ob-
tained with IP-0.04, R = 0.1, S = 0.2 and 6 = 1.0. Similarly, the
highest values 0.320507 was obtained with IP-0.02, R = 0.1, S
=0.2,and 6 = 1.0.

Regarding QPM, Fig. 9, 10, 11 and 12 show our results
for MAP, NN, FT and ST, respectively. Surprisingly, the best
MAP scores were obtained with medium size clusters. More-
over, unlike the mean average precision of LPM, large clusters
give better results when the number of keypoints depends on the
number of vertices. In this connection, the configuration that
delivers the largest partitions (R=0.2, S = 0.4 and 6 = 1.0) has
one of the highest MAP score. Although this situation contrasts
too much with the results obtained for LPM, there is a reason
for this behavior. The QPM approach depends not only on the
similarity between part descriptors, but also on their geometric
disposition. In fact, QPM gives the same importance to the sim-
ilarity between descriptors and their consistency. In our opin-
ion, the geometric consistency is causing this phenomenon. Our
reasoning is that larger parts are more consistent in a geometri-
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Figure 5: Mean average precision (MAP) and sensitivity analysis on our Linear Programming Matching approach. (a) 6 = 1.0. (b)
6 = 1.25. (c) 6 = 1.5. Plot were scaled to best visualization.
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Figure 6: Nearest neighbor (NN) and sensitivity analysis on our Linear Programming Matching approach (LPM). (a) 6 = 1.0. (b)
6 = 1.25. (c) 6 = 1.5. Plot were scaled to best visualization.
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Figure 7: First tier (FT) and sensitivity analysis on our Linear Programming Matching approach (LPM). (a) 6 = 1.0. (b) 6 = 1.25.
(c) 6 = 1.5. Plot were scaled to best visualization.
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cal sense than smaller parts. For instance, consider two human
shapes: one with arms close to body, and other with open arms
forming a T. Small partitions could characterize hands, legs,
and head. Differently, large partitions could characterize upper
body and lower body. So obviously the geometric consistency
of upper body and lower body remains more similar than hands,
legs and head in this scenario. This situation is not uncommon
in 3D datasets, and the SHREC’2009 dataset is not an excep-
tion. Therefore, in our opinion, the results we obtained exhibit
the importance of considering the size of partitions as an key
aspect to accomplish good effectiveness.

Similarly to LPM, the First Tier (see Fig. 11) and Second
Tier (see Fig. 12) in QPM exhibit an analogous behavior to its
mean average precision. For the First Tier, large clusters give
better results against their counterpart. Moreover, the highest
FT score 0.4511 is obtained with the largest possible partition
(IP-0.04,R = 0.2, S = 0.4, 6=1.5). Likewise, using the Second
Tier, the predominant scores are present either when using large
clusters or when using a scaling factor greater than 1.0.

5.4. Class-by-class Analysis

In this section, we show a more detailed evaluation of our
approaches from the point of view of the effectiveness in each
class of the dataset. The motivation to perform this evaluation
is two-fold. First, all the retrieval measures used in previous
experiments are a result of averaging. Average is a good way to
condense a series of values. However, it can also hide valuable
information in finer levels of analysis. Second, after seeing the
results obtained in previous sections, our approach can be suit-
able depending on shape classes. So it is necessary to study the
effect of our approach in each class of the dataset. Therefore,
this can reveal useful information to decide when to effectively
use our proposal. The results of this section were computed
using the best combination found in the sensitivity analysis of
Section 5.3, namely IP-0.02, R = 0.1, S = 0.2 and 6=1.0.

Figure 13 shows the mean average precision for each class
in the SHREC’09 dataset. We divide the classes into two fig-
ures to best visualization. Each figure shows the comparison of
Global Matching, Linear Programming Matching and Quadratic
Programming Matching for each class as clustered bars. Our
method was able to improve the effectiveness in 30 out of 40
classes. Moreover, when the objects within the same class have
similar local structures and geometric consistency (such as in
bookshelf, bird, apartment and skyscrape), the QPM approach
outperforms the global matching and LPM.

Also, note the existence of 10 classes (single house, chair,
round table, quadruped, mug, floor lamp, desk lamp, sword,
biplane and bicycle) where it was not possible to improve the
effectiveness with any of our approaches. However, it is also
worth noting that in general, all of these 10 classes share a char-
acteristic: the high variability of objects within the same class
not only in a global sense, but also in a local sense. To illustrate
this point, let us take as example the class Chair, on which our
approaches did not improve. In our opinion, it is due to the high
variability in the global sense. Moreover, shape parts also have
a high variability (see Fig. 14). As a result, the keypoints can
be concentrated in different parts of the models, as each object
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can contain distinctive local features not repeatable in its class.
Therefore, LPM and QPM can not take advantage of the parti-
tioning technique proposed in this paper. Consequently, this can
be the cause for the moderate improvement of our method with
respect to global matching. However, we believe that similar
situations could influence the effectiveness of any algorithm.

The found evidence allows us to state the strengths and lim-
itations of our approach. On the one hand, our method can im-
prove the effectiveness in classes that share local information.
That is, when models from the same class have common and
similar parts, an improvement is expected. On the other hand,
our approaches can not deal with extreme variability of parts
between objects within the same class.

5.4.1. Correlation Analysis

In this section, we investigate the possible relationships be-
tween several factors that affect the effectiveness of our pro-
posed methods. To do so, we use a correlation analysis and a
statistical significance study among eight variables defined in
the following, also introducing the abbreviations for each vari-
able to be used in the analysis.

e Number of partitions (NP)

e Number of vertices (NV)

o MAP for global matching (GM)

o MAP for LPM (LPM)

o MAP for QPM (QPM)

e MAP gain of LPM over GM (G1)
o MAP gain of QPM over GM (G2)
o MAP gain of QPM over LPM (G3)

The three last variables were obtained by computing the dif-
ference of MAP scores of the involved methods. To obtain the
data in this experiment, we computed the eight values using
each model in the collection as a query. Therefore, we obtained
eight values for each model, and subsequently we used all that
information to compute the correlation matrix shown in Table 2.
In addition, we computed the p-values for testing the hypoth-
esis of no correlation. So for each correlation value, we have
a p-value indicating the statistical significance of that correla-
tion. We assume p-values < 0.05 as significant. The matrix of
p-values is shown in Table 3.

The information provided by the correlation matrix and the
p-values allow us to verify some aspects observed in previous
experiments. For instance, there is a high correlation between
the number of partitions and the three gain measures, namely
G1, G2 and G3. First, the correlation between the number of
partitions and G1 (MAP gain of LPM over GM) is positive. So
the greater the number of partitions, the higher the improvement
of LPM over GM. Second, the correlation between the number
of partitions and G2 and G3 (MAP gain of QPM over GM and
LPM, respectively) is negative. So it means that QPM benefits
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Figure 14: Samples of class Chair. Note the high variability of parts amongst shapes.
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Table 2: Correlation matrix between eight variables: Number of partitions (NP), number of vertices (NV), MAP for GM (GM),
MAP for LPM (LPM), MAP for QPM (QPM), MAP gain for LPM over GM (G1), MAP gain for QPM over GM (G2), and MAP

gain for QPM over LPM (G3).

Variables NP NV GM LPM QPM G1 G2 G3

NP 1.0000 | 0.0323 | -0.0131 | -0.0015 | -0.0696 | 0.1318 | -0.2658 | -0.3145
NV 0.0323 | 1.0000 | 0.0361 | 0.0431 | 0.0361 | 0.0815 | -0.0039 | -0.0377
GM -0.0131 | 0.0361 | 1.0000 | 0.9962 | 0.9784 | 0.0149 | -0.2119 | -0.2132
LPM -0.0015 | 0.0431 | 0.9962 | 1.0000 | 0.9776 | 0.1022 | -0.1972 | -0.2351
QPM -0.0696 | 0.0361 | 0.9784 | 0.9776 | 1.0000 | 0.0484 | -0.0055 | -0.0254
G1 0.1318 | 0.0815 | 0.0149 | 0.1022 | 0.0484 | 1.0000 | 0.1566 | -0.2625
G2 -0.2658 | -0.0039 | -0.2119 | -0.1972 | -0.0055 | 0.1566 | 1.0000 | 0.9119
G3 -0.3145 | -0.0377 | -0.2132 | -0.2351 | -0.0254 | -0.2625 | 0.9119 | 1.0000

Table 3: Matrix of p-values for the correlation between eight variables: Number of partitions (NP), number of vertices (NV), MAP
for GM (GM), MAP for LPM (LPM), MAP for QPM (QPM), MAP gain for LPM over GM (G1), MAP gain for QPM over GM

(G2), and MAP gain for QPM over LPM (G3).

Variables NP NV GM LPM | QPM G1 G2 G3

NP 1.0000 | 0.3875 | 0.7262 | 0.9682 | 0.0621 | 0.0004 | 0.0000 | 0.0000
NV 0.3875 | 1.0000 | 0.3329 | 0.2484 | 0.3329 | 0.0287 | 0.9160 | 0.3121
GM 0.7262 | 0.3329 | 1.0000 | 0.0000 | 0.0000 | 0.6895 | 0.0000 | 0.0000
LPM 0.9682 | 0.2484 | 0.0000 | 1.0000 | 0.0000 | 0.0060 | 0.0000 | 0.0000
QPM 0.0621 | 0.3329 | 0.0000 | 0.0000 | 1.0000 | 0.1949 | 0.8836 | 0.4957
G1 0.0004 | 0.0287 | 0.6895 | 0.0060 | 0.1949 | 1.0000 | 0.0000 | 0.0000
G2 0.0000 | 0.9160 | 0.0000 | 0.0000 | 0.8836 | 0.0000 | 1.0000 | 0.0000
G3 0.0000 | 0.3121 | 0.0000 | 0.0000 | 0.4957 | 0.0000 | 0.0000 | 1.0000

from fewer partitions. These two situations are consistent with
the findings of Sec. 5.3 when we showed that QPM presents
better results with large partitions. So now we can conclude
that QPM is suitable for matching few large partitions. In con-
trast, LPM can perform a good matching regardless the geomet-
ric consistency, just by considering more small partitions. It is
expected that the small partitions belong to distinctive features
of the objects. In summary, we have shown the importance of
the number of partitions and their size in the improvement of
the retrieval effectiveness of our technique.

Regarding the number of vertices of the meshes, there is
a useful correlation which deserves attention. The number of
vertices is highly correlated with the MAP gain of LPM over
GM (G1). In other words, as the correlation is positive, we
can say that LPM benefits from meshes with a large number
of vertices. It reveals a remarkable connection with the pre-
vious analysis. With large number of vertices, one can expect
meshes with more detail, and hence they can contain rich fea-
tures. Moreover, if we prefer to select small clusters, the result-
ing partitions will be distinctive and small. In addition, we can
obtain many partitions since the number of keypoints could de-
pend of the number of vertices. Finally, following our previous
analysis, LPM obtains better effectiveness when the input is a
set of many distinctive partitions as a product of meshes with
many vertices.

It is also worth noting the dependency of our approaches
(LPM and QPM) on the global matching. This can be evidenced
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in the high correlation between GM and both LPM and QPM.
Obviously, this fact is in accordance with the use of u = 0.9
which is associated to a large contribution of the global match-
ing in the final distance computation.

5.4.2. Results with PANORAMA

In this section, we present the results of our method using
the PANORAMA descriptor [14]. For this experiment, we used
the best parameter configuration as shown in Section 5.3. Ta-
ble 4 shows the results by varying the contribution of the part
matching (parameter u) in the LPM technique. Similar to a
previous experiment (see Section 5.2), we obtained the best re-
sults when u = 0.9. This result validates our argument about
the contribution of the partition matching in the effectiveness of
generic shape retrieval.

6. Conclusions

In this paper, we presented a shape retrieval method that
combines global descriptors and part-based descriptors. We
proposed a method for determining data-adaptive partition from
meshes. Partitions were derived from agglomerations of dis-
tinctive keypoints on shapes. Finally, matching between parti-
tions was stated as a integer program in order to compute cor-
respondences.

From our experiments, it is possible to say that partition
matching contributes to improving the retrieval effectiveness.



Table 4: Results for different values of y in LPM using
PANORAMA (values are in [0,100] scale)

u NN FT ST MAP
0 42.0833 212337 153064 20.4128
0. 60.6944 313880 21.8709 313174
0.2 74.5833 40.6536 28.6029 42.286
0.3 81.8056 48268 33.7908 50.9521
04 854167 54.1912 38701 57.3621
0.5 883333 57.8758 41393 61.7762
0.6 83.8889 603513 43.1822 64.4322
0.7 884722 61.585 44375 659167
0.8 83.8889 62.165 44951 66.6028
0.9 89.0278 623366 453023 66.813
1.0 89.0278 61.9853 44.7917 66.7291

Our method was able to achieve significant improvements in
classes with objects containing common distinctive parts. In
contrast, there is a limitation when objects within a class do not
share common distinctive parts. Therefore, the partition match-
ing degrades the effectiveness of global descriptors instead of
improving it. Nevertheless, we believe that our approach par-
tially attennuated this limitation with its ability to determine
characteristic partitions. In our opinion, our method offers new
representational capabilities for 3D shapes which have proven
to be effective in conjunction with global descriptors. In addi-
tion, we found a high correlation between the achieved effec-
tiveness and the partitions provided by our method. Specifi-
cally, the number and size of the partitions play an important
role for defining an effective similarity measure. This is be-
cause these two factors are well related to the quality of par-
titions (and their distinctiveness) and therefore, they influence
the overall performance.

In our opinion, the use of high-level local structures in 3D
shape retrieval is a promising research direction. Moreover,
the use of information in higher levels of abstraction (for in-
stance, functionality) should benefit the definition of more ef-
fective similarity models.
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