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Abstract—A common approach for implementing content-
based multimedia retrieval tasks resorts to extracting high-
dimensional feature vectors from the multimedia objects. In
combination with an appropriate dissimilarity function, such as
the well-known Lp functions or statistical measures like χ2, one
can rank objects by dissimilarity with respect to a query. For
many multimedia retrieval problems, a large number of feature
extraction methods have been proposed and experimentally
evaluated for their effectiveness. Much less work has been done
to systematically study the impact of the choice of dissimilarity
function on the retrieval effectiveness.

Inspired by previous work which compared dissimilarity
functions for image retrieval, we provide an extensive comparison
of dissimilarity measures for 3D object retrieval. Our study is
based on an encompassing set of feature extractors, dissimilarity
measures and benchmark data sets. We identify the best per-
forming dissimilarity measures and in turn identify dependencies
between well-performing dissimilarity measures and types of 3D
features. Based on these findings, we show that the effectiveness
of 3D retrieval can be improved by a feature-dependent measure
choice. In addition, we apply different normalization schemes to
the dissimilarity distributions in order to show improved retrieval
effectiveness for late fusion of multi-feature combination. Finally,
we present preliminary findings on the correlation of rankings
for dissimilarity measures, which could be exploited for further
improvement of retrieval effectiveness for single features as well
as combinations.

I. INTRODUCTION

Content-based indexing approaches are a requirement to
cope with large amounts of multimedia documents. They
support retrieval and cluster analysis applications based on
the similarity between documents. Feature-based approaches
are popular to this end due to their often simple and robust
implementations. Also, feature vectors can be used with spa-
tial index structures for scalable similarity search. However,
features typically only encode very low-level properties of
the multimedia objects. Therefore, careful experimentation is
needed to determine suitable features types, extraction param-
eters and the dissimilarity measure used for comparing them.
This is usually done by benchmark data sets which define test
documents and similarity judgments (i.e. ground truth). While
to date, many different feature types have been proposed for
multimedia retrieval, the choice of dissimilarity functions has
been researched to substantially less extent. Few systematic
studies on the effect of the dissimilarity function for content-
based retrieval have been conducted. One example is [20],

where a set of dissimilarity functions including Lp norms
and information-theoretic measures have been evaluated. The
study showed that the choice of dissimilarity has an impact on
the effectiveness of retrieval, classification and segmentation
tasks and that the choice of the best function also depends on
properties of the data. Motivated by this previous study, we
experimentally compare the effectiveness of a larger number
of dissimilarity measures for 3D shape retrieval tasks. Based
on our study involving several data sets and different types
of 3D features, we also find that the choice of dissimilarity
function significantly affects the effectiveness of 3D Retrieval
and depends on the features type it is applied to. Extending this
experimental setup, we subsequently study the impact of differ-
ent dissimilarity measures and several distance normalization
schemes when multiple features are aggregated to compute
similarity. Our findings can be used to improve the retrieval
effectiveness of multi-feature retrieval systems.

The remainder of this paper is structured as follows. In
Section II we describe related work on feature-based multime-
dia retrieval and evaluation. In Section III we state the research
questions of this study and the experimental setup it motivates.
Subsequently, we present and assess our findings in Section IV.
In Section V we discuss limitations of the study and, following
a side result of our study, outline a new technique for rank-
based aggregation. Finally, Section VI concludes.

II. BACKGROUND AND RELATED WORK

Algorithms for multimedia retrieval have been developed
for different types of multimedia data, for example im-
ages [10], music/motion [18], video [17], and 3D data [23].
A common approach for tackling this problem is to repre-
sent each multimedia document with one or several high-
dimensional feature vectors, which are constructed by analyz-
ing the content of the multimedia document. If the query is
also a multimedia document (query-by-example), its feature
vectors are extracted and then matched with those from the
repository. For convenience, a dissimilarity measure can be
defined as a distance between the feature vectors extracted
from the documents, effectively implementing the multimedia
retrieval task as a k-nearest neighbor search.

In the area of 3D shape retrieval, this approach has been
used extensively. Initially, feature vectors were designed to
globally describe the 3D shape [8] and usually compared by
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L1 or L2. More recently, a large amount of research has been
concentrated on defining local features for 3D models, which
take into account local shape characteristics for computing
several feature vectors for each model. Relying on these, more
complex retrieval tasks like part-to-whole similarity search in
3D objects, where the goal is to find a partial matching between
the query and the 3D repository [22], have been proposed.

Techniques, such as Bag of Features(BoF), Fisher Vector
Encoding or Vector of Locally Aggregated Descriptors[4] see
increasing adoption in various fields of multimedia retrieval
to encode a single global feature vector from a set of such
local features. While there have been studies that assess the
effectiveness of such encoding techniques (e.g. for image
retrieval [9]), a choice beyond L1 and L2 has not been subject
to research.

Orthogonally, given the number of different 3D feature
types that have been proposed along with their specific advan-
tages and limitations, the question arises, how multiple feature
types could be combined to obtain more effective retrieval
methods. Studies have shown that combinations can improve
overall retrieval effectiveness, e.g., when combining features
of different kinds (e.g., view- and extent-based features [24])
or locality (e.g., global and local features [21]). Features of
different type can be combined in several ways, including
concatenation of individual feature vectors to form a larger
vector [24], possibly followed by a dimensionality reduction
step like Principal Components Analysis [14] or feature selec-
tion [16]. Also, multiple features can be considered for retrieval
by aggregating the rankings which each of the original feature
vectors gives aggregation of ranks [11]. Feature combination
and rank aggregation may also be useful to adapt the similarity
search to specific preferences of a given user in relevance
feedback-type schemes [5]. However in the work mentioned
above, the impact of the choice of dissimilarity measure has
not been subject to systematic evaluation.

At the same time, more foundational research on the behav-
ior of Lp dissimilarity measures in high dimensional spaces[3],
[12] implies the question if L1 and L2 could be outperformed
by other dissimilarity measures in applications such as 3D
retrieval. To address this gap, we conduct a first systematic
study on dissimilarity measures within the context of 3D shape
retrieval, that takes into account fractional distances as well as
information theoretic dissimilarity measures.

III. EXPERIMENTAL SETUP

In this section, we describe the main research questions
that we address in this work and in turn detail the test data
and methodology we devised to answer the questions.
A. Problem Statement

Our experiments are motivated by the following problems:

P1 How do different dissimilarity measures compare to
each other in terms of effectiveness of 3D retrieval? Is
there empirical indication to consider other measures
than the ubiquitous L1 and L2?

P2 Is there any dependency between the measures and the
types of data or features on the other hand?

P3 Are there any patterns, that we could then exploit to
improve the effectiveness of a multi-feature retrieval
system?

B. 3D Features
For our study, we consider a range of 3D shape features,

which characterize the global shape of a 3D object by certain
low-level measurements. The features can be grouped as
follows (please refer to the abbreviations in the later results
and to [7] for details):

View-based features are obtained from 2D images of the
3D objects. They comprise features from depth-buffer images
(DBF) and from silhouette images (SIL).

Surface-based features characterize measurements obtained
from the object surface. They comprise SD2 (histogram of
distances between surface point pairs), and GRAY (measures
of surface normals). Extent-based features describe the nor-
malized spatial extend of a 3D object. They comprise COR
(distances of surface triangles from the center of mass), as
well as RSH and IRAY (distances of surface point samples
from center of mass, represented in the frequency or spatial
domain, respectively).

Volume-based features are computed from a volumetric rep-
resentation of an object. They comprise RIN and VOX (ag-
gregates of a Voxel-based object representation), VOL (object
volume measured along radial partitioning scheme), 3DDFT
(VOX in the frequency domain), and H3D (object volume in
spherical harmonics representation [13]).

Moments-based features refer to statistical moments over shape
measurements. They include RMOM (moments of IRAY mea-
sures) and PMOM (moments of mesh triangle centroids).

Hybrid features combine several basic features in a joint
feature vector. They comprise CPX (combining RSH and
GRAY), and DSR (combining DBF, SIL and RSH).

According to their encoding, we can group SD2, COR, RI,
RMOM, PMOM as histograms- or distributional measures and
GRAY, IRAY, VOX, VOL as feature vectors that show locality
of the feature vector dimensions, where nearby dimensions
represent measures from close shape points. Note that this
selection of global shape features is not complete regarding
the large amount of 3D global shape descriptors proposed in
the literature. However, it includes features from main feature
categories often used in 3D retrieval (i.e., view-, surface-,
extent- and volume-based ones).

C. Datasets
For our experiments we used three standard datasets for

evaluation of 3D retrieval tasks. The Princeton Shape Bench-
mark (PSB) [2] consists of generic 3D shapes collected from
the web, separated into 907 training and 902 test objects
categorized into 90 classes. We only computed descriptors for
the training objects (note that all of our descriptors do not re-
quire training). The Engineering Shape Benchmark (ESB) [15]
consists of 867 mechanical engineering shapes categorized
into 42 classes. The Konstanz Shape Benchmark (KNDB) [8]
consists of 1838 generic shapes collected from the web. 472
of which are categorized into 55 classes.

D. Dissimilarity Measures
Table I lists the definitions of the measures used in our

experiments. In the following we refer to the abbreviations
introduced there. To test Minkowski-like Lp measures, we use



Measure Definition

Minkowski Lp(x, y) =

(∑
i
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)1/p
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2
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Kullback-Leibler
Divergence

KL(x, y) =
∑
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xi log
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Jeffrey
Divergence
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Kolmogorov
Smirnov Test

KS(x, y) = min
i

(|x̂i − ŷi|), x̂i =
∑
j≤i

xi

Cramer von Mises
Criterion

CvM(x, y) =
∑
i

(x̂i − ŷi)2, x̂i =
∑
j≤i

xi

Weighted Mean
Variance

WMV (x, y) =
|µ(x)− µ(y)|
|σ(µ(x), µ(y))|

+
|σ(x)− σ(y)|
|σ(σ(x), σ(y))|

µ(x) =
1

n

n∑
i

xi σ(x) =

√√√√ 1

n

n∑
i

(xi − µ(x))2

TABLE I. THE SET OF DISSIMILARITY MEASURES USED IN OUR
EXPERIMENTS.

p ∈ {0.1, 0.3, 0.6, 0.9} to obtain fractional distances (i.e. semi-
metrics) and p ∈ {1, 2} to obtain Manhattan and Euclidean
distance (i.e. regular metrics). A detailed description of most
of the dissimilarity measures can be found in [20]. Definition
and evaluation of Quadratic Chi (QC), which is intended for
histograms, can be found in [19]. It is worth mentioning that
there, QC outperforms L1, L2, JSD, JD, KL and even Earth
Movers Distance (EMD) when applied to BoF descriptors
based on local 2D image features (i.e. SIFT). Note that EMD
is not included in our comparison due to its exponential time
complexity. When assuming constant time computation of log
and power functions, all of the tested measures share O(n)
time complexity, except for QC, KS and CvM with O(n2),
where n denotes feature dimensionality.

E. Performance Measure and Result Visualization
We determine the effectiveness of different 3D features

and dissimilarity measures by R-precision (RP , also called
first-tier precision) measure [5], [2], RP ∈ [0, . . . , 1]. It gives
the precision of a nearest neighbor ranking R(q) of size
r = |R(q)| with respect to a query q, where r is equal to
the number of objects in the benchmark relevant to q. This
measure typically correlates strongly with similar measures of
precision in Information Retrieval like average precision or
harmonic mean. In the following, we compare the RP results
using tables per benchmark, showing the obtained measures
for features (rows) and dissimilarity measures (columns).

F. Combinations of Features
From previous work, it is well known that relying in mul-

tiple features can substantially improve retrieval effectiveness

over individual features. Hence after identifying the perfor-
mance for individual features and dissimilarity measures, we
test multi-feature combinations. To fuse multiple features, there
are many strategies (see sec II and V). A simple approach is
direct aggregation of the individual distances (i.e. late fusion).
However, this approach is sensitive to different distribution
characteristics in the respective feature spaces. Furthermore,
it is well known (”Curse of Dimensionality”[3][12]), that
the distribution of the distances, obtained by a dissimilarity
measure, can be heavily dependent on the dimensionality of the
feature space, which usually varies between different feature
types. Both effects can, to limited extent, be addressed by nor-
malizing the distances before aggregation. We test aggregation
with several normalization schemes. Let fi denote individual
features in feature set F , which contains features of same type
extracted for each object in a benchmark. Let d : Rn×Rn 7→ R
be a dissimilarity measure, where di,j is the distance of fi to
fj and DF = {di,j : ∀fi, fj ∈ F ∧ i 6= j} the set of all
pairwise distances with respect to d and F :

• mean-normalization: dµi,j =
di,j
µ(DF )

• max-normalization: dmaxi,j =
di,j

max(DF )

• α-normalization: dαi,j =
di,j
τα,DF

with α set to 0.1 and
FDF (τα,DF ) = α, where FDF denotes the cumulative
distribution over all di,j ∈ DF . Details in [6].

So far, combination schemes usually fuse distances obtained
from applying a single metric over all features. We test
combinations of 3-6 feature vectors (from PSB and KNDB)
for each metric and compare this to combinations relying
on the respective best metric per feature vector as identified
according to P1 and P2. For both, normalization is applied
before aggregation. IV. RESULTS

Fig. 1 shows the results for single features in combination
with each of the dissimilarity measures whereas results for
multi-feature retrieval are provided by Fig. 2. Overall α-
and max-normalization outperformed mean-normalization by
a magnitude of 10−2 in R-precision. The differences between
α- and max-normalization appear to be data dependent and
are mostly in the magnitude of 10−3 and below. Overall, α-
normalization performs better for KNDB and worse for PSB.
There are no consistent patterns with respect to measures,
except for (KLD), where for both benchmarks and in the
majority of cases, α-normalization leads to better results by
about .02 to .03. We provide R-precision values based on
α-normalization here. Detailed comparisons can be found in
the supplementary material [1]. In the following, we interpret
the results in terms of the research questions as formulated in
Section III-A.

P1: Comparison of similarity metrics
L1 can be considered a robust and among the overall best

choices concerning single feature retrieval. However in only
19 of the total 41 test cases, it is among the top 3 scoring
measures for an individual feature. Furthermore, if we compare
all measures by the number of achieved top rankings over
the 41 feature/benchmark combinations, L1 (6) is preceded by
χ2 (9), on par with L2 and followed by JSD, L0.9, L0.6 and
QC (4). In pairwise comparison, L1 is outperformed by L0.9

in 23, by χ2 in 21 and by Jensen-Shannon Divergence (JSD)



Fig. 1. Comparison of average R-precision for a selection of global 3D Shape
descriptors and the PSB, KNDB and ESB benchmarks. Rows correspond to
feature vector types, columns to metrics. For each row, the best performing
measure is color coded with dark blue. Color coding transitions to white over
the next 6 best performing measures.

in 18 cases. Thus, for our tests, we can state that χ2 and L0.9

have an equal if not better robustness than L1 across varying
features and data. The robustness for L2 is not among the top 5,
in direct comparison, it falls behind L1 (34), L0.9 (33), χ2 (30),
JSD (30) and L0.6 in 22 cases. Note that for R-precision the
groups of χ2,JSD and L1, L0.9, L0.6 show high correlation
over all features and data sets. In conclusion our tests indicate,
that, without taking into account specific knowledge about
the data set or feature type, it is worthwhile to consider
other metrics besides L1 and especially L2. From our set of
dissimilarity measures, in particular χ2, L0.9 and JSD show
very good results. In test cases where Quadratic Chi (QC)
performs best, either L0.6 or L0.3 are only marginally worse,
but have lower time complexity. Choosing p within (0.3, 0.6)
could lead to equal performance for this test cases. Due to

the overall low R-precision for KLD, KSD, CVMS and
WMV , they will not be discussed in the following sections.

P2: Dependency between metrics, feature types and dataset

Concerning overall dataset dependencies, the top measures
identified in the previous section show consistent in feature
specific behavior over PSB and KN dataset and to slightly
lesser extent also for ESB. The information theoretic measures
χ2 and JSD perform well for most of the histogram features
such as PMOM, RIN, SD2, which often perform sub par
with L1. For KN, where categories are more easily separated
(overall higher R-precision), L1 is roughly on par for several
of those features.

According to [12], Lp measures with larger p perform
better with growing equality of variance among the individual
dimensions within a feature set. Apparently, this is backed by
L2 performing best for 3DDFT and VOL. Both, the Fourier-
Transform(FT) and the radial partitioning scheme are prone
to equally distributed aliasing noise over all frequencies or
partitions when features are extracted from slightly different
objects. However, this is contradicted by the performance of
the FT based DBF and SIL. L2 is among the worst performing
Lp measures for features where slight changes in objects do
not affect multiple dimensions equally such as COR or VOX
(i.e. 3DDFT without FT). Note that there are almost no features
where L2 and lower fractional distances are both among the
top performing measures.

Concerning [3], the Curse of Dimensionality does not seem
to affect larger p with major impact. The high-dimensional
VOL(486) and DSR(472), do not generally perform worse with
L2, the low dimensional PMOM(52) and COR(30) are not
better with lower fractional distances. The top score of L0.1 for
SD2 in ESB could result out of the often very heterogeneous
distribution of vertices over the surface of CAD models. In
the case of ESB, vertex sampling density on the surface is
likely characteristic to some of the categories so that respective
SD2 features reflect the category by very sparsly distributed
peaks in the histogram at varying indices. QC is best for COR
and VOX features of PSB and KN. Both COR an VOX have
strongly expressed localities at adjacent or identical indices.
Note that lower fractional distances show good performance
here as well.

P3: Performance of combined distance metrics

From the previous, we have seen that while on average,
L1 is among the overall best metrics, it is often outperformed
by other measures for specific features. Referring to Fig. 2,
the results show dependence to dataset, the number as well
as the types of features combined. Over both datasets and
almost all cases, top performance is either achieved by fusion
of the individual best measures (26), χ2 (17), or JD (10),
whereas L1 trails with only 4 top scores. However it often
does not fall behind by large margin. Again L0.9 shows similar
behavior to L1 but is almost consistently outperformed in
direct comparison. While JSD performs close to χ2 for the
combinations tested on the PSB dataset (similar to the results
for single features), it does not perform well for a larger
number of combined features and most other combination
tested over KNDB. Surprisingly JD, which overall is clearly
outperformed for single features, now often outperforms JSD.



Fig. 2. Comparison of average R-precision for multi-feature combinations.
The top sections shows combinations over the PSB and the bottom section
over the KN benchmark. Rows correspond to feature combinations, columns
to dissimilarity measures. Note that the first column combines the individually
best performing measures for each feature, whereas the remaining columns a
uniform measure was fused.

When not considering the specifics of the individual combi-
nations, late fusion of the best measures and L1 can overall
be considered the most robust choices for our test cases,

while L1 mostly trails the former. This indicates, that using
individually best measures should overall be preferred over
L1. For specific combinations, fusion of either χ2, JD and in
rare cases also fractional distances could provide substantial
improvement over combining the individually best measures.

V. LIMITATIONS AND EXTENSIONS

We pragmatically considered a specific data type (3D
objects) and a selection of global descriptors. Recently, local
descriptors have come into focus and should be studied as
well as global features that can be derived from them (see
sec. II). However, given the characteristics of certain local
features, our findings could serve as a first indication that likely
in conjunction with different measures than L1 or L2 their
retrieval performance could be improved.

We chose a range of representative dissimilarity measures
with reasonably low time-complexity. It is worthwhile to note
that in our tests, measures with O(1) are on par or outperform
the (smaller) set of O(n) dissimilarity measures. However, the
set of tested measures could be extended (e.g. Canberra and
Bray-Curtis distance). Even though the performance margin
between the top performing distance measures in our test is
often small, their implementation effort is not high either.
For other retrieval or kNN-search applications, even small
improvements in effectiveness might also be worthwhile if they
can be achieved with low effort.

We do not provide detailed results for any (inherently
platform-specific) assessments of practical computation time.
In early experiments with our mostly Java-based testing infras-
tructure, aggregated runtime of all pairwise distance computa-
tion for the O(1) based measures was easily overshadowed
by background activity, albeit carefully chosen JVM heap
size, JIT, garbage collection parameters and an otherwise idle
system.

For many retrieval applications in general, feature extrac-
tion for a single query object often easily overshadows the
computational cost of determining feature dissimilarity to each
object in the database. On the other hand, when the size of
the database is very large, the efficiency of spatial indexing
techniques should be taken into account as well (e.g. metric
indexing or locality sensitive hashing). Also, we could only
study a selection of the many approaches to feature com-
bination. We focused mainly on distance-based aggregation
in late fusion. We discarded rank-based aggregation, after
initial results indicated significantly worse performance. While
the tested DSR and CPX features are an example of early
fusion, this set could clearly be extended. Beyond specific 3D
Features, the evaluation methodology for feature type and data
dependence could be improved. E.g. inspired by the results for
P2, we are convinced that determining correlation measures
between statistical moments of a feature set (e.g. histograms
of variance among each dimension) and relative dissimilarity
measure performance could further improve our assessment.
Alternatively a Bonferroni-Test could be applied. Addition-
ally, analysis could be conducted separately for individual
object categories. In turn this could provide useful indication
of whether query object dependent choices of dissimilarity
measure should be subject to further research. On the other
hand z-score normalization,
Finally, as an additional experiment, we performed a visual



Fig. 3. Matrix of pairwise ranking comparison between best performing
dissimilarity measures for the DSR descriptor on the KNDB dataset. Each tile
compares all obtained rankings of relevant objects for two measures, starting
from the top ranks (top and left of tile) to the 0.5 quantile (bottom and right of
tile). E.g. over all query objects from KNDB, JSD and JD show by far the
highest correlation in their rankings of relevant objects. This is reflected by a
clearly expressed main diagonal within the tile. Note that while R-precision
of e.g. L1 and χ2 only differs by 0.007, a large number of relevant objects
is ranked differently. The effect increases from the top ranks up to the 0.5
quantile.

analysis of the correlation of rankings in pairwise comparison
of different dissimilarity measures. In Figure 3 we elaborate
an example while more visualizations are provided in the
supplementary material [1]. Our results show that although in
pairwise comparison, measures often show similar and good
R-precision levels, they provide significantly different (uncor-
related) rankings. This is a strong indication that different
metrics manage to retrieve different relevant objects and hence
potentially complementary result sets. This warrants further
investigation, as it might be possible to heuristically combine
multiple of such ranking (e.g. also over single features) to
improve precision and recall.

VI. CONCLUSIONS

Our experiments provide extensive and novel empirical
results for the impact of various dissimilarity measures over a
broad selection of global 3D features and their late fusion. We
found strong empirical indication, that for single feature 3D
retrieval, other metrics besides L1 and L2 very often provide
better performance. Furthermore we showed that determining
the best performing measures for individual feature vectors has
practical relevance for improving the performance of late-fused
multi-feature 3D retrieval. As side results, we found indication
that α- and max-normalization outperform mean-normalization
over a large number of test runs and outlined a possible
opportunity to jointly exploit multiple dissimilarity measures
over single features for improving retrieval performance.
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