
GPU Accelerated Computation of Geometric
Descriptors in Parametric Space

Anthousis Andreadis Georgios Papaioannou Pavlos Mavridis

Department of Informatics, Athens University of Economics and Business
76 Patission Str., 10434 Athens, Greece
{anthousis,gepap,pmavridis}@aueb.gr

http://graphics.cs.aueb.gr

Abstract. We present a novel generic method for the fast and accurate
computation of geometric descriptors. While most existing approaches
perform the computations directly on the geometric representation of the
model, our method operates in parametric space, decoupling the compu-
tational complexity from the underlying mesh geometry. In contrast to
other parametric space approaches, our method is not restricted to spe-
cific descriptors or parameterisations of the surface. By using the para-
metric space representation of the mesh geometry, we can trivially exploit
massive parallel GPU architectures and achieve interactive computation
times, while maintaining high accuracy. This renders the method suitable
for computations involving large areas of support and animated shapes.

Keywords: Geometric descriptors, Parametric space, Mesh geometry,
GPU acceleration

1 Introduction

The computation of geometric descriptors, like curvature, is central in a wide
range of applications, including object retrieval, registration, texture synthesis,
stylized rendering and many more. The computation of these fundamental met-
rics is usually performed by algorithms that operate directly on discrete polygo-
nal representations of the continuous surface. In the case of static meshes, these
geometric descriptors can be computed once without worrying about the perfor-
mance. In contrast, in the case of moderately dense meshes with large areas of
support and especially in the case of animated or dynamic meshes, performance
becomes critical and this computation process becomes a challenging task.

In this work we focus on the general class of metrics with finite local support,
whose computation depends on the local neighbourhood of an arbitrary point p
on the object’s surface. Robustness in the presence of noise is achieved by per-
forming computations at multiple scales [30]. The computation of these types of
descriptors often relies on data structures that encode the adjacency information
and allow efficient discovery of the neighbouring points on the surface. This is
especially true for algorithms that operate on meshes. The computational com-
plexity of such object-space approaches is directly proportional to the geometric

2 GPU Accelerated Computation of Geometric Descriptors

(a)
(b) (c)

(d) (e)

Fig. 1. a) ”Lucy” model (200K) colourized with mean curvature, computed in 49ms, b)
geometry (position) buffer (normalized for visualization), c) surface normal buffer, d)
polygon chart identifiers (colourized for clarity) along with the adjacent chart identifiers
on border pixels, e) mean curvature in parametric space (colourized for visualization).

density and quadratic with respect to the extent (i.e. radius) of the local area
of support. Despite the fact that computing the metric for independent surface
points is an inherently parallel task, the use of complex data structures for stor-
ing the adjacency information, prevents a trivial and efficient mapping of these
computations to massively parallel stream processors, like commodity GPUs,
at arbitrary scales. For these reasons, real-time computation is often limited to
meshes with relatively low geometric complexity and 1-ring vertex neighbour-
hoods [6].

In order to alleviate these limitations, we shift all computations from object-
space to parametric space, by transferring all the geometric data of the object
to a two-dimensional layout, along with extra adjacency information that al-
lows us to reconstruct the object-space local neighbourhood of a given point on
the fly. While this choice is similar to Geometry Images [7], we do not restrict
our method by requiring a specific parameterisation of the surface, but rather
develop a scheme that handles any underlying parameterisation, including multi-
chart layouts. The benefits of parametric-space computations are twofold: First,
sampling the geometry at arbitrarily large areas of support is much more efficient
in parametric space, since the samples can be directly indexed in contrast to a
geometry-based estimation, where the traversal of a surface patch is performed
via the connectivity information of the vertices. Second, the parametric space
computations are directly mapped to the GPU/many-core computing paradigm
in a very efficient manner, rendering the approach suitable for real time calcu-
lations over deformable or animated objects. Another gain that stems from the
utilization of GPUs, is that we have access to linear interpolated data between
all the sample points of the surface with minimal impact on the performance,
as linear interpolation is natively supported by the hardware. This is very use-

GPU Accelerated Computation of Geometric Descriptors 3

Object Space (Radius 3%)

Low-Resolution Mesh

Ours (Radius 3%)

High-Resolution Mesh Low-Resolution Mesh High-Resolution Mesh

(a) (b) (c) (d)

Fig. 2. a) Using an object-space approach on a sub-sampled surface (low-resolution
mesh) with a relative small support radius (3% of the object’s diagonal), results in
inaccuracies. b) The same computations applied on the densely sampled surface (high-
resolution mesh). c) Using our parametric-space approach on the low-mesh we obtain
accurate results without any extra effort, due to the linear interpolated samples of the
surface. d) Results of our approach used on the high-resolution mesh.

ful, especially in cases of sub-sampled surfaces, where object-space methods give
inaccurate results for small support radius (see Figure 2).

2 Related Work

Most of the existing methods in the bibliography concentrate on the computation
of a specific geometric descriptor, and do not try to generalize their framework.
For our overview, we do not focus on the specific descriptors used in the existing
works, but rather focus and classify methods, based on how they sample the
geometric information of the object. Existing methods can be classified to those
that sample the geometry in object-space, in screen space, from a volumetric
representation and those that operate in parametric space. In the remainder of
this section we will review the main representatives for each category.

Object-space methods operate directly on the discrete mesh representations
of a surface. [29] and [18] generalize the differential-geometry-based definition
of curvatures to discrete meshes but their computations are limited to 1-ring
neighbourhoods, which renders them sensitive to noise. Similarly [23] estimate
the curvature over meshes using essentially a 2-ring neighbourhood. For efficient
arbitrary neighbourhoods, object-space methods require a data structure that
encodes the adjacency information between the triangles of the mesh, such as
the half-edge [2] or a kd-tree data structure. However, as discussed in the in-
troduction, a mapping of this data structure to the GPU is neither trivial nor
optimal. Most of the existing methods belong to this category and thus operate
on the CPU. GPU-based methods, have been proposed for the computation of
specific descriptors, like curvature [6], but these methods do not generalize to
the sampling of arbitrary neighbourhoods.

4 GPU Accelerated Computation of Geometric Descriptors

Screen space methods sample the geometric information of a mesh from a 2D
pixel buffer, where each pixel encodes the projected surface position of the mesh
from a specific point of view. In this form of representation, adjacency informa-
tion is implied by the pixel grid, and therefore sampling is trivial and can be
efficiently mapped to GPUs. This efficiency in sampling is also the main motiva-
tion behind our method. The main disadvantage of screen-space methods is that
computations are limited to the surface points visible from a particular view, re-
sulting in inaccuracies near occluded points and at the screen-space silhouettes
of the object. Such screen-space methods have been proposed for curvature esti-
mation in real-time stylized rendering [17], [13]. Our method retains most of the
sampling efficiency of the screen-space methods, but avoids the view-dependence
of the results by moving all the computation to the parametric space.

Volumetric data and algorithms can be also employed for the computation of
descriptors. In this case, the input mesh is initially converted to a volumetric
representation, such as a level set, and geometric descriptors are computed by
sampling this representation, instead of the original mesh. Finally, the results
of these calculations can be mapped back to the original mesh. The advantage
of this approach is that the computational complexity does not depend on the
underlying geometry but rather on the new volumetric representation, where
sampling a local neighbourhood around a surface point is often more efficient
than sampling the same neighbourhood on the original geometry. Features, like
curvature, can be quickly approximated using the gradient field of the object,
as described in the OpenVDB [19] or by using convolutions, which can be accel-
erated using FFT as shown in [22]. The disadvantage of this approach is that
an efficient voxelisation method is required, additional memory is consumed for
the storage of the volumetric format and most importantly, the computations
are based on a volumetric discretisation, which is a more rough representation of
the original surface than the triangular mesh. Furthermore, certain descriptors
when computed on volumetric data, are incompatible with the results of the
respective surface-based measurements, especially for non-manifold surfaces.

Finally, parametric space methods have also been proposed. Methods of this
category rely on a the unwrapping of the model’s surface on a 2D plane. Using
this representation, computational complexity is decoupled from the underlying
geometry and additionally, several image analysis techniques can be applied in-
tuitively to 3D data. To our knowledge, so far there has been no practical and
generic approach that would allow both geometric and image space descriptors to
be computed efficiently, as existing methods focus on applying image space tech-
niques only. [20] propose a method for corner and edge detection that requires
a user-driven single chart parameterisation. Furthermore, to handle points lying
near the perimeter of charts, the authors construct complementary parameteri-
sations, for which boundary regions are then mapped to internal chart locations.
[10] describe another method that locates extrema using a scale space represen-
tation. This approach method relies on a specialised conformal mapping and ex-
pects pre-computed per-vertex values of mean-curvature and geodesic distance.

GPU Accelerated Computation of Geometric Descriptors 5

In contrast, our method does not rely on a specific parameterisation approach,
nor does it require any pre-computed descriptors.

3 Methodology

Our method operates on fully parameterised geometry but does not rely on a
specific method for this task. Initially, we perform a pre-processing step in order
to locate the surface edges of the polygonal representation, which are mapped
to discontinuous regions in parametric space. This is usually part of the model
loading process. In real-time, we create the parametric-space representation of
the geometry, augmented by the adjacency information and perform the compu-
tation of discrete locations in parametric space, i.e. on a texture buffer. During
this step, we utilize the information stored in our geometry and adjacency buffers
in order to index arbitrary surface samples in the neighbourhood of a point p,
regardless of its parametric mapping. The measured metrics can be then queried
per vertex, using standard texture look-up operations, or used directly in image
space, e.g. to extract salient features and local image-space descriptors. In the
rest of this section we each one of the above steps in detail.

3.1 Surface Parameterisation

Surface parameterisation as explained in [5], can be viewed as a one-to-one map-
ping from a suitable domain to a surface. The parameter domain is also a surface
and thus the procedure maps one surface onto another. Our method expects
fully parameterised geometry in a normalized 2D domain. This procedure is also
known as (bijective) uv-mapping and the resulting surface patches are referred
to as charts or uv-islands (see Figure 1(d), and 3). The area of surface param-
eterisation has been extensively researched in the past years, [5], [26] and the
minimization of stretch distortion has been the goal of several works, such as
that of [25], [31] and [32]. Therefore, we do not address this part in our work,
but rather rely on existing methods and solutions.

3.2 Pre-Processing Operations

The estimation of a local descriptor, requires the calculation of an operator
F (p, S(p)) at a point p, given a neighbourhood x ∈ S(p), where x satisfies a set
of criteria, such as a maximum Euclidean or geodesic distance from p. Finally
another option, is to use the n-ring adjacency of x to p (max. n vertex graph
distance), but due to the imposed limitation of uniform triangulation of the
surface, this is often impractical. These relations in geometric space are easily
represented using data structures with topology. For a review of the existing
geometric data representations, see the work of [4].

On the other hand, when operating in 2D parametric space, the connectivity
information is implied by the adjacency of neighboring pixels. However, this
is not true on the borders of charts, where adjacent geometry is mapped to

6 GPU Accelerated Computation of Geometric Descriptors

Fig. 3. The ”bunny” model with two parameterisations, resulting in different set of
charts.

discontinuous locations in parametric space (see example in Figure 4). In this
case, additional information should be stored at the border pixels to keep track
of the hops to geometrically-adjacent pixels in different charts.

In order to appropriately annotate the chart pixels, mesh vertices located at
the borders of charts must be first identified and the link to the geometrically ad-
jacent vertices on different charts has to be stored on the affected vertices. Details
regarding the information stored can be found in Section 3.3. The complexity of
this step is equivalent to the pre-processing stage of all object-space approaches
for the adjacency information generation (e.g. half-edge data structure) and even
for large meshes, it only takes a few seconds to complete. This stage needs to be
performed only once, as the adjacency information for topologically unchanging
geometry can be stored in the 3D model file itself.

3.3 Data Buffer Generation

The computation of geometric descriptors requires a set of attributes per sam-
pled surface location, such as the coordinates of p in the object’s local space and
the respective normal vector n. These data must be transferred to the parametric
space and stored in appropriate buffers, i.e. a set of textures that correspond to
the normalized parametric space of the unwrapped geometry. The buffers also
store the identifier of the polygon chart that p belongs to. The object-space
position of surface points is stored in a geometry buffer P (u, v), the normal
vectors are placed in a normal buffer N(u, v), whereas the chart identifiers are
registered in an ID channel in the geometry buffer (ID(u, v)). Another set of
textures, comprising the adjacency buffer, equal in size to the geometry buffer,
store the identifier of the adjacent chart, the local metric distortion of the param-
eterisation (see below) and the corresponding (u, v) coordinates on the adjacent
chart. An example of the data channels for the position, normal and current and
adjacent chart identifiers is shown in Figure 1.

The buffer generation process is performed in two steps. First, the geometric
information is efficiently generated in the GPU by rasterising the object triangles
using orthographic projection, where the normalized texture coordinates (u, v, 1)
are used as the vertex coordinates of the mesh. The chart ID is passed as a vertex
attribute and copied for all points inside the triangles of a chart. Similarly to [24]

GPU Accelerated Computation of Geometric Descriptors 7

A(s)

b
tb′

t′

s, p(u,v)σu

σv
θe

Fig. 4. Indexing a sample inside the neighbourhood of a point. Sample t does not lie
inside the chart of s. Locate the boundary point b, read adjacency buffers and relocate
sample to adjacent chart.

we also rasterise each chart’s boundary edges in order to avoid the generation of
disconnected regions.

In the second step, we compute the local metric distortion factors that will
be used for the anisotropic adjustment of scale and sampling direction in various
calculations. In order to do so we use the Jacobian JP = (Pu, Pv), where Pu
and Pv the partial derivatives of the surface. The left-singular vectors of JP are
used in order to get the θe angular distortion of the anisotropic ellipse while the
singular values of JP σu, σv are the stretch factors in the u and v direction. Due
to the fact that the singular value decomposition is a tedious task, we use the
equivalent eigen decomposition of the 2x2 first fundamental form matrix:

JTP JP =

[
E F
F G

]
, (1)

where E = (∂P (u, v)/∂u)2, G = (∂P (u, v)/∂v)2 and F = (∂P (u, v)/∂u) ·
(∂P (u, v)/∂v). For more information see [9]. Additionally, in this second pass
we also store the rest of the adjacency data. These attributes are calculated
when setting up the triangle connectivity and are simply copies to the adja-
cency buffers for the chart border pixels. While for static objects the buffer
generation step could be performed only once, we focus on a method suitable
for deformable/animated objects, and treat it as a per-frame event. Therefore,
the reported timings in the remaining text include the data buffer generation
overhead.

3.4 Sampling a Point’s Neighbourhood

In order to be able to perform the calculation of a feature F (p, S(p)) in para-
metric space, we need to establish a procedure for drawing individual samples
from the neighbourhood S(p) of p. Our approach estimates F (p, S(p)) in im-
age space and therefore, for every pixel (i, j) with a corresponding parameter
pair s = (u, v), p(u, v) is first retrieved from the geometry buffer: p = P (u, v).
Then, assuming a maximum radius of support rmax for the local feature estima-
tor in object-space units, a sample t = (u′, v′) is generated in a region A(s) in

8 GPU Accelerated Computation of Geometric Descriptors

s, p(u,v)
t1

t1′

t2

t2′

t2′′

Fig. 5. More examples of indexing samples. t1 returns to the same chart after a jump.
t2 parametric location is located using two jumps. In the right part, chart adjacencies
are colored across the borders.

parametric space so that x = P (t) satisfies the neighbourhood criterion. A(s)
is calculated as an ellipse of radii (1/σu(s), 1/σv(s)) · rmax in the parametric
domain (upper distance bound) rotated by θe, in order to account for local an-
gular distortion and scale, and x is acquired with rejection sampling according
to the selected neighbourhood criterion (Figure 4). The exact pattern or random
distribution with which the samples are generated is specific to the feature esti-
mator and the generic sampling approach presented here is agnostic to it. Also,
since we perform a random sampling of the neighbourhood of s, no assumption
is made about the chart’s convexity.

Since the ellipse A(s) may extend beyond the boundary of the chart contain-
ing p (Figure 4), a more elaborate mechanism is required to handle the samples
that fall outside the chart. These samples obviously contribute to the result and
should not be discarded. Identifying whether the sample x at t lands on the
same chart as p is trivially resolved by checking their respective chart identifiers
ID(u, v) and ID(u′, v′).

In the case where t lands outside the chart of p, we utilize the parametric
adjacency data stored in our buffers to find its true location. Initially, we march
along the direction

−→
st in pixel-sized increments to locate the first pixel with the

chart ID as p (boundary point b). The adjacency buffer for a border pixel b of a
chart contains the ID of the adjacent chart and the parametric location b′ of the
corresponding point on it. For samples across seams of the same chart, the ID of
the adjacent buffer is identical to that of p, but the parametric location b′ points
safely to the corresponding location on the same chart (see Figure 5-t1). The
adjacency buffer contains also the relative chart edge rotation θ(b→ b′) between
b and b′. Finally, a non-uniform scale factor s(b → b′) can be calculated,
corresponding to the relative scale of the two charts in parametric space at their
border locations b and b′ (this scale factor may vary across a chart):

s(b→ b′) =

(
σu(b′)

σu(b)
,
σv(b

′)

σv(b)

)
. (2)

Therefore, we can adjust the location of t according to the following parametric
space transformation to obtain the relocated sampling position t′ on the adjacent

GPU Accelerated Computation of Geometric Descriptors 9

chart:
t′ = b′ + Rθ(b→b′)Ss(b→b′)(t− b), (3)

where Rθ(b→b′) is the rotation matrix of angle θ(b → b′) and Ss(b→b′) is the
non-uniform scale matrix of factor s(b → b′). In case t′ lands outside the ex-

pected chart, the same search is performed similarly in the
−→
sb′ direction (see

Figure 5-t2). The sample relocation procedure is shown in Figure 4. Note that
the full non-rigid transformation of t corresponds to the adaptation of the initial
sampling ellipse to the new charts. Therefore, if no severe stretching is present,
S(p) is properly covered.

A useful side-effect of the parametric-space computation is that feature esti-
mation can take into account displacement and normal mapping. In the special
case of displacement mapping, our method could be easily adopted in order to
handle the changes in the geometry that could break the neighbourhood esti-
mation heuristic. Points lying within the initial Euclidean neighbourhood that
stretch out of it due to the displacement are automatically handled by measur-
ing the Euclidean distance from p. The problem arises when point with initial
location outside the Euclidean neighbourhood of p fall within rmax after dis-
placement. By scaling σu and σv with the maximum expected displacement
distortion, which is usually a user defined parameter, the method successfully
handles these points as well.

Finally, we need to clarify that if our method focused only on single chart
parameterisations such as Geometry images [7] we could avoid highly irregular
transitions and in this way reduce the complexity of our operations. On the other
hand, multi-chart parameterisations offer an added flexibility that can be used
to reduce distortion, particularly for shapes with long extremities, high genus,
or disconnected components [24] (see Figure 13).

4 Estimating Integral Geometric Descriptors

Central to many geometric descriptor computations is the estimation of surface
and volume integrals in the neighbourhood of p. Integral invariant features for
instance, are often used in the formulation of local descriptors [11], or provide the
means to estimate differential invariants such as the mean curvature H (see [3]
and [15]). Another typical example of an integral operator in S(p)) is the esti-
mation of Gaussian curvature K, which can be efficiently computed via the local
geodesic area at p.

We estimate integrals in a neighbourhood S(p)) using Monte Carlo inte-
gration in parametric space and in Section 5 we use this approach to compute
a variety of integral and differential features interactively for arbitrary feature
scales.

4.1 Monte Carlo Integration

In parametric space, the generated data buffers hold not only the vertex informa-
tion but also all internal polygon samples, generated by the GPU through linear

10 GPU Accelerated Computation of Geometric Descriptors

s

Rejected

Valid
Out of chart

s′

A′(s)
A′(s)

Fig. 6. Monte Carlo Sampling in current and adjacent charts described in Section 4.1.

interpolation during rasterisation. An approach that would use all the per-pixel
information inside S(p) would be unnecessarily exhaustive and computation-
ally expensive. Utilizing Monte Carlo integration with a uniform distribution in
the parametric domain, any integral I(p) of a function g(p) over S(p) can be
approximated by:

〈I〉(p) =
A′(s)

N

N∑
i=1

g(P (ti)), (4)

where A′(s) is the portion of the elliptical sampling area A(s) centered at param-
eter pair s corresponding to the central point p = P (s) after rejection sampling
with the criterion of neighbourhood S(p) (e.g. Euclidean distance of P (t) to p)
and N is the number of valid samples. While performing a similar sampling on
the geometry itself would require area-weighted probabilities, the parametric-
space values can be sampled uniformly, assuming of course a low-distortion pa-
rameterisation.

Random samples are generated uniformly using a stratification scheme. Uni-
form samples in the cells of a planar grid are transformed to disk samples using
the concentric mapping of [27]. The disk samples are anisotropically scaled along
the u and v axes to form the elliptical region A(s), according to the distortion
factors discussed in Section 3.3. The same samples are used at each pixel, ran-
domly rotating them to avoid statistical noise.

The elliptical region A(s) is an approximation that favors fast computations.
A more refined but rather more computationally expensive approach would be
to pre-compute the maximal distortion for discretised polar coordinates at each
pixel and subsequently anisotropically scale each random sample according to
the closest distortion term from its conversion to polar coordinates. Nevertheless,
as demonstrated in the experiments, the elliptical approximation proved to be
both robust and efficient, even for large neighbourhoods.

Given a point p and its location in parametric space s, initially we perform
computations only for the samples that lie on the same chart as p (Figure 6 -
right). At the same time, for all parametric-space samples that fall outside the
chart, we mark the ID of the chart they land on. Subsequently, we compute
for each marked chart the transformed parametric position s′ of the central
parametric pair s and repeat the sampling procedure on the new location, using
the entire sampling pattern (Figure 6 - left). Only samples falling within the

GPU Accelerated Computation of Geometric Descriptors 11

(r)
(a) (b) (c)

(f)(e)(d)

Fig. 7. Comparison of mean curvature for Full and Adaptive Sampling. (r) Reference
(a), (b), (c) Full Sampling using 64, 100 and 256 samples in respect. (d), (e), (f)
Adaptive Sampling using 32/64, 64/128 and 128/256 samples.

new chart are accounted for and contribute to the final integral. The marking of
charts and the central point transformation is done according to the procedure
described in Section 3.4.

The sampling scheme described above is generic and can be implemented for
an arbitrary number of jumps, excluding each time the already visited charts. In
our experiments we noticed that, no more than one jump per sample point was
typically required, even for large-scale local feature neighbourhoods. Of course,
this also depends on the size of the charts produced by the parameterisation.
For example, in Figure 13, where the bunny model is shown in two different
parameterisations, for the left one we reported the first missing sample using a
support area of 10% the object’s diagonal. Conversely, for the one on the right
we did not report any missing samples even for neighbourhoods larger than 16%
the object’s diagonal.

4.2 Adaptive Sampling

Since g(x) is a function of the surface geometry, smooth areas of the objects,
i.e. areas with smaller variance of the evaluated function g(x), give satisfactory
results even when lowering the sampling rate significantly. Given the fact that
in our approach the computation time is proportional to the total number of
samples drawn, we speed-up our method by exploiting adaptive sampling.

Typically, adaptive sampling methods continue to draw random samples,
until the variance of the computed quantity falls below a certain threshold. In our
method however, we perform a simplified, two-step adaptive sampling, instead of
waiting for the variance to converge: Initially, we compute the integral with N/2
samples and measure the variance. For points p with variance of g(x) greater
than a predetermined threshold, we use an additional set ofN/2 random samples.
Using a fixed, two-stage adaptive sampling creates exactly two different GPU
execution loads, generally coherent across the output buffer, thus maximizing
shader core utilization and performance.

12 GPU Accelerated Computation of Geometric Descriptors

Our experiments show that as the number of samples increases, the difference
of % Absolute Error (% AE) between the full and adaptive sampling declines,
while at the same time the performance savings increase. (see Table 1 and Fig-
ure 7).

5 Performance and Quality Evaluation

In this section we present a number of local geometric descriptor operators using
our method and provide a qualitative comparison against respective reference
object-space CPU algorithms that operate directly on the polygonal geometry
using the Halfedge data-structure (HE) [2]. Furthermore, we showcase the use
of our method in order to exploit 2D image-space interest point detectors over
3D geometry without the need for a specific data structure or implementation.
Initially, we briefly present each of the local descriptors used and subsequently
evaluate the results against various factors.

5.1 Local Descriptors

Local Bending Energy (LBE). [11] in order to classify a surface as fractured
or intact in their fragment reassembly framework define the LBE term ek(p)
for the k nearest vertices to a surface location p. Similarly, given an Euclidean
neighbourhood qi ∈ S(p, r) : ‖qi − p‖ ≤ r with corresponding normal vectors
ni, LBE er(p) can be defined as:

er(p) =
1

N

N∑
i=1

‖n− ni‖2

‖p− qi‖2
, (5)

where n is the normal at the central point p and N is the number o samples
taken in the S(p, r) neighbourhood.
Sphere Volume. [16] presented a stochastic solid angle computation for the
approximation ambient occlusion in the hemisphere above a point p. Inspired
by this idea, we extend it to a full sphere and compute a fast approximation of the
unoccupied volume of a sphere of radius r centered at p. Assuming a smoothly
varying tangential elevation around p, the vector qi − p from the central point
to any sample qi within the Euclidean neighbourhood S(p, r) approximates the

Samples
Full Adaptive

Time % AE Time % AE
64 17.57ms 1.172 15.94ms 1.331

100 22.17ms 1.035 19.54ms 1.110
256 50.54ms 1.005 41.44ms 1.007
400 74.21ms 0.789 61.75ms 0.824

Table 1. Computation Time and % Absolute Error for Full and Adaptive Sampling
over the same metric. Error in comparison to reference object-space implementation.

GPU Accelerated Computation of Geometric Descriptors 13

Parametric SpaceReference
113ms 21ms

%AE: 0.31

Embrasure
200K Triangles

340x334x330mm
3mm Radius

Lucy
200K Triangles

345x134x400mm
6mm Radius

360ms 57ms

%AE: 1.08

Parametric SpaceReference
9410ms 47ms

%AE: 0.81

Arc
900K Triangles

250x170x136mm
6mm Radius

XYZ RGB Dragon
200K Triangles
200x132x90mm

3mm Radius

397ms 52ms

%AE: 1.89

624ms 28ms

%AE: 1.18

Embrasure
200K Triangles

340x334x330mm
10mm Radius

Armadillo
345K Triangles

126x115x152mm
3mm Radius

1420ms 55ms

%AE: 1.41

13600ms 129ms

%AE: 1.17

Arc
900K Triangles

250x170x136mm
5mm Radius

Armadillo
345K Triangles

126x115x152mm
2mm Radius

2130ms 134ms

%AE: 1.88

N
or

m
al

iz
ed

 S
ph

er
e

Vo
lu

m
e

L
oc

al
iz

ed
 B

en
di

ng
 E

ne
rg

y

M
ea

n
C

ur
va

tu
re

Sh
ap

e
In

de
x

Object Space Parametric Space Object Space Parametric Space

Object Space Parametric Space Object Space Parametric Space

Fig. 8. Comparative visualization, timings and % Absolute Error for the implemented
geometric features (Section 5.1).

horizon in this direction with respect to the normal vector n at p at a distance
scale equal to ‖qi − p‖. Taking a uniform rotational and radial distribution of
samples (direction and scale) qi in S(p, r), we can approximate the open volume
Vo(p) above p by:

Vo(p) =
4πr3

3N

N∑
i=1

(qi − p)n

‖qi − p‖
. (6)

The sphere volume integral invariant, i.e. the part of the sphere volume of radius
r ”inside” the surface at p [21] is the complement of the above integral quantity.

Vr(p) =
4πr3

3
− Vo(p). (7)

Mean Curvature (MC). [12] derive the relation of MC to the sphere volume
integral invariant as:

Vr(p) =
2π

3
r3 − πH

4
r4 +O(r5), (8)

from which we can directly compute MC H at p for a given radius r.
Shape Index (SI). Introduced by [14], SI is a local descriptor that combines
the principal curvatures (PC) in order to classify the locale shape of the surface.

14 GPU Accelerated Computation of Geometric Descriptors

(c)(b)(a)

Fig. 9. Genus 20 Rim model. a) Parametric space charts. b) Mean Curvature colourized
(generated in 58ms). c) Zoom to detail.

SI is a normalized descriptor and for a given surface point p is defined as:

S(p) =
2

π
arctan

K2(p) +K1(p)

K2(p)−K1(p)
, (9)

where K1(p), K2(p) are the principal curvatures at p.
In order to calculate the K1 and K2, we rely on their relation to mean

curvature H and Gaussian curvature (GC) K:

K1,2 = H ±
√
H2 −K. (10)

The computation of H was discussed earlier. For the GC we rely on the work
of [1] that relates K with the perimeter and surface area of a geodesic disk on a
surface. In particular, we utilize the formula that uses the geodesic area GA of
distance r:

K = 12
πr2 −GAr

πr4
. (11)

The only unknown parameter now is the geodesic area GAr at a given distance
r. In the case of the geometric evaluation, we sum the Voronoi area of each
vertex within a neighbourhood of geodesic distance r. For the parametric-space
computation of GAr, we first draw a number of samples Ntot in the Euclidean
neighbourhood of p (see Section 4.1). Then, for each sample qi at parametric
location ti, the geodesic distance to p is approximated by a sum of chords at
P (sj), i.e. at the intermediate parametric space coordinates sj = ti + j(s −
ti)/Nsteps, where s are the uv coordinates of p and Nsteps is the number of
chords. Depending on the local distortion of the parameterisation, P (sj) may not
reside exactly on the same plane. According to the computed geodesic distance
between qi and p, a final set of Ng samples is retained, Ng ≤ Ntot, and GAr is
estimated by:

GAr =
Ng
Ntot

EAr, (12)

where EAr is the Euclidean area.
Euclidean area can be approximated in the following way. Let Ptot be the

total number of pixels in the elliptical region. Given the ratio of the samples

GPU Accelerated Computation of Geometric Descriptors 15

7.2ms 6.4ms

Fig. 10. Harris corner points computed over the Normalized Sphere Volume descriptor
and painted (red) on the mesh vertices.

that satisfy the Euclidean criterion to the total samples NA(s)/Ntot, and Aqm

the mean area represented by each sample in A(s), we approximate EAr as:

EAr = Ptot
NA(s)

Ntot
Aqm , (13)

Aqm
is given by the formula:

Aqm
=

1

NA(s)

NA(s)∑
i=1

Aqi
, (14)

where Aqi
is the product of the distortion factors lu(u, v), lv(u, v).

5.2 Image Descriptors

Harris Corner Detection. Harris and Stephens [8] describe a mathematical
operator for the computation of corner points of interest (features) on images,
based on the change of intensity. These feature-points are invariant under rota-
tional and intensity changes and can be used for matching. The same computa-
tion has been used on 3D meshes to generate feature points for object registration
and retrieval [28]. The mathematical formulation of Harris corner response is:

R = det (M)− k · trace (M)
2
, (15)

where k is constant (k ∈ [0.04, 0.06]) and M is given by:

M =
∑
x,y

w(x, y)

[
I2x IxIy
IxIy I2y

]
. (16)

Ix, Iy are the image derivatives, and w(x, y) a Gaussian window function. Using
the parametric-space indexing scheme (see Section 3.4) we compute the image-
space derivatives and the Gaussian window function. Of course, using our index-
ing scheme, any other image space descriptor can also be applied over the 3D
data.

16 GPU Accelerated Computation of Geometric Descriptors

0

2

4

6

8

10

0K 200K 400K 600K 800K 1M 1.2M

T
im

e
in

 se
co

nd
s

Number of Triangles

Scalability over Geometric Density
Object Space
Parametric Space

0

0.4
0.8
1.2
1.6
2

%
 A

bsolute E
rror

%AE

0x

8x

15x

23x

30x

0mm 2mm 4mm 6mm 8mm 10mm 12mm 14mm 16mmC
om

pu
ta

tio
n

T
im

e

Size of Neighborhood (Radius)

Scalability over Neighborhood Size

Object Space
Parametric Space

0.0

0.8

1.6

2.4

3.2

%
 A

bsolute E
rror

%AE

Fig. 11. (Left Graph) Computations using the same metric and neighbourhood size
(Left axis). (Right Graph) Computations using the same metric and geometric com-
plexity (Left axis). Green line shows the %AE of the parametric method (Right axis).

5.3 Results and Discussion

We have tested our method using a large variety of objects, ranging from sim-
ple geometric shapes to complex and detailed 3D scanned models. Indicative
results can be seen in Figure 8 and Figure 9, where we report an average of
49× acceleration and 1.245% Absolute Error (AE) relative to the reference CPU
object-space method described below. Please note that in such comparisons, re-
porting maximum error is not indicative of the method’s performance, since a
slight mismatch in the representation at a single point due to parameterisa-
tion can cause an isolated but inconsequential measurement difference. Timings
of our method do not include the parameterisation and the charts boundary
edge detection. Similarly, timings of the reference method do not include the
Half-Edge (HE) data structure generation. It is important to mention here that
while geometric algorithms for computing features operate on discretised val-
ues at a vertex or triangle level, the parametric space calculations can exploit
interpolated values at arbitrary surface locations. Therefore, the measurement
deviations that are reported here as errors, mostly stem from the different ap-
proximation and sampling of the underlying surface (see Figure 2). Finally in
Figure 10 we show Harris corner points detection over 3D data. Timings for the
GPU parametric implementation are shown for an NVIDIA GTX 670 GPU. We
use 1024x1024 floating point texture buffers, while metrics are computed over
a 512x512 buffer with 256 samples per pixel unless stated otherwise. The ref-
erence geometric algorithm results are shown for a Corei7-3820 system (4 cores
@ 3.60GHz, 8 threads). Our implementation uses the OpenMP API and takes
advantage of the current generation multi-core CPU’s.

The efficiency of our method is attributed to the shift of the computa-
tions from a topology-detail-dependent representation to two dimensions with
application-controlled (sampling) quality settings, which enables very good scal-
ing for multi-core and many-core architectures. The proposed implementation is
tailored for (but not limited to) commodity GPUs.
Geometric Detail. In Figure 11(Left) we present comparative results computed
over a fixed neighbourhood size (4% of object’s diagonal) for a single model
(Embrasure) decimated at different geometric detail levels. For small resolutions
(25K, 50K triangles) we observe similar computation times between geometric
and parametric space approaches, while the %AE is high in comparison to higher

GPU Accelerated Computation of Geometric Descriptors 17

0

50

100

150

200

0 50 100 150 200 250 300 350 400 T
im

e
in

 M
ill

is
ec

on
ds

Number of Samples

Performance Control

512/512

1024/512

1024/1024

0.5

1.0

1.5

2.0

2.5

3.0

0 50 100 150 200 250 300 350 400

%
 A

bs
ol

ut
e

E
rr

or

Number of Samples

Quality Control
512/512

1024/512

1024/1024

Fig. 12. (Left) Average performance over several models using different number of
samples, buffers size and size of texture over which computations are performed. (Right)
Average quality over several models using different number of samples, buffers size
and size of texture over which computations are performed. Legends show Buffers
Texture/Computations Texture Size in square format.

detail versions of the mesh. This is expected as the parametric method uses
the position samples as interpolated by the GPU resulting in smoother and
therefore slightly different results than the CPU method (see Figure 2). For
larger resolutions, we report an acceleration of 3× for the 100K model to 137×
for the 1000K model, with a steady AE. Finally, for the original scanned object
resolution of 1200K, we report a 181× faster computation with a slight increase
in the %AE. This is also expected and attributed to the relative small buffer
size for the dense geometric detail. However, this can be trivially addressed by
increasing the geometry buffer resolution.

Neighborhood Size. In the measurements of Figure 11(Right) we shift the
focus from the geometric detail to neighbourhood size. Results are for the same
model (Embrasure) and metric (mean curvature) at 600K resolution. We no-
tice that for small neighbourhoods the %AE is higher. This deviation between
the parametric and geometric domain results are due to the inadequate discrete
representation of the area of support in the geometric solution. While in the
parametric domain due to the interpolation of values we mentioned earlier, an
increasing neighbourhood size is directly reflected in a wider selection of samples,
the geometric neighbourhood expands in discrete steps, which is actually a defi-
ciency (see Figure 2). For very large neighbourhoods we notice also an increase to
the %AE, this time, due to the one jump per sample approach of our implemen-
tation (see end of Section 4.1), which starts missing samples. Performance-wise,
the parametric space method scales very well and is not significantly affected by
the 8× growth of neighbourhood size. More specifically, the computation time
for the parametric domain feature estimator grows by 2.25 times in contrast to
the 26.45× factor reported by the geometric approach.

Performance and quality control. The number of samples per pixel, buffer
size and size of the texture over which computations are performed, are pa-
rameters that control the quality/performance of our method. As we can see
in Figure 12(Left), increasing the number of samples reduces the %AE and has
linear impact on the computation time, regardless of the buffer resolution. The
same effect have the buffer size and the size of the texture over which compu-

18 GPU Accelerated Computation of Geometric Descriptors

tations are performed (Figure 12(Right)). Using these parameters, performance
and quality can be controlled depending on the application requirements.
Memory usage - Texture size and precision. Four RGBA textures are used
(see Section 3.3). All the presented results so far were performed using half-
float precision textures. In order to evaluate the performance/quality impact
of full-float-precision textures (FF), which double the memory requirements,
we performed experiments using both resolutions (Table 2). FF buffers present
an 8% and 11% performance degradation on 512x512 and 1024x1024 buffers
respectively, while the corresponding improvement in AE is 4% and 6%. We can
conclude that the minor quality improvement does not justify the performance
drop and the doubled memory requirements.
UV Parameterization. In order to evaluate how our method is affected by
the underlying parameterisation in terms of speed and quality, we performed
several tests. When operating on maps coming from global surface parameteri-
sation (single chart) techniques, we notice faster times, and increased error rates
(see Figure 13) compared to multi-chart parameterisations opting for minimal
stretching. Single charts, minimize branching operations but at the same time
result in greater distortion and less uniform sampling leading thus in loss of
representation and measurement accuracy.

6 Limitations

Due to the fact that parameterisation of the objects surface is required, the
method is limited to mesh geometries and it cannot be directly applied on point-
clouds. Still, most of the local descriptors rely on the notion of a connected
neighbourhood. While simple distance queries (without connectivity) can be used
in the case of point-clouds, the resulting computations will have inaccuracies,
especially when using large areas of support.

7 Conclusion

We presented a novel generic parametric-space approach for the computation
of geometric descriptors in multiple scales, that can also be used to trivially
apply computer vision algorithms on 3D data. Our method, decouples the com-
putational complexity from the underlying geometry and by taking advantage of

Table 2. Average Computation time and % Absolute Error over a set of models for
the same metric over different resolutions and buffer precision. Error in comparison to
the reference CPU implementation.

GPU Accelerated Computation of Geometric Descriptors 19

47ms
0.95 %AE

36ms
1.08 %AE

42ms
1.10 %AE

30ms
1.30 %AE

Fig. 13. Mean Curvature (colourized) computed using different parameterisations.
Multiple charts result in increased computation times, but smaller error, due to the
smaller distortion of the generated charts.

modern multi-core architectures (GPUs), achieves real-time computations even
for large areas of support, rendering the method suitable for deformable and
animated objects. Finally, despite the focus of our method on efficiency, com-
putations are accurate and equivalent to those of the traditional object-space
approaches as shown by our experiments.

Acknowledgments

This work was supported by EC FP7 STREP Project PRESIOUS, grant no.
600533. Armadillo, Lucy, Bunny and XYZ RGB Dragon models are from Stan-
ford 3D Scanning Repository. Angel model is from the Large Geometric Models
Archive of Georgia Institute of Technology. Rim model is from TurboSquid. All
other models used are from the PRESIOUS project data collection.

References

1. Bertrand, J., Diquet, C., Puiseux, V.: Démonstration d’un théorème de Gauss.
Journal de Mathématiques 13, 80–90 (1848)

2. Campagna, S., Kobbelt, L., Seidel, H.P.: Directed edges—a scalable repre-
sentation for triangle meshes. J. Graph. Tools 3(4), 1–11 (Dec 1998)

3. Connolly, M.L.: Measurement of protein surface shape by solid angles. J. Mol.
Graph. 4(1), 3–6 (Mar 1986)

4. De Floriani, L., Hui, A.: Data structures for simplicial complexes: An analysis and
a comparison. In: Proc. of the Third Eurographics Symp. on Geometry Processing.
SGP ’05, Eurographics Association (2005)

5. Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey. In:
Advances in Multiresolution for Geometric Modelling, pp. 157–186. Mathematics
and Visualization, Springer (2005)

20 GPU Accelerated Computation of Geometric Descriptors

6. Griffin, W., Wang, Y., Berrios, D., Olano, M.: GPU curvature estimation on de-
formable meshes. In: Symp. on Interactive 3D Graphics and Games. pp. 159–166.
I3D ’11, ACM (2011)

7. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In: Proc. of the 29th An-
nual Conference on Computer Graphics and Interactive Techniques. pp. 355–361.
SIGGRAPH ’02, ACM (2002)

8. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of the
4th Alvey Vision Conference. pp. 147–151 (1988)

9. Hormann, K., Polthier, K., Sheffer, A.: Mesh parameterization: Theory and prac-
tice. In: ACM SIGGRAPH ASIA 2008 Courses. pp. 12:1–12:87. SIGGRAPH Asia
’08, ACM (2008)

10. Hua, J., Lai, Z., Dong, M., Gu, X., Qin, H.: Geodesic distance-weighted shape
vector image diffusion. IEEE Trans. Vis. Comput. Graph. 14(6), 1643–1650 (Nov
2008)

11. Huang, Q.X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling frac-
tured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (Jul
2006)

12. Hulin, D., Troyanov, M.: Mean curvature and asymptotic volume of small balls.
The American Mathematical Monthly 110(10), 947–950 (2003)

13. Kim, Y., Yu, J., Yu, X., Lee, S.: Line-art illustration of dynamic and specular
surfaces. In: ACM SIGGRAPH Asia 2008 Papers. pp. 156:1–156:10. SIGGRAPH
Asia ’08, ACM (2008)

14. Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vi-
sion Comput. 10(8), 557–565 (Oct 1992)

15. Manay, S., Hong, B.W., Yezzi, A., Soatto, S.: Integral invariant signatures. In:
Computer Vision - ECCV 2004, Lecture Notes in Computer Science, vol. 3024, pp.
87–99. Springer (2004)

16. McGuire, M., Osman, B., Bukowski, M., Hennessy, P.: The alchemy screen-space
ambient obscurance algorithm. In: Proc. of the ACM SIGGRAPH Symp. on High
Performance Graphics. pp. 25–32. HPG ’11, ACM (2011)

17. Mellado, N., Barla, P., Guennebaud, G., Reuter, P., Duquesne, G.: Screen-space
curvature for production-quality rendering and compositing. In: ACM SIGGRAPH
2013 Talks. pp. 42:1–42:1. SIGGRAPH ’13, ACM (2013)

18. Meyer, M., Desbrun, M., Schrder, P., Barr, A.: Discrete differential-geometry op-
erators for triangulated 2-manifolds. In: Visualization and Mathematics III, pp.
35–57. Mathematics and Visualization, Springer (2003)

19. Museth, K.: Vdb: High-resolution sparse volumes with dynamic topology. ACM
Trans. Graph. 32(3), 27:1–27:22 (Jul 2013)

20. Novatnack, J., Nishino, K.: Scale-dependent 3D geometric features. In: Computer
Vision, 2007. ICCV 2007. IEEE 11th International Conference on. pp. 1–8. IEEE
(Oct 2007)

21. Pottmann, H., Wallner, J., Huang, Q.X., Yang, Y.L.: Integral invariants for robust
geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (Jan 2009)

22. Pottmann, H., Wallner, J., Yang, Y.L., Lai, Y.K., Hu, S.M.: Principal curvatures
from the integral invariant viewpoint. Computer Aided Geometric Design 24(8),
428–442 (2007)

23. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes.
In: Proceedings of the 3D Data Processing, Visualization, and Transmission, 2Nd
International Symposium. pp. 486–493. 3DPVT ’04, IEEE Computer Society
(2004)

GPU Accelerated Computation of Geometric Descriptors 21

24. Sander, P.V., Wood, Z.J., Gortler, S.J., Snyder, J., Hoppe, H.: Multi-chart ge-
ometry images. In: Proc. of the 2003 Eurographics/ACM SIGGRAPH Symp. on
Geometry Processing. pp. 146–155. SGP ’03, Eurographics Association (2003)

25. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive
meshes. In: Proc. of the 28th Annual Conference on Computer Graphics and In-
teractive Techniques. pp. 409–416. SIGGRAPH ’01, ACM (2001)

26. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their appli-
cations. Found. Trends. Comput. Graph. Vis. 2(2), 105–171 (Jan 2006)

27. Shirley, P., Chiu, K.: A low distortion map between disk and square. J. Graph.
Tools 2(3), 45–52 (Dec 1997)

28. Sipiran, I., Bustos, B.: Harris 3D: A robust extension of the harris operator for
interest point detection on 3D meshes. Vis. Comput. 27(11), 963–976 (Nov 2011)

29. Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral
approximation. In: Proceedings of the Fifth International Conference on Computer
Vision. pp. 902–. ICCV ’95, IEEE Computer Society (1995)

30. Yang, Y.L., Lai, Y.K., Hu, S.M., Pottmann, H.: Robust principal curvatures on
multiple scales. In: Symp. on Geometry Processing. pp. 223–226 (2006)

31. Yoshizawa, S., Belyaev, A., Seidel, H.P.: A fast and simple stretch-minimizing mesh
parameterization. In: Proc. of the Shape Modeling International 2004. pp. 200–208.
SMI ’04, IEEE Computer Society (2004)

32. Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts: Stretch-driven mesh pa-
rameterization using spectral analysis. In: Proc. of the 2004 Eurographics/ACM
SIGGRAPH Symp. on Geometry Processing. pp. 45–54. SGP ’04, ACM (2004)

