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Abstract In this paper, we address the evaluation of

algorithms for partial shape retrieval using a large-scale

simulated benchmark of partial views which are used

as queries. Since the scanning of real objects is a time-

consuming task, we create a simulation that generates

a set of views from a target model and at different levels

of complexity (amount of missing data). In total, our

benchmark contains 7,200 partial views. Furthermore,

we propose the use of weighted effectiveness measures

based on the complexity of a query. With these charac-

teristics, we aim at jointly evaluating the effectiveness,

efficiency and robustness of existing algorithms. As a

result of our evaluation, we found that a combination

of methods provides the best effectiveness, mainly due

to the complementary information that they deliver.

The obtained results open new questions regarding the
difficulty of the partial shape retrieval problem. As a

consequence, potential future directions are also iden-

tified.
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1 Introduction

Three-dimensional data are attracting the attention of

many research fields due to the potential applications

in real scenarios. On one side, the availability of large

repositories of shapes, such as Google 3D Warehouse

and TurboSquid, open up new possibilities for the ex-

ploration of effective and efficient content-based search

engines that provide support to further high-level ap-

plications in modeling, engineering, and so on. On the

other side, the availability of consumer-level 3D scan-

ning devices has promoted the massive use of 3D data

for scene understanding and vision-related topics. Nev-

ertheless, a non-trivial question remains open about

how to take advantage of these two resources jointly.

One possible scenario is the content-based retrieval when

the query is a scanned object. It could give support to

high-level tasks such as recognition, modeling with ex-

amples, engineering processes, just to name a few.

In the shape retrieval community, this problem is

called partial shape retrieval (or whole-from-part re-

trieval) and it is still an open and challenging problem.

The problem can be stated as: given a partial view of

an object as query, retrieve all the 3D models from a

repository which are partially similar. By partial sim-

ilarity, we mean objects that have some part which is

similar to the query. In special for scanned objects, we

would like to retrieve objects such that some part of its

surface fits the geometry of the view.

A problem that requires attention is the lack of a

standard framework to evaluate algorithms in partial

shape retrieval. In this paper, we aim at evaluating al-
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Table 1 Characteristics of partial shape retrieval datasets.

Dataset # Target # Queries
SHREC 2007 [26] 400 30
SHREC 2009 [7] 720 20
SHREC 2010 [8] 800 120
Our benchmark 360 7200

gorithms for partial shape retrieval using a large set of

queries composed of views extracted from a 3D dataset.

The manual creation of 3D view data for benchmark-

ing is a time-consuming and expensive approach which

is expected to be not scalable for the creation of large

benchmarks. Therefore, our main idea is to simulate

a large number of partial views from an existing 3D

object benchmark by generating point clouds from a

number of views of a model. Furthermore, we promote

the evaluation of the following criteria: effectiveness,

efficiency, and robustness. To evaluate effectiveness, we

rely on common methodologies borrowed from the in-

formation retrieval community. To evaluate the efficiency,

we measure the query time. Finally, to evaluate the

robustness, we propose the use of weighted effective-

ness measures which can provide a better understand-

ing about the robustness of the algorithms to the amount

of missing data. To do so, each query has an associ-

ated factor derived from the amount of missing data it

represents. In this way, an algorithm is more robust if

challenging queries obtain a good effectiveness.

Previous datasets have been presented so far in past

editions of shape retrieval contest (SHREC) [7, 8, 26]

trying to evaluate partial retrieval algorithms. Never-

theless, the query sets are rather small, with dozens of

query views provided. In contrast, in our benchmark, a

query set composed of 7, 200 3D views, obtained from

360 target models is provided. Compared to standard

datasets in the 3D retrieval community, this query set

can be considered a large-scale evaluation benchmark.

Table 1 shows some characteristics of previous bench-

marks compared to our proposed dataset. It is also

worth noting that previous efforts have been made to

build benchmarks with scanned objects in the context

of object recognition [5, 11]. However, in those cases,

the 3D object of the scanned object is often not avail-

able and therefore it is not possible to use algorithms

based on the geometry of the target model. In contrast,

our benchmark is designed to evaluate how well the al-

gorithms assess the similarity between a partial view

and a 3D object, which is probably stored in a shape

repository.

This paper is an extension of a SHREC track [24],

where we introduced the dataset and provided a pre-

liminary evaluation of two methods. Compared to the

previous paper, we now provide a comprehensive eval-

Fig. 1 Classes in the target set. The classes are listed in
a row-based manner from left to right: bird, fish, insect,
biped, quadruped, bottle, cup, mug, floor lamp, desk lamp,
cellphone, deskphone, bed, chair, wheelchair, sofa, biplane,
monoplane, car and bicycle.

uation of five techniques. In addition, we present a de-

tailed description of our method for generating the views

to make easy the reproduction of our methodology in

other contexts if required. Furthermore, additionally to

the evaluation of each method, we show that the com-

bination of methods exhibits better effectiveness due to

the complementary characteristics in each method.

The contributions of our paper can be summarized

as follows:

– We create a large set of partial views by simulating

the acquisition process of 3D scanners.

– We make a comprehensive evaluation of five algo-

rithms for partial shape retrieval. Basically, the five

algorithms fall into three common approaches for

partial retrieval: view-based, partition-based, and

bag of features.

– We define weighted effectiveness measures that in-

corporate the knowledge about partiality of a query.

These measures are useful to evaluate the robustness

of the algorithms against missing data.

The paper is organized as follows. Section 2 presents

the dataset and how it was built. Section 3 introduces

the evaluation methodology. Section 4 is devoted to de-

scribe the five evaluated approaches which were sub-

mitted for evaluation. Section 5 evaluates and discusses

the obtained results. Finally, Section 6 draws our con-
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clusions and lists several promising directions as the

future work.

2 Construction of the Benchmark Based on

Simulated Range Views

The dataset1 is divided in two parts: the target set and

the query set. The target set is composed of a subset of

the SHREC 2009 Generic Shape Retrieval dataset [7].

This dataset provides a uniform distribution of class

sizes, thereby avoiding class bias during the evaluation.

We chose 360 shapes organized into 20 classes of 18

objects per class. Fig. 1 shows one example for each

class in the target set. On the other hand, to obtain

the query set, we simulate the process of range scan

acquisition based on the target set to obtain a set of

partial views. The detailed steps to obtain the query

set are listed below.

– A target shape is enclosed in a regular icosahedron.

Beforehand, the shape is translated to the origin of

the coordinate system and scaled to fit into a unit

cube.

– Each triangular face of the icosahedron will be used

as a projection plane. The intersecting points be-

tween the object and the rays leaving the projec-

tion plane generate a 3D point set. For more details

about the point cloud construction, see Algorithm 1.

– A 3D mesh is reconstructed from the obtained point

set using the Point Cloud Library [21] using the

Greedy Projection Triangulation method. In brief,

this method works incrementally for each point. It

selects a number of neighbors in the sphere of ra-

dius r = µ × d0 centered at the analyzed point (d0
is the distance to the nearest neighbor of the ana-

lyzed point). The neighborhood is projected into a

tangential plane and a visibility analysis is done. Fi-

nally, the neighborhood is connected forming trian-

gles with angle constraint. We set the nearest neigh-

bor distance multiplier µ to be 2.5 and the number

of nearest neighbors is set to 20. In addition, we ap-

plied a simple hole filling algorithm to discard small

holes. More specifically, our algorithm creates a new

face when three adjacent faces share a triangle hole.

This simulation process represents a simplified frame-

work of a 3D data acquisition pipeline, including a mod-

erate degree of postprocessing (mesh generation) which

is often included in current 3D acquisition software.

While more complex modifications (in particular adding

noises) could be considered, we believe this framework

1 The dataset and the evaluation software is available in
http://dataset.dcc.uchile.cl.

Algorithm 1

Require: Shape X (list of triangles)
Require: Icosahedron face T = (P1, P2, P3)
Require: Raster resolution r of the projection plane
Ensure: Point cloud C
1: Create a grid of points in the XY plane which will be the

raster
2: spacing = 2/r
3: xRaster = [spacing/2− 1 : spacing : 1− spacing/2]
4: yRaster = [spacing/2− 1 : spacing : 1− spacing/2]
5: Compute the barycenter B = (P1 + P2 + P3)/3

6:
−→
Bn =

−−→
OB/‖

−−→
OB‖ (O is the point [0 0 0])

7: −→u =
−−−→
P2P3/‖

−−−→
P2P3‖

8: −→v =
−−→
BP1/‖

−−→
BP1‖

9: −→w = −→u ×−→v
10: Create a local reference frame with vectors −→u , −→v and −→w .

Let R be the rotation matrix defined as
11:

R =

−→u x
−→v x
−→wx−→u y

−→v y
−→w y−→u z

−→v z
−→w z


12: if

−→
Bn · −→w < 0 then

13: −→u = −−→u
14: −→w = −−→w
15: end if
16: for each xi in xRaster do
17: for each yi in yRaster do
18: Compute the projection point p

p = R× [xi yi 0]T +B

19: Create a ray Q from p parallel to −→w
20: Search for intersections between Q and X
21: if number of intersections > 0 then
22: Pick the closest intersection point pc to p
23: Insert pc in the point cloud C
24: end if
25: end for
26: end for

is a valid first step. Figure 2 shows the stages of our

simulated acquisition. In total, our method generates

20 partial views for each target mesh, so the complete

query set contains 7,200 queries.

At this point, we want to make an observation about

the generated partial views. The size and quality of the

partial views depend on both the object and the point

of view. So it is possible that some views contain less in-

formation than others. Therefore, there is an important

factor that we need to take into account: how partial

is a view with respect to the original mesh? To deal

with this aspect, we attach a partiality factor to each

partial view which can be considered as a measure of

difficulty. The partiality is defined as the surface area

ratio between the partial view and the original shape.

This factor will be used to weight the retrieval perfor-

mance as we will show in Sect. 3.
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Fig. 2 Process to obtain the dataset. Left: a shape is en-
closed in a regular icosahedron. Middle: A set of point clouds
is obtained by projecting the shape onto each face of the
icosahedron. Right: Meshes are then reconstructed from the
point clouds, after a hole filling method has been applied

3 Methodology

The input of the evaluation is a distance matrix of

7200 × 360 where each entry stores the distance be-

tween a query view and a target model. Note that each

query object was used for measuring the individual per-

formance and then final measures were obtained by av-

eraging over the complete set of queries. For evalua-

tion, we used measures based on precision and recall to

analyze the effectiveness of the algorithms. For a given

query, precision is the ratio of retrieved relevant objects

with respect to the complete list of retrieved objects.

Likewise, recall is the ratio of retrieved relevant objects

with respect to the complete list of relevant objects.

We use four standard measures commonly used by

the information retrieval community:

– Mean Average Precision (MAP): Given a query,

its average precision is the average of all precision

values computed on all relevant objects in the re-

trieved list. Given several queries, the mean average

precision is the mean of average precision of each

query.

– Nearest Neighbor (NN): Given a query, it is the

precision on the first retrieved object in the ranked

list. For a set of queries, NN is the average of nearest

neighbor measures.

– First Tier (FT): Given a query, it is the preci-

sion when C objects have been retrieved, where C

is the number of relevant objects in the 3D dataset.

For a set of queries, FT is the average of first tier

measures.

– Second Tier (ST): Given a query, it is the preci-

sion when 2*C objects have been retrieved, where C

is the number of relevant objects in the 3D dataset.

For a set of queries, ST is the average of second tier

measures.

Furthermore, we use a rank-based measure to evalu-

ate the effectiveness of retrieving the exact target object

corresponding to a given partial view query,

– Mean Query Rank (MQR): Given a query, the

query rank is the position (in the ranked list) of the

object in the dataset which generated that query

(partial view). Given several queries, the mean query

rank is the mean of query ranks for each query.

The aforementioned measures do not consider the

relative complexity of each query. In this case, the dataset

provides the information about partiality which is a

good indicator of complexity. Therefore, we use a weighted

version of each effectiveness measure as follows. For the

precision-based measures (MAP, NN, FT and ST) and

a set of queries Q with their partiality information, the

weighted version is

measurew =

∑|Q|
i=1(1− partiality(i))×measure∑|Q|

i=1(1− partiality(i))
(1)

For the rank-based measure (MQR), we use the fol-

lowing weighted counterpart

measurew =

∑|Q|
i=1 partiality(i)×measure∑|Q|

i=1 partiality(i)
. (2)

Note that the weights contribute to enhance the

measures when partiality(i) gets smaller. For the precision-

based measures, a small partiality(i) improves the per-

formance. Similarly, for the rank-based measure, a small

partiality(i) contributes to decrease the rank.

4 Methods

We evaluate five methods for partial shape retrieval.

Following is a list of contributions and the authors.

– Range scan-based 3D model retrieval by incorpo-

rating 2D-3D alignment by Bo Li, Yijuan Lu and

Henry Johan [14] [16]. This method is presented in

Sec. 4.1 (For abbreviation, we refer this method as

SBR-2D-3D).

– Range scan-based 3D model retrieval by viewpoint

entropy-based adaptive view clustering by Bo Li,

Yijuan Lu and Henry Johan [15]. This method is

presented in Sec. 4.2 (For abbreviation, we refer this

method as SBR-VC).

– Partial shape retrieval using data-aware partition-

ing by Ivan Sipiran, Benjamin Bustos and Tobias

Schreck [23]. This method is presented in Sec. 4.3

(For abbreviation, we refer this method as Data-

Aware).
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– Partial shape retrieval using Bag of Features by Ivan

Sipiran, Rafael Meruane and Benjamin Bustos. This

method is presented in Sec. 4.4 (For abbreviation,

we refer this method as BoF).

– Partial shape retrieval with Spin mages and signa-

ture quadratic form distance by Ivan Sipiran and

Benjamin Bustos. This method is presented in Sec. 4.5

(For abbreviation, we refer this method as SQFD).

The evaluation of the methods is performed in two

parts. First, each method is evaluated with different

values for its involved parameters. These evaluations

are presented right after the description of the method.

Finally, the best configuration of each method is com-

pared in Sect. 5.

4.1 Range scan-based 3D model retrieval by

incorporating 2D-3D alignment

The retrieval algorithm is a modified version of the

sketch-based 3D model retrieval algorithm proposed in [14].

The main steps are described in Fig. 3. It comprises

precomputation and online retrieval which contains two

successive steps: scan-model alignment and scan-model

matching. In detail, it first precomputes the view con-

text [13] and relative shape context features (100 sam-

ple points) of a set of (e.g. 81 in the algorithm) densely

sampled views for each model in the 3D dataset. For

the query scan, we first generate its silhouette feature

view and then similarly compute its view context and

relative shape context features. Based on the view con-

text of the silhouette feature view and the sample views

of a 3D model, we perform a scan-model alignment by

shortlisting several (8 or 16 in this case) candidate views

of the model to correspond with the silhouette feature

view and finally perform scan-model matching based on

the shape context matching between the silhouette fea-

ture view of the query scan and the candidate sample

views of the 3D model.

To extract the relative shape context features and

compute the view context feature for a range scan query,

it is required to first generate its silhouette feature view.

This is also the main difference between the modified

retrieval algorithm for range scan queries and the orig-

inal algorithm for sketch queries in [14] and [16]. The

details of the silhouette feature view generation for the

range scan query are as follows. The operations applied

to a query to obtain its silhouette feature view are sum-

marized in Fig. 4.

We summarize the range scan-based 3D model re-

trieval algorithm based on a similar 2D-3D alignment

process [14] into the following six steps. Given a simu-

lated query scan and the target 3D model dataset, we

perform the retrieval as below.

(1) Feature views generation. We generate both

silhouette and outline feature views for the scan and

each 3D model.

(2) 2D feature distance computation. Two dif-

ferent feature distances are utilized hierarchically. To

efficiently compute the view context shape descriptor,

we use an integrated image descriptor ZFEC. It is com-

posed of four components: Zernike moments feature Z

of the silhouette view, Fourier descriptors F of the out-

line view, eccentricity feature E and Circularity feature

C of the outline view. To more accurately calculate the

distance between the scan and each of the shortlisted

candidate view of a 3D model, we perform the relative

shape context matching [2] between them.

(3) Scan’s view context computation. By com-

puting the ZFEC feature distances between the range

scan r and all the base views of each 3D model, we

obtain a series of distances Dr=<d1,d2,. . .,dm>, which

represent the scan’s view context, where di (1≤i≤m) is

the distance between the scan and the ith base view of

the model.

(4) Scan-model alignment. We align a 3D model

with the scan by shortlisting a certain percentage (e.g.,

20/10/5%, that is 16/8/4 sample views for this retrieval

task; default value is 20% or 16 views) of candidate

views with top view context similarities as the scan, in

terms of correlation similarity Si =
Ds

i ·D
r

‖Ds
i‖‖Dr‖

. Ds
i and

Dr are the view contexts of the ith sample view V s
i of

the 3D model and the scan, respectively.

(5) Parallel scan-model distance computation.

We perform a parallel relative shape context matching

between the outline feature view of the scan and every

candidate outline feature view and the minimum rela-

tive shape context matching distance is deemed as the

scan-model distance. Besides parallelization, we also

optimize the relative shape context computation and

these two improvements work helps a lot to accelerate

the retrieval process, compared to the initial algorithm

proposed in [14].

(6) Ranking and output. All the scan-model dis-

tances are sorted ascendingly and the models are finally

listed accordingly as the final retrieval result.

The three runs SBR-2D-3D (#CV=16), SBR-2D-

3D (#CV=8), SBR-2D-3D (#CV=4) are three varia-

tions with different number of candidate views. Table 2

shows the results of SBR-2D-3D method using the un-

weighted measures. Table 3 shows the results of SBR-

2D-3D method using the weighted measures.

As can be seen in Table 2, if the number of candi-

date views is reduced half from the default value of 16,

that is, 8 views, the average NN, FT, ST, MAP and
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Fig. 3 Flow chart of the range scan-based 3D model retrieval algorithm.

(a) Range scan
view

(b) Binarization (c) Canny (d) Closing (e) Dilation (f) Filling (g) Inversion

Fig. 4 Silhouette feature view generation from a range scan view image.

Table 2 Performance measures of SBR-2D-3D (without

partiality).

Run NN FT ST MAP MQR
(#CV=16) 0.3535 0.2290 0.1808 0.2455 62.7326
(#CV=8) 0.3456 0.2205 0.1736 0.2350 66.1258
(#CV=4) 0.3444 0.2117 0.1675 0.2248 71.9232

Table 3 Performance measures of SBR-2D-3D (with

partiality).

Run NN FT ST MAP MQR
(#CV=16) 0.3504 0.2279 0.1803 0.2447 56.7151
(#CV=8) 0.3417 0.2194 0.1731 0.2342 60.0114
(#CV=4) 0.3399 0.2106 0.1670 0.2240 66.4191

MQR scores decrease only 2.23, 3.71, 3.98, 4.28 and

5.41%, respectively. Even when we reduce it further to

be only 1
4 of the default value, that is, only 4 candidate

views, the corresponding scores drop only 2.57, 7.55,

7.36, 8.43 and 14.65%. We will reach similar conclusions

if we measure the performance decreases based on their

weighted versions. This again demonstrates the good

efficiency property of SBR-2D-3D w.r.t the number of

candidate views when it is applied to range scan-based

3D model retrieval.

Another important criterion to take into account is

the robustness to partiality. When the weighted mea-

sures are used, all the precision-based measures drop

consistently (see Tables 2 and 3). This means that there

is a high probability that challenging queries are ob-

taining a low precision. We believe that highly partial

queries are difficult to represent with their view context

as they convey poor silhouette information. Also, the se-

lection of candidate views based on alignment could be

affected since the processing is more global and partial

matching is not being considered.

4.2 Range scan-based 3D model retrieval by viewpoint

entropy-based adaptive view clustering

This method is motivated by the finding that usually

different numbers of sample views are needed to repre-

sent different 3D models because they differ in visual

complexities. A 3D model visual complexity metric is

proposed first by utilizing the viewpoint entropy dis-

tribution of 81 sample views of a model. Then, it is

used to adaptively decide the number of the represen-

tative views of the 3D model in order to perform a

Fuzzy C-Means view clustering on its 81 sample views.

Finally, during online retrieval it performs a more ac-

curate and parallel relative shape context matching [2]

(same implementation as that in Sect. 4.1) between a

query sketch and the representative views for each tar-

get model. The modified range scan-based 3D model re-

trieval algorithm contains two stages: precomputation

and online retrieval, as illustrated in Fig. 5.

The silhouette and outline feature view generation

processes are the same as those in Sect. 4.1. Viewpoint

entropy-based adaptive view clustering is a most im-

portant part of the SBR-VC retrieval algorithm. It is

composed of the following three steps.
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Fig. 5 An overview of the SBR-VC algorithm. The first row is for precomputation while the second row is for retrieval stage

(1) Viewpoint entropy distribution. We sample

a set of (e.g., 81 in the algorithm) viewpoints for each

3D model. Then, we compute entropy for each view-

point based on the method in [25]. Fig. 6 demonstrates

the viewpoint entropy distributions of three models based

on L3 for view sampling. As can be seen, there is high

correlation between the geometric complexity of a 3D

model and the complexity of its entropy distribution

pattern. For example, the two complex models Max

Planck and armadillo have shown more complicated en-

tropy distribution patterns than the relatively simpler

model bird.

(a) bird (b) Max Planck (c) armadillo

(d) bird (e) Max Planck (f) armadillo

Fig. 6 Viewpoint entropy distribution examples: First row
shows the models (in the original poses); Second row demon-
strates the viewpoint entropy distributions of the models seen
from the original poses. Entropy values are mapped as colors
on the surface of the spheres based on HSV color model and
smooth shading. Red: small entropy; green: mid-size entropy;
blue: large entropy.

(2) Viewpoint entropy-based 3D visual com-

plexity. The original visual complexity metric proposed

in [15] is based on a class-level entropy distribution

analysis on a 3D dataset. Since the class information of

the target 3D dataset is unavailable, we modified its def-

inition by computing the visual complexity per model.

We first compute the mean and standard deviation en-

tropy values Em and Es among all the sample views of

each 3D model. 3D visual complexity C is defined as

C =

√
Ês

2
+Êm

2

2 , where Ês and Êm are the normalized

Es and Em by their respective maximum and minimum

over all the models. C ∈ [0, 1]. The metric reasonably

reflects the semantic distances among different types of

models.

(3) Viewpoint entropy-based adaptive views

clustering. Based on the 3D visual complexity value C

of a 3D model, the number of its representative outline

feature viewsNc is adaptively assigned:Nc = dα · C ·N0e,
where α is a constant andN0 is the total number of sam-

ple views and it is set to 81 in the algorithm. To speed

up the retrieval process, α is set to 1
2 or 1

3 , which cor-

responds to averagely 14.6 or 9.6 representative views

over all the models in the dataset. Finally, to obtain the

representative views a Fuzzy C-Means view clustering

is performed based on the viewpoint entropy values and

viewpoint locations of its 81 sample views.

The two runs, SBR-VC (α = 1
2 ) and SBR-VC (α =

1
3 ), are two variations of the above SBR-VC algorithm

by setting different α values, while the number of sam-

ple points for the contour(s) of each sketch is set to 100.

For more details about the SBR-VC retrieval algorithm,

please refer to [15].

Table 4 shows the results of SBR-VC method us-

ing the unweighted measures. Table 5 shows the results

of SBR-VC method using the weighted measures. As

can be seen, SBR-VC achieves a comparable perfor-

mance as SBR-2D-3D while their main difference is in

the view selection strategy. Therefore, the view cluster-

ing approach used in SBR-VC achieves a similar effect

as that of the scan-model alignment process in SBR-2D-

3D. However, SBR-VC needs less computation, saving

space and loading memory for the view selection process

since it only precomputes, saves and loads the relative

shape context features of the representative views for

each model while SBR-2D-3D needs those features for

all the sample views of each model. Thus, SBR-VC has

better efficiency, especially when applied for large-scale

retrieval applications.
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Table 4 Performance measures of SBR-VC (without

partiality).

Run NN FT ST MAP MQR
(α = 1/2) 0.3218 0.2065 0.1638 0.2199 75.3940
(α = 1/3) 0.3025 0.1994 0.1585 0.2117 80.8662

Table 5 Performance measures of SBR-VC (with par-

tiality).

Run NN FT ST MAP MQR
(α = 1/2) 0.3209 0.2066 0.1639 0.2202 70.9168
(α = 1/3) 0.3010 0.1996 0.1587 0.2121 75.6762

Regarding the robustness to partiality, it is inter-

esting to note that there is a slight improvement of the

effectiveness measure when the partiality-based weights

are used (see Tables 4, 5). As opposite to the SBR-

2D-3D method, SBR-VC selects a more diverse set of

representative views. Therefore, this set somehow helps

to better discriminate difficult queries in comparison to

the SBR-2D-3D method which is based on 2D views as

well.

4.3 Partial shape retrieval using data-aware

partitioning

We proposed a shape retrieval method for generic shapes

based on the detection of interest points. The idea is to

represent a shape using a global shape descriptor and a

set of part descriptions. That is, given two 3D objects

O and Q, we represent them as follows:

SO = {(sO, PO)|sO ∈ Rn and PO = {piO}mi=1, p
i
O ∈ Rn},

SQ = {(sQ, PQ)|sQ ∈ Rn and PQ = {piQ}ki=1, p
i
Q ∈ Rn},

where O has m partitions, and Q has k partitions.

The partitions are obtained by grouping Harris 3D key-

points [22] in the Euclidean space using an adaptive

clustering algorithm [23]. Subsequently, we compute the

minimum enclosing sphere of the keypoints to define

the partition. Finally, the mesh part contained in the

sphere is considered a partition. The representations

SO and SQ contain the description of the global shape

(sO and sQ) and the descriptions of the partitions. In

our experiments, we used the DESIRE descriptor pro-

posed in [27] to describe the global shape and also the

partitions.

To properly assess the similarity between two shapes,

we need to define a distance d(SO, SQ). This distance

should measure the dissimilarity between two objects

using their intermediate representations. We considered

Table 6 Performance measures of data-aware (without

partiality).

Run NN FT ST MAP MQR
µ = 0.8 0.3431 0.2514 0.2100 0.2824 73.1792
µ = 0.9 0.3457 0.2495 0.2088 0.2836 75.8807
µ = 1.0 0.3406 0.2444 0.2053 0.2806 78.5606

Table 7 Performance measures of data-aware (with

partiality).

Run NN FT ST MAP MQR
µ = 0.8 0.3364 0.2482 0.2081 0.2789 65.4082
µ = 0.9 0.3387 0.2462 0.2068 0.2800 67.7836
µ = 1.0 0.3336 0.2411 0.2033 0.2770 70.2277

a linear combination between the global-to-global and

the partition-based distance:

d(SO, SQ) = µ‖sO − sQ‖2 + (1− µ)dpart(PO, PQ), (3)

where 0 ≤ µ ≤ 1 weights the contribution of the in-

volved terms. At this point, we focus on the definition of

an appropriate distance between two sets of partitions

dpart(PO, PQ). We proposed to formulate an objective

matching function:

f(x) =
∑
i,j

‖piO − p
j
Q‖2.x(i, j), (4)

where x(.) is a boolean indicator variable that indi-

cates if piO matches pjQ. The goal is to find the op-

timum x∗ which minimizes f(x). This can be formu-

lated as an optimization problem to find the minimizer

x∗ = argminxf(x), subject to
∑

i x(i, j′) = 1 and∑
j x(i′, j) = 1 ∀i, j.
Finally, we define the distance function as

dpart(PO, PQ) =
f(x∗)

min(|PO|, |PQ|)
. (5)

where the normalization is to deal with partition sets

of different lengths.

In this method, we test several values of µ to eval-

uate its impact on the final measured distance. For de-

tails about the configuration setup, please refer to [23].

Table 6 shows the results of data-aware method using

the unweighted measures. Table 7 shows the results of

data-aware method using the weighted measures.

The improvement in the use of part-based distance

to a global approach is moderate in presence of par-

tial data. The best MAP value is obtained for µ = 0.9

which represents an improvement of 1.07% with respect

to the MAP obtained by only using a global descriptor
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(µ = 1.0). Nevertheless, this finding was already dis-

cussed in [23] in the context of generic shape retrieval.

In the case of partial data, this behavior seems to be

accentuated by the difficulty of the queries. Obviously,

it is more difficult to find representative partitions in

partial data and match them to partitions in the tar-

get models. However, we believe that our method is

able to detect representative partitions in objects with

well-defined structure (see Sect. 5 for a detailed class-

by-class evaluation).

With respect to the robustness to partiality, the re-

sults with the weighted performance measures present

a slight drop. We believe that it was expected because

our method strongly depends on global descriptors and

partitions based on local features. Recall that partitions

are determined by the distribution of keypoints on the

mesh, so in presence of difficult queries, it is expected

for these distributions to change considerably.

4.4 Partial shape retrieval using bag of features

The bag of features (BoF) approach resembles the or-

ganization of documents from a textual dictionary. In

the multimedia literature, the idea is to find a feature

dictionary. This dictionary is useful to find characteris-

tic distributions of features which allow us to describe

an object. In our framework, the BoF approach is ap-

plied in two steps. The first step consists of computing

a dictionary of features using descriptors from the tar-

get set. Let D be the set of descriptors in Rn and k

be the number of clusters we want to find. To find the

dictionary, we use the k-means algorithm over the set

of descriptors.

The set of centroids represents the dictionary (here-

after denoted as M). The second step of BoF approach

consists of combining the set M and the local descrip-

tors to compute a descriptor per shape. Let P be the

set of local descriptors for one shape. We need to com-

pute the feature distribution for each descriptor in P

as θ(pj) = (θ1(pj), . . . , θk(pj))
T where

θi(pj) = c(pj)exp

(
−‖pj −mi‖2

2σ2

)
(6)

where c(pj) is a constant such that ‖θ(pj)‖2 = 1, mi

is the centroid of cluster Ci and σ is constant. Each

bin in θ(pj) represents the probability that descriptor

pj belongs to a cluster. Here we present the soft version

of quantization as opposite to hard quantization where

bins accounts for descriptors near to clusters. We use

the soft version as it has shown to be effective in the

shape retrieval domain [4].

The final descriptor for a shape represented by the

set of descriptors P is computed as

f(P ) =
∑
pj∈P

θ(pj) (7)

and the matching between two objects can be performed

using the L1 distance between their quantized vectors.

Nevertheless, in the context of whole-from-part retrieval,

the Kullback-Leibler divergence has proven to be ef-

fective to compare quantized vectors in the BoF ap-

proach [17]. In all our experiments, we use the KL diver-

gence as distance between a query and a target shape.

For our experiments, we compute the dictionary from

descriptors of the target set. Subsequently, we use the

dictionary to compute the descriptors for the target and

the query set. In addition, in all our experiments, pa-

rameter σ was set to twice the median distance between

centroids mi.

To test the BoF approach, we use four different de-

scriptors available in the Point Cloud Library [21]. To

properly use the provided implementations, we trans-

form the input mesh into a 3D point cloud. For this

purpose, we sample 50,000 points on the surface using

the sampling method proposed by Osada et al. [18].

Following we detail the configuration used for each de-

scriptor:

– Rectangular Spin Images (RSI) [10]: the image

width was set to 8 and the radius search was set

to object diagonal × 0.08. Each spin image has a

dimension of 153.

– Polar Spin Images (PSI): the configuration is

the same as the rectangular spin images.

– Shape Contexts (SC) [9]: the maximal radius
was set to object diagonal × 0.08 and the minimal

radius was set to 0.125 times the maximal radius.

The dimension of the shape contexts is 1980.

– Fast Point Feature Histogram (FPFH) [19,

20]: the radius search was set to object diagonal×
0.08. The dimension of the FPFH descriptor is 33.

We test several sizes for the vocabulary M . Never-

theless, due to the limited space, we only present the

results with the best vocabulary sizes per descriptor

type. Finally, for all experiments, we extract 300 Har-

ris 3D keypoints [22] for each shape which are the input

for the overall approach. Table 8 shows the results of

BoF method using the unweighted measures. Table 9

shows the results of BoF method using the weighted

measures.

In general in our evaluation, the BoF approach does

not perform as well as previous approaches. In our opin-

ion, quantization is not resilient to missing data, and

therefore the distribution of local features in the queries
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Table 8 Performance measures of BoF (without partiality).

Run NN FT ST MAP MQR
RSI (#M = 300) 0.0881 0.0727 0.0709 0.0914 159.6087
PSI (#M = 100) 0.0931 0.0809 0.0768 0.0968 153.1436
SC (#M = 900) 0.0872 0.0832 0.0775 0.0944 141.6518
FPFH (#M = 300) 0.1156 0.0788 0.0733 0.0965 155.6958

Table 9 Performance measures of BoF (with partiality).

Run NN FT ST MAP MQR
RSI (#M = 300) 0.0892 0.0734 0.0713 0.0917 156.3425
PSI (#M = 100) 0.0933 0.0812 0.0770 0.0972 149.7691
SC (#M = 900) 0.0861 0.0825 0.0771 0.0940 135.8128
FPFH (#M = 300) 0.1167 0.0799 0.0741 0.0971 153.2589

is highly dissimilar to global shapes. However, it is worth

noting that this method presents a moderate improve-

ment with the evaluation of weighted measures (except

for the shape context variation). In general, the use

of local features is intended to provide robustness to

missing data in some degree. Nevertheless, our dataset

presents a difficult task even for approaches based on

local features because the partial views do not exactly

contain the same local geometry as the target models.

4.5 Partial shape retrieval with spin images and

signature quadratic form distance

This method involves the application of a flexible dis-

tance used to compare two shapes which are repre-

sented by feature sets. The signature quadratic form

distance [1] is a context-free distance that has proven

to be effective in the image retrieval domain. In addi-

tion, in this algorithm, we build a feature set composed

of normalized local descriptors. The idea is to compute

an intermediate representation for each shape using a

set of local descriptors which are calculated around a

set of representative surface points. This algorithm is a

modified version of the method evaluated in [3].

First, we compute interest points using Harris 3D [22].

We select 2% of the number of vertices of a shape (with

the highest Harris response) as keypoints. In our exper-

iments, in average the percentage ranges between 200

and 800 keypoints. These interest points are used as

base points around which the local descriptors will be

computed. On the other hand, we use the complete set

of vertices as accumulation points. If a shape has less

than 50,000 vertices, our method samples points on the

surface until reaching 50,000 points.

The set of local descriptors of a shape forms the

feature space of that shape. Next, a local clustering al-

gorithm [12] is applied to obtain a set of representative

descriptors. In brief, the clustering uses two thresholds

Table 10 Performance measures of SQFD (without

partiality).

Run NN FT ST MAP MQR
SQFD (SC) 0.2897 0.1842 0.1376 0.1712 97.3271
SQFD (SI) 0.3108 0.2043 0.1576 0.1978 84.5678

Table 11 Performance measures of SQFD (with par-

tiality).

Run NN FT ST MAP MQR
SQFD (SC) 0.3258 0.1925 0.1157 0.1848 67.6384
SQFD (SI) 0.3476 0.2086 0.1334 0.2034 61.4216

to define the inter-cluster and intra-cluster properties

of the space, so it does not depend on the number of

clusters. Hence, the clustering only depends on the dis-

tribution of the descriptors in the feature space. Given a

partitioning after the clustering, the intermediate rep-

resentation SP of an object P is defined as a set of

tuples as follows:

SP = {(cPi , wP
i ), i = 1, . . . , n} (8)

where cPi is the average local descriptor in the i-th clus-

ter and wP
i is the fraction of elements belonging to the

i-th cluster. It is worth noting that the representation

of an object depends on the clustering and two objects

do not necessarily have the same number of clusters.

For the experiments, we test two runs with different

descriptors. The setup is described following:

– Interest point detector We use adaptive neigh-

borhood around a vertex to compute the local sup-

port. Two percent of the number of vertex with the

highest Harris response is selected as keypoints.

– Spin Images computation Width of spin images

W = 25, support angle As = π, and bin size is

set to the mesh resolution. These parameters allow

us to compute spin images within a local support
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(a detailed description of these parameters can be

found in [6]).

– Shape Contexts computation We used the same

configuration as presented in Sec. 4.4.

– Clustering: we use 0.1 and 0.2 as intra-cluster and

inter-cluster thresholds, respectively. The minimum

number of elements per cluster was 10.

– SQFD We use L2 as ground distance and a Gaus-

sian function with α = 0.9 for the similarity func-

tion.

Tables 10 and 11 show the obtained results. From

the results, we can note that spin images achieve a bet-

ter performance than shape contexts. It is possible that

the high dimensionality of shape contexts plays an im-

portant role in the local clustering for computing the

signatures. The higher the dimensionality, the more dif-

ficult is to find the well-defined clusters in the distribu-

tion of local features in a shape. Therefore, this causes

signatures to be flat in general and hence they are not

so representative.

In contrast to the BoF approach, the SQFD method

only depends on the local clustering of local features

in a shape. We believe that the improvement achieved

by SQFD over BoF reveals that the visual dictionary

(which is based in the target models) do not represent

the information of partial queries. In contrast, SQFD

exploits the local distribution of features and therefore

the signatures are more representative. As the final sig-

nature is found by averaging the local distributions, it

is possible to obtain a more stable representation for

both target models and partial queries (somehow deal-

ing with outliers). It is also interesting to note that the

use of local features allows to obtain an improvement
when the weighted measures are used.

5 Evaluation and Discussion

In this section, we make a comparison of the best runs

of each presented method in Sect. 4. We chose the runs

with the best MAP and compare them using the stan-

dard measures and the measures with partiality weights.

Figure 7 and Tables 12 and 13 show the comparison of

the best runs.

There are two aspects to remark from these results.

First, SBR-2D-3D approach obtains the best result to

retrieve the most similar shape to a partial query. Note

how the SBR-2D-3D method obtains the best NN and

the best MQR consistently in both kinds of evaluation

(unweighted and weighted). More specifically, regard-

ing the unweighted measures (Table 12) SBR-2D-3D

obtained an improvement of 2.25% and 17% with re-

spect to NN and MQR against the second best method

in each measure, respectively. This means that SBR-

2D-3D has the ability of retrieving a relevant object or

the exact object for a partial query with a good chance.

We believe that this behavior is due to the exploration

of a dense set of views to perform the matching (81 in

our experiments). It is likely that among the dense set of

views, there is one which is very similar to the view ob-

tained with the projection method from the icosahedron

faces. This result is also observed in the precision-recall

plots in Fig. 7 where SBR-2D-3D obtains the highest

values of precision for small values of recall. Note that

small values of recall are very related to the nearest

neighbor measure. Furthermore, the analysis is similar

if we consider the weighted measures (Table 12): SBR-

2D-3D obtained an improvement of 3.45 and 8% in NN

and MQR, respectively. The drop in the MQR improve-

ment when considering the unweighted and weighted

measures can be attributed to the same analysis pro-

vided in Sect. 4.1: SBR-2D-3D fails to retrieve similar

models when the query is challenging.

Second, the data-aware method obtains the best re-

sults when the evaluation is done over the complete list

of retrieved objects. That is, this method is able to mea-

sure similarity between a partial view and target objects

in the same class. This can be shown in the best FT,

ST and MAP obtained (from Fig. 7, note also how the

precision-recall curve for this method outperforms the

others for recall values greater than 0.2). In addition, re-

garding the unweighted measures, data-aware obtained

an improvement of 8.95, 15.45 and 15.51% with respect

to FT, ST and MAP against the second best method,

respectively. A reason for these results is that the parti-

tioning scheme is consistent in queries and target shapes

in the same class, and therefore is a good representa-

tion to preserve the intra-class similarity. We also be-

lieve that the application of global descriptors is par-

ticularly useful in this context because there are views

which are very similar to the target models when both

are normalized in pose (the DESIRE method includes a

pose normalization step prior to the description). In our

opinion this is not a generalized rule, but when it occurs

our method exploits the global similarity in conjunction

with the partition-based matching to enhance the struc-

ture of the models. Again, the analysis is similar when

the weighted measures are used. Data-aware obtained

an improvement of 8.02, 14.69 and 14.42% with respect

to FT, ST and MAP against the second best method,

respectively. It is also worth noting that there is a drop

in the improvements of the measures when we use the

weighted measures. This fact is in accordance with the

analysis provided in Sect. 4.3 in that data-aware also

fails to retrieve relevant models when the query is chal-
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Fig. 7 Precision-Recall plots for the best configuration setup per method.

Table 12 Performance measures of the best configurations (without partiality).

Method NN FT ST MAP MQR
SBR-2D-3D (#CV=16) 0.3535 0.2290 0.1808 0.2455 62.7326
SBR-VC (α = 1/2) 0.3218 0.2065 0.1638 0.2199 75.3940
Data-aware (µ = 0.9) 0.3457 0.2495 0.2088 0.2836 75.8807
Polar spin images (#M = 100) 0.0931 0.0809 0.0768 0.0968 153.1436
SQFD (spin images) 0.3108 0.2043 0.1576 0.1978 84.5678

Table 13 Performance measures of the best configurations (with partiality).

Run NN FT ST MAP MQR
SBR-2D-3D (#CV=16) 0.3504 0.2279 0.1803 0.2447 56.7151
SBR-VC (α = 1/2) 0.3209 0.2066 0.1639 0.2202 70.9168
Data-aware (µ = 0.9) 0.3387 0.2462 0.2068 0.2800 67.7836
Polar spin images (#M = 100) 0.0933 0.0812 0.0770 0.0972 149.7691
SQFD (spin images) 0.3476 0.2086 0.1334 0.2034 61.4216

lenging. Nevertheless, it is also important to remark

that the drop in improvement is slight.

We also performed a experiment to evaluate the be-

havior of each method with respect to each class. Note

that all the measures we use so far are averaged over the

complete set of queries. For this reasons, it is possible

that those results are hiding some important informa-

tion in order to have a clue about how each method

works. Figure 8 shows the MAP averaged by class for

each evaluated method. An important clue that can be

extracted from this result is that view-based approaches

are complementary to the data-aware method. There

is a notable improvement of SBR-2D-3D against data-

aware in classes such as Fish, Bottle, and Sofa. Interest-

ingly, objects from these classes share a characteristic:

they contain large smooth surfaces. Therefore, it is pos-

sible that partial queries coming from these classes con-

tain a large portion of the real object. Apparently, this

fact is being exploited by the view-based approaches,

more specifically SBR-2D-3D.

Following the same logic, we identified the classes

in which data-aware outperforms the other methods. A

notable improvement can be observed in classes such

as Insect, Quadruped, Floorlamp, Cellphone, Biplane

and Monoplane. Interestingly, object from these classes

also share a characteristic: they are composed by well-

defined parts and small-variations structure within the

class. The small variation is being exploited by the

global descriptor while the partitioning takes advantage

of the structure.

As a result, we believe that the two representations

(view-based and partition-based) convey complemen-

tary information, and therefore we can exploit the best

of both worlds to address the problem of partial shape

retrieval. In this direction, we explored the impact of

combining these two approaches in a naive way in order

to further improve the results obtained so far indepen-

dently for each method.

We performed an experiment which considers to com-

bine the two best methods by means of a simple com-

bination rule of the provided distance matrices. For
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Fig. 8 Mean average precision per class for the evaluated methods

the results presented in this section, we took the dis-

tance matrices of SBR-2D-3D and data-aware to pro-

duce new distance matrices associated to a combina-

tion weight ω. Let distSBR be the distance matrix of

the best run of SBR-2D-3D and distAware be the dis-

tance matrix of the best run of data-aware, we com-

bine the distance matrices using combinedDistance =

ω · distAware+ (1−ω) · distSBR. Then, the new com-

bined distances were evaluated as usual.

Tables 14 and 15 show the results of combinations. It

is worth noting the improvement of all measures (with-

out and with partiality weights) compared to isolated

methods. Here, the best MAP achieved is 0.3316, which

represents a notable increment (17%) with respect to

the best MAP obtained (0.2836) in the comparison of

the previous section. Also, it is important to note the

influence of both methods in the combination. For ex-

ample, when the combination contains high contribu-

tion of SBR-2D-3D (ω = 0.2), we obtain the best NN

and MQR. This is consistent with our observation that

SBR-2D-3D is suitable to obtain the best target shape

for a partial query. On the other hand, the best retrieval

results occur with more balanced contributions of both

methods (ω = 0.3 and ω = 0.4).

These results show the ability of each method to

perform similarity search with partial 3D shapes. In ad-

dition, it is worth noting that different approaches con-

tribute in different ways to the retrieval task. Therefore,

it seems that the approaches compute complementary

representations, which are able to get different aspects

of partial queries. This is the reason why the combina-

tion of the two best methods performs better than the

isolated methods.

Timing

An important aspect to evaluate is the efficiency of

methods for partial shape retrieval. Table 16 shows the

average time for each algorithm to perform a similar-

ity search given a partial view as query. The platform

used in SBR-2D-3D and SBR-VC was composed of a

DELL Precision T7500 machine with an Intel Xeon

CPU X5675 @3.70 GHz 3.06 GHz (2 processors, 12

cores), 20GB memory and Windows 7 64-bit OS. On

the other hand, Data-Aware, BoF and SQFD were eval-

uated on a Intel Core i7-3537U processor @2.00GhZ (4

cores) with 8GB and Linux OS. Platforms are different

because the evaluation was done separately by two dif-

ferent teams as part of a SHREC contest [24]. Still, we
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Table 14 Performance measures for combination SBR-2D-3D + Data-Aware (without partiality).

Weight NN FT ST MAP MQR
ω = 0.2 0.4272 0.2930 0.2296 0.3222 40.4988
ω = 0.3 0.4217 0.2975 0.2366 0.3316 41.4051
ω = 0.4 0.4094 0.2978 0.2403 0.3308 45.0901

Table 15 Performance measures for combination SBR-2D-3D + Data-Aware (with partiality).

Weight NN FT ST MAP MQR
ω = 0.2 0.4232 0.2914 0.2286 0.3205 33.1614
ω = 0.3 0.4170 0.2957 0.2357 0.3295 34.1445
ω = 0.4 0.4045 0.2958 0.2391 0.3284 37.9183

believe that the presented results are useful to compare

the evaluated methods.

Table 16 Query times for the evaluated methods.

Method Setup Query times (sec.)

SBR-2D-3D
#CV = 16 1.9987

#CV=8 1.1119
#CV=4 0.4932

SBR-VC
α = 1/2 1.6893
α = 1/3 1.4949

Data-Aware any setup 3.06

BoF

RSI (#M = 300) 0.3008
PSI (#M = 100) 0.2145
SC (#M = 900) 0.5412

FPFH (#M = 300) 0.2412

SQFD
SC 1.8842
SI 1.5687

As we can see, the query time of the view-based

methods depends on the number of views used for as-

sessing the similarity. For example, reducing the num-
ber of views from 16 to 4 in SBR-2D-3D reduces the

query time in almost a quarter. We can see a similar

behavior in SBR-VC, but the improvement is less noto-

rious, probably because the query time is dominated by

the view clustering. It is important to recall that more

views provided the best effectiveness results, therefore

there is a trade-off between effectiveness and efficiency

depending on the number of views used in the distance

measure.

On the other hand, data-aware does not depend on

the parameter for the combination of global and part

description. This is because the query time is com-

pletely dominated by the optimization for the matching

(computation of keypoints and partition took in average

0.4 seconds). Again, note that data-aware was the most

effective method, so its application depends on either

effectiveness which is most important to the expenses

of computational time.

Interestingly, the BoF approach obtained the lower

query times. Basically, these times include point sam-

pling, description, quantization and query time. Never-

theless, it is worth noting that the BoF approach re-

quires a off-line step to compute the vocabulary. In our

experiments, this step took 5-10 hours depending on

the feature dimension and the number of cluster for the

dictionary. Once we have computed the vocabulary, the

query process is very fast.

Finally, SQFD presents a intermediate query time

between data-aAware and BoF. Most of the time in

SQFD method is devoted to the computation of the

SQFD distance which is expensive (computation of key-

points, description and local clustering took in average

0.21 seconds).

6 Conclusions and Future Work

In this paper, we evaluated five methods using a large-

scale dataset with simulated partial views. The dataset

is composed of a set of partial views generated based on

a target set of shapes. To the best of our knowledge, this

is the first attempt to evaluate partial shape retrieval

algorithms in a large-scale scenario. In addition, we in-

troduced a novel weighted performance measure which

involves the complexity and difficulty of the queries.

Our results show that the dataset was very chal-

lenging. Firstly, although the combination of methods

showed to improve the results compared to the evalua-

tion of the independent methods, the results still remain

moderate. This is an indication that the problem is far

from being solved. Moreover, in our opinion, the dataset

represents a scenario for real-world applications because

it was built by simulating the real scanning process.

Therefore, it is important to realize this to find out the

real capabilities of existing algorithms. Secondly, the

combination of approaches seems to be the direction

to find new solutions to the whole-from-part retrieval

problem. However, we believe that more sophisticated

combinations of complementary descriptions need to be

evaluated. We plan to go in this direction in the fea-

ture, trying to obtain complementary representations
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for shapes and partial queries. Thirdly, efficiency and

robustness issues do matter. Obviously, for large-scale

retrieval tasks, it is necessary to have fast algorithms

which are able to deal with imperfections of meshes

obtained from real devices. As a consequence, we iden-

tify robust partial shape retrieval algorithm scalable to

large datasets as a promising future research direction.

We identify additional interesting future work for the

generation of even more realistic retrieval benchmarks.

In particular, one may wish to control the level of res-

olution of the acquisition process, or introduce various

kinds of data noises. In particular, varying lighting con-

ditions and reflectance properties that influence the pre-

cision degrees of 3D acquisition, could be considered.
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