

A ferry route in the Skagerrak optimised via VISIR-2

Gianandrea Mannarini & Mario Leonardo Salinas

Global Coastal Ocean Division

CMCC - Euro-Mediterranean Center on Climate Change

Lecce, Italy

www.cmcc.it

latest update: 2024-11-06

→ Introduction

Methods

Results

Discussion

Weather routing for short sea shipping?

Shipping CO2 emissions: between 2.0 and 2.4% (with

domestic emissions: 2.9%) of global ones

Emission reduction from International regulatory efforts (IMO 2023 Strategy, EU-ETS, FuelEuMaritime) will take time to materialise

slow-steaming, anti-fouling paintings, and weather routing are immediately available and can help with low-C fuels too

Large uncertainty on quantitative role of weather routing, especially for short sea shipping

open-source VISIR-2 model can help assessing quantitative savings in a systematic way

Case study route in the Skagerrak (red-hatched in map) ~70 miles

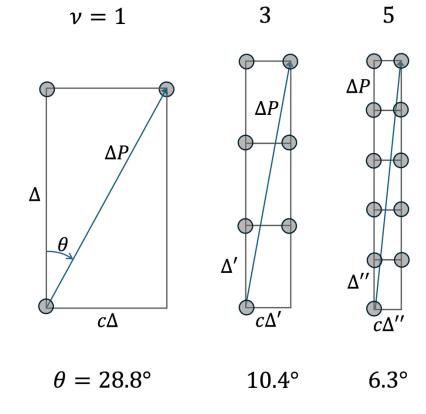
Introduction

 \rightarrow *Methods*

Results

Discussion

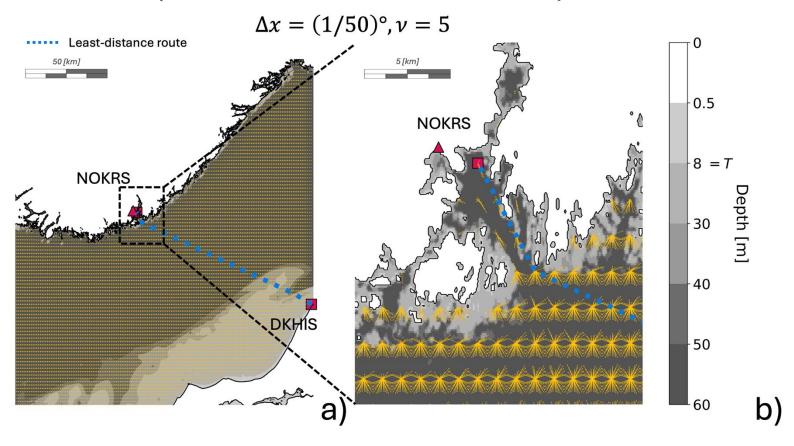
Graphs and route smoothness



VISIR-2 solution is based on a graph-search method

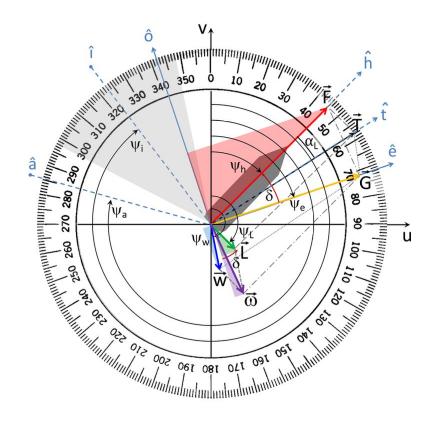
(graph edges connect nodes up to a given number of hops v)

fixed ship's engine load $\chi \rightarrow$ graph edge angle θ as sole control variable for the optimisation problem


multi-hop edges $(v > 1) \rightarrow smaller \theta \rightarrow smoother routes$

$$jagged \leftarrow \rightarrow smooth$$

Avoidance of shallow waters


(2.2 km resolution in meridional direction)

Edges with average sea depth less than ship draught are pruned from the graph: \rightarrow ca. 1 million edges left per time-step

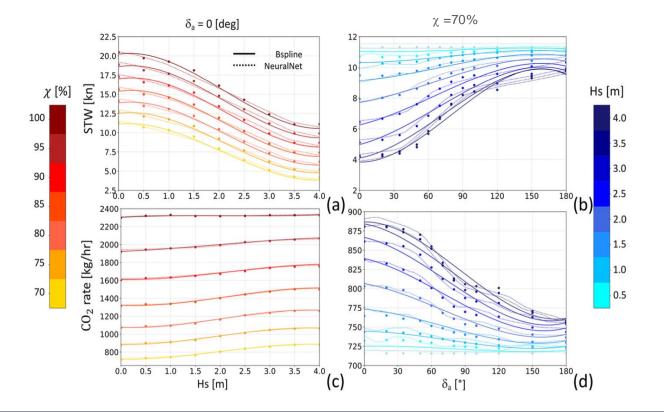
Shortest path and CO₂ savings

- ➤ *Objective: least-distance, least-time, least-CO2 routes*
- > graph-search algorithm extended to use dynamic environmental fields at the edges
- ➤ linear superposition of currents and speed through water (STW) resulting from waves
- ➤ accounting for cross-currents via heading correction with respect to course ("drift angle")
- > CO2 savings computed with respect to least-distance route:

$$dCO_2 = \frac{CO_2^{\text{(opt)}} - CO_2^{\text{(gdt)}}}{CO_2^{\text{(gdt)}}}$$

validated vs. analytical benchmarks and intercomparison exercises

both pseudo-code and source code published



Vessel performance modelling

Ship considered: a ferry

vessel performance data (from simulator) available for a vessel smaller than MS Bergensfjord

Following the main engine power ratio, CO_2 emission rates are upscaled (6x)

	Simulator ferry	MS Bergensfjord					
Length	125 m	170 m					
Beam	23.4 m	27.5 m					
Draught	5.3 m	6.3 m					
Speed	19 kn	21.5 kn					
Power	4,000 kW	24,000 kW					
rescaled							

 \leftarrow STW decreasing with significant wave height Hs (more at low χ)

larger reduction at smaller angle of attack of waves $|\delta_a|$ Emission rate Γ mainly depends on χ and $|\delta_a|$

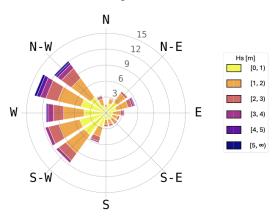
Introduction

Methods

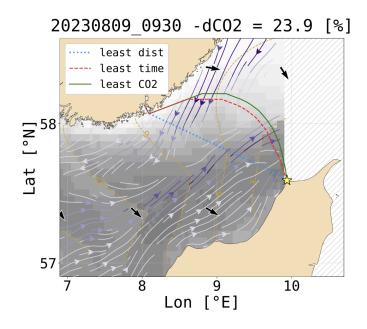
 \rightarrow Results

Discussion

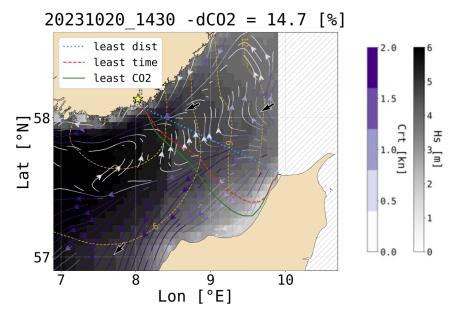
Optimal routes – individual case studies


Typical **sea circulation**:

 cyclonic (SW-bound Norwegian coastal current, NE-bound Jutland current)


Typical **sea state**:

 largest and most frequent waves are from NW

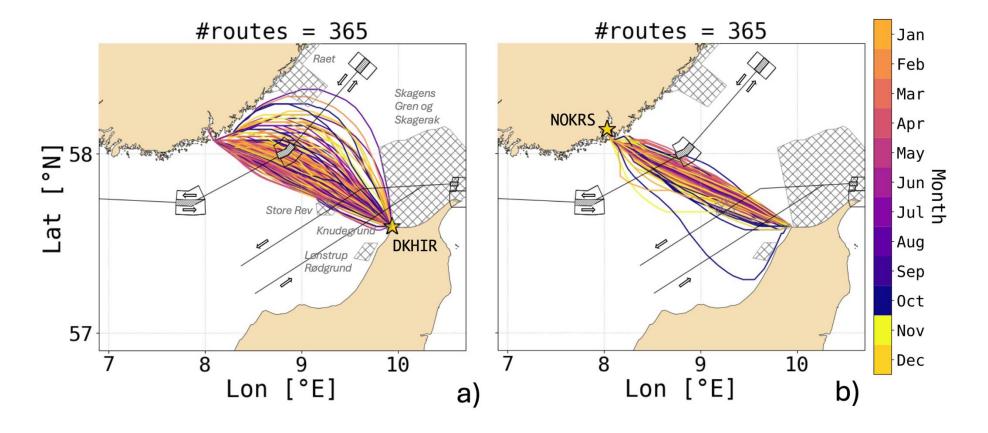


Optimal route **from Hirtshals**. Diversion is to NE:

- avoids head seas
- bypassess Jutland current
- exploits Norwegian current
- ~24% CO2 saving

Optimal route **from Kristiansand**. Diversion is to SW:

- sea circulation disrupted by easterly wind
- avoids head seas
- calmer waters off Denmark
- ~15% CO2 saving



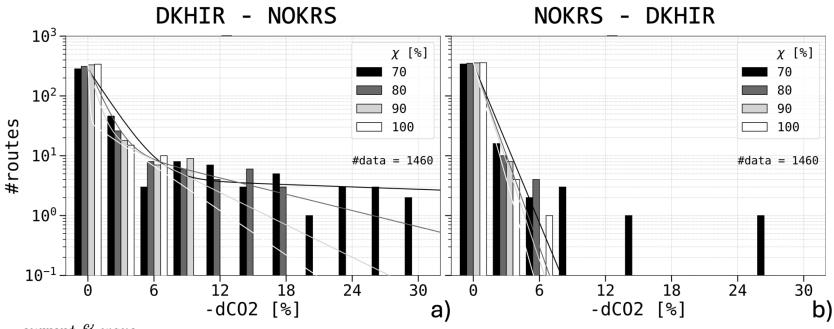
Optimal routes over a full year

- daily departures
- 2 sailing directions
- 4 engine loads: $\chi = \{70,80,90,100\}\%$
- with/without currents

===========

tot: 5,840 experiments

Traffic Separation Schemes and Natura 2000 (grey cross-hatch) areas not used for route optimisation



CO₂ savings – statistical distribution

from Hirtshals: biexponential distribution («fat tail»)

from Kristiansand: single exponential distribution

considering also currents: doubling of CO2 savings

,		wave		$current \mathcal{E} wave$		
	χ	total	savings	total	savings	
	[%]	[t]	[t]	[t]	[t]	
	70	9,973	216	10,043	357	
DKHIR - NOKRS	80	11,638	135	11,695	218	
DKIIK - NUKKS	90	13,947	77	14,000	127	
	100	16,638	53	16,689	91	
	70	9,461	30	9,443	83	
NOKRS - DKHIR	80	11,198	18	$11,\!179$	47	
MORIIS - DRIIII	90	13,608	14	$13,\!584$	34	
	100	16,314	14	16,288	30	

- **compare** to:
- □ average, per-ferry pre-COVID-19 annual emissions in the European Economic Area (*) → 37,432 tons CO2
- □ annual CO2 emissions of a European citizen → 6.9 tons CO2

Introduction

Methods

Results

→ Discussion

Missing modeling components

	issue	impact	fix	
1	Vessel performance modeling not specialised for the actual ferry	unrealistic route durations and savings	use metocean data and AIS or sensor data	
2	Auxiliary engine neglected	overestimation of savings	modify emission rate Γ	
3	Marine protected areas not considered	found routes potentially	use static masking	
4	Intact stability constraints neglected	shorter than feasible	dynamic filtering needed	
5	Analysis fields of sea state and sea circulation used but just forecasts available in operational practice	suboptimal solutions	for deep sea shipping, rereouting (not available for short sea shipping)	
6	Ferry routes must adhere to strict schedules for both departure and arrival times	not all optimal routes computed may be practically relevant	develop a given-duration, least-CO2 algorithm MISSION	

Take-home messages

- □ crucial to consider currents (if not, halved CO2 savings)
- ☐ (due to wave direction in the Skagerrak) routing is particularly beneficial for voyages from Denmark
- □ *CO2* savings distribution is (bi)-exponential
- □ max savings: 26% from Kristiansand, 30% from Hirtshals

Conference Paper: doi.org/10.1088/1742-6596/2867/1/012003

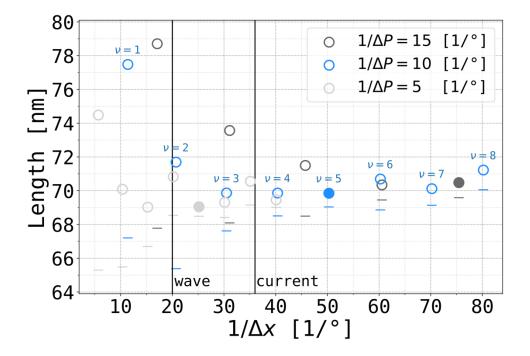
VISIR-2 repository: https://zenodo.org/records/10960842

www.cmcc.it

Appendix

Choise of graph resolution

How resoluted should a graph be?


• vary number of hops (v) and spatial resolution $(1/\Delta x)$ keeping edge length (ΔP) fixed:

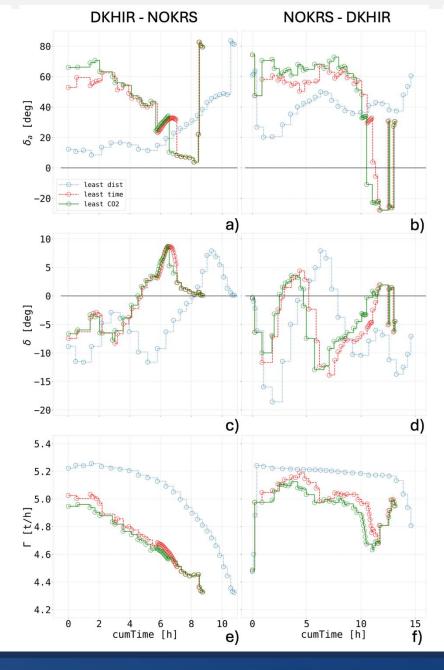
$$\Delta P/\Delta x = \sqrt{c^2 + \nu^2} \approx \nu$$

$$c = \cos \overline{\varphi}$$

with c = cosine of mean latitude

- compare the length L of resulting least-distance route
- for the Hirtshals-Kristiansand route, convergence of L (within error ~1%) achieved for v=5 and $\Delta x=(1/50)^{\circ}$

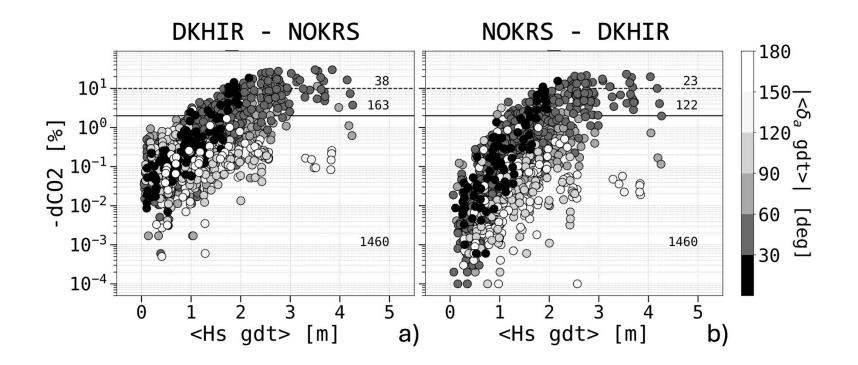
Along route information


DKHIR - NOKRS

- large angle of attack of waves $|\delta_a|$ @ 0-5 h
- small course-heading deviation $|\delta|$ @ 4-5 h
- large voyage-mean longitudinal current $w_{||}$ and $|\delta_a|$
- small voyage-mean significant wave height H_s and $|\delta|$ \Rightarrow low emission rate Γ

· -	Route type	$\langle H_s \rangle$	$\langle \delta_a \rangle$	$\langle w_\parallel angle$	$\langle \delta angle$	$\langle SOG \rangle$	$\langle \Gamma \rangle$	T^*
		[m]	$[\deg]$	[kn]	$[\deg]$	[kn]	$[\mathrm{t/hr}]$	$[\mathrm{hr}]$
	least-dist	2.4	32.3	-0.24	5.3	7.7	4.9	10.9
DKHIR - NOKRS	least-time	1.8	37.7	0.49	4.8	10.6	4.7	8.8
	least-CO ₂	1.7	37.9	0.53	4.3	10.9	4.6	8.9
	least-dist	4.2	42.5	-0.67	7.2	5.4	5.1	14.9
NOKRS - DKHIR	least-time	3.5	45.5	-0.50	5.3	6.9	5.0	13.2
	least-CO ₂	3.3	48.8	-0.45	4.2	7.6	4.9	13.2
								13.17
								13.24

NOKRS - DKHIR


- $larger |\delta_a| @ o-10 h$
- smaller Hs
- least-CO2 vs least-time:
 - less negative w_{\parallel}
 - smaller cross current (smaller $|\delta|$)

CO₂ savings throughout one year

- minimum acceptable saving in our case: 2%
- threshold 10% saving was exceeded in 38 (23) experiments out of 1460 for routes from Hirtshals (Kristiansand)
- max CO2 saving was 30 (26)% from Hirtshals (Kristiansand)
- Note: a study (*) found that route length reduction of just 0.65% can make optimisation profitable

	wave				cv	irrent	\mathcal{E} wa	ve
voyage / χ	70	80	90	100	70	80	90	100
DKHIR - NOKRS	1.3	0.8	0.4	0.3	2.1	1.3	0.7	0.4
NOKRS - DKHIR	0.2	0.1	0.1	0.1	0.6	0.4	0.2	0.2

- currents lead to higher annual-average CO2 savings
- savings are more significant at smaller engine loads
- *Voyages from Denmark yield larger savings (3-5 x)*

