

Steering clear of too much trust

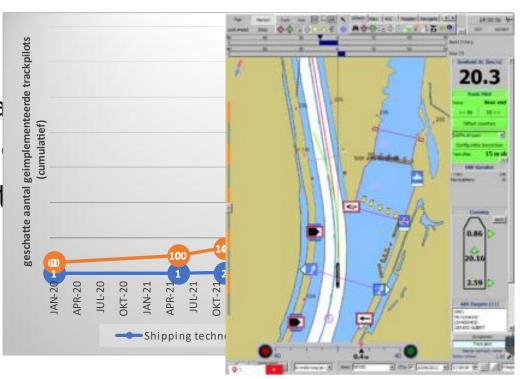
"Trust is like the air we breathe – when it's present, nobody really notices; when it's absent, everybody notices." Warren Buffett

Patrick Potgraven
Program Smart Shipping

Use of track pilots in inland shipping

> Introduced in 2014

Nowadays 3 manufacturers: Argonics, Tresco Engineering en


Shipping Technology

> 2 functions:

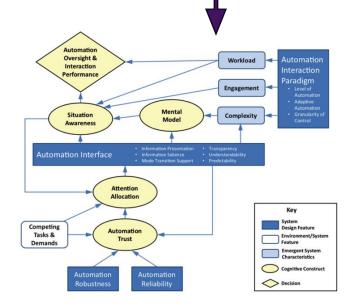
1. Create a sailing line from origin to destina

2. Controls the rudder to keep the sailing lin

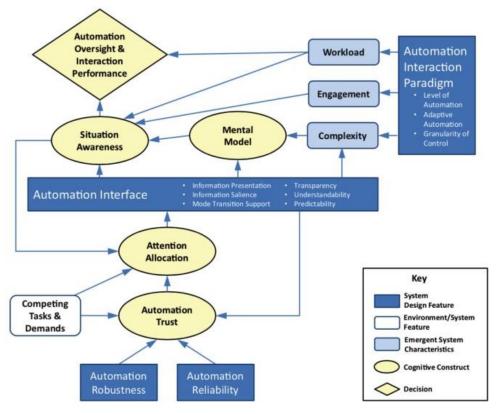
 Suitable for additional functions, like warning, collision avoidance

MARIN survey on Intention sharing

- Intention sharing between trackpilots in inland shipping
- Outcomes:
 - Sharing intention information with the surrounding ships will have a positive effect on safety and efficiency


Assignment: best practices trackpilots

- MARIN develops guidelines, procedures and standards for the safe use of Trackpilots:
 - Concept of and interaction with the track pilot
 - User interface design guidelines
 - System performance requirements
 - Implementation of the track pilot on board
 - Maintenance and usage guidelines
- Research based on theoretical framework, but with a practical approach
- Research is supervised by a stakeholder group


The most importants riscs

- Situational awareness / out of the loop
- Misplaced salience
- Presence in the wheelhouse
- Incorrect use (misunderstanding) of the system, due to:
 - Inadequate training or instructions
 - Operation and presentation of the information
 - Problems with taking over
- Installation errors and problems
- > Hardware/software problems
- Loss of competences

HASO Features, constructs and chariteristics

- Situational awareness/ out of the loop
- Trust
- Attention allocation
- Level of automation
- Adaptive automation
- Granularity of control
- Automation reliability
- > Automation robustness
- Automation interface

- > The system assists the helmsman
- > The system becomes more and more advanced:
 - More and more tasks are included
 - The system gets more and more capable
- > The helmsman intervenes less and less
- Is he able to take over when the systems fails?
- (Is he even there?)

The automation paradox on situational awareness

Identification of relevant issues to address in Best Practices

- Number and nature of tasks affected by the automation
 - Voyage planning
 - Vessel monitoring
 - Environment monitoring
 - Vessel navigation and manoeuvring
 - Normal and emergency operation
- Design features that are not directly connected to the navigation task
 - Technical installation and implementation
 - Integration with ship systems
 - Calibrating/tuning
 - Maintenance and repair

We identified Risks and defined 'best practices' on the following subjects (1):

- (In)adequate installation on board (f.e. wiring, compatibility);
- (In)adequate Tuning/Calibration;
- (In)adequate Reliability of the TP-automation;
- (In)adequate Voyage Planning
- (In)adequate Attention Allocation
 - Especially in case of reduced workload, unintentionally leading to loss of attention or falling asleep

We identified Risks and defined 'best practices' on the following subjects (2):

- (In)adequate Controls (f.e. change over, track planning)
- (In)adequate Education & Training
- Long- and short-term declination of Engagement and/or Competence
- (In)adequate Information Generation and Presentation, settings, warnings, alarm.
 - What, Where, How and How Salient information is presented
 - Distinguish between safety critical and non-critical information

Best practices were defined for:

Safety case 4: Emergency/failure operations

|--|

		Risk	Best practice subjects
	1	Sensor failure: incorrect or no data	Certification of sensors & guideline incorrect data identification
	2	TP navigates with wrong data	Incorrect/ wrong data identification procedure
	3	TP inadequate keeps track in corners/ with current	Operational test/ certification procedure
	4	Drifting in corner with larger error than predicted	Operational test/ certification procedure
	5	System shuts down unplanned	Fail safe guidelines/ procedures

All safety cases in the MARIN rapport

12

Example: Leaving the wheelhouse unattended?

> Prohibited, but nevertheless the case

Also done without trackpilot, but a trackplant

Does the trackpilot manufacturer feel res

> They felt that a watch alarm should be m

Concluding

- Using a trackpilot has positive effects on navigation:
 - Reduces the workload
 - Navigation is more precise
- Nevertheless: trackpilots do have limitations
 - Challenges regarding safe sailing
 - Manufacturers feel obligations to mitigate those riscs

And then?

- Jan '24: The industry is willing to bring out an industry standard
- Mar '24: CESNI start work to include the trackpilot in ES-TRIN-27
- > Apr '24: The industry waits for development in CESNI

- Suggestions from the best practices study are implemented voluntarily by the manufacterers
- 2024: Start of an inventarisation study to the safety aspects of remotely operated inland sailing

Room for questions