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Collaborators/Funding/Thanks	

−  Vehicle	Op<miza<on,	Dynamics,	Control	and	Autonomy	Laboratory:	Dynamics,	control	and	op;miza;on	of	
advanced,	increasingly	autonomous	vehicles	opera;ng	in	the	space,	air,	ground	or	marine	domains.	

−  Collaborators:	I.	Kolmanovsky,	A.	Berning,	W.	Dunham,	N.	Li,	R.	Sutherland,	R.	Tian	

−  Funding	Sources:	AFRL,	AFOSR,	NASA,	NSF,	ONR,	TARDEC,	Boeing,	Luna	Rossa,	Oracle,	and	the	automo;ve	
industry.	

−  Website:	vodca.engin.umich.edu		



Robots, including collabora1ve robots, are becoming 
more capable, be6er accepted, and more 
commonplace.


Robots	are	increasingly	capable	and	prevalent	



Unmanned	Air	Vehicles	are	here	

q  Es;mated	number	of	UAVs	shipped	in	
2017:	almost	3	million	

q  Projected	number	of	UAVs	in	US	by	
2020:	7	million	

q  Es;mated	number	of	commercial	
UAVs	in	the	air	by	2018:	600,000	

q  Number	of	UAVs	registered	with	the	
FAA:	770,000	

q  Es;mated	value	of	UAV	industry:	💲3.3	
billion	

q  Projected	value	of	UAV	industry	in	
2025:	💲90	billion	

q  Percentage	of	Americans	who	own	a	
“drone:”	8%	



Self-driving	cars	are	being	tested	



Safety/valida;on	concerns	are	relevant	
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Traffic	Simula;on	



Why	do	we	need	traffic	simula;on?	

q  Es;mated	that	one	must	drive	>100	million	
kilometers	to	validate	autonomous	driving	
soaware	

q  Use	traffic	simulators	to:	
q  Create	a	pool	of	traffic	scenarios,	

trajectories,	inputs,	
q  Evaluate	the	performance	of	control	

algorithms	in	different	scenarios,	
q  Compare	vehicle	control	algorithms,	
q  Detect	“faults”	in	the	algorithms,	e.g.,	

condi;ons	under	which	the	algorithm	
may	cause	unsafe	driving	behavior.	

Fatality	rates	with	introduc;on	of	
new	technology	(Aircraa	data)	



In	extreme	situa;ons,	traffic	modeling	is	easy	

At	very	low	traffic	densi<es,	everyone	travels	
their	desired	speed.	The	interac;on	between	
vehicles	is	negligible.	

At	very	high	traffic	densi<es,	we	have	
(almost)	complete	stoppage.	The	traffic	
dynamics	are	irrelevant,	and	queueing	theory	
is	a	good	model.	



Important,	and	challenging,	traffic	modeling	

If	the	traffic	is	dense	but	moving:	
q  Microscopic	traffic	models:	how	do	vehicles	interact	with	each	other?	
q  Macroscopic	traffic	models:	temporal	evolu;on	of	traffic	density?	Traffic	waves?	



Micro	vs.	macro	traffic	models	

Opportunity	and	Challenge:		
Intermediate	models	that	consider	interac<ons		

between	10-50	vehicles	

Microscopic	traffic	models:	
q  Track	individual	vehicle	trajectories	
q  Quan;;es	of	interest:	vehicle	posi;on,	

speed,	accelera;on	
q  Popular	framework:	car-following	models	
q  Small	number	of	vehicles	(as	low	as	2)	

Macroscopic	traffic	models:	
q  Track	field	quan;;es,	defined	everywhere	
q  Quan;;es	of	interest:	vehicle	density,	

velocity	field,	flow	rate	field	
q  Popular	frameworks:	LWR,	ARZ	
q  Large	number	of	vehicles	(thousands)	



Intermediate	traffic	models	

Our game-theoretic 
vehicle interaction 

modeling 

Driver behavior 
modeling Traffic modeling 

To	study	macroscopic	phenomena:	
analyzing	sta;s;cal	proper;es	of	traffic	
flow,	transporta;on	capacity,	traffic	
jams,	to	improve	transporta;on	system	
effec;veness	and	efficiency	[2].	

A	driver	behavior	model	example	[3] A	fundamental	diagram	of	traffic	example	[4] 

To	study	microscopic	
phenomena:	
predic;ng	driver	intent,	driving	
maneuvers,	vehicle	and	driver	
states,	to	improve	driving		safety	
and	experience	[1].	



Our game-theoretic 
vehicle interaction 

modeling 

Driver behavior 
modeling Traffic modeling 

Vehicle	system	level Transporta;on	system	level 

Top	five	contribu;ng	factors	to	collisions	[5]:		
	
Driver	failed	to	look	properly,	41%;		
Driver	failed	to	judge	other	person’s	path	or	speed,	22%;		
Driver	careless,	reckless	or	in	a	hurry,	15%;		
Poor	turn	or	maneuver,	14%;		
Loss	of	control,	12%. 

related	to	vehicle	interac,ons 

Real	traffic	scenarios	include	complex	interac,ons	among	road	
users.	Modeling	and	handling	interac;ons	with	other	road	users	is	
necessary	to	provide	safety,	and	remains	an	unsolved	problem	for	
autonomous	driving	[6].	

Modeling	vehicle	interac;ons	is	important	



These	two	scenarios	involve	more	
vehicles	than	shown	in	the	diagram! 

Two	conflict	scenarios	involving	the	interac;on	among	mul;ple	vehicles	
detected	by	our	model	[7] 

A	traffic	conflict	is	a	situa;on	where	two	or	more	road	users	approach	each	other	in	;me	and	
space	to	such	an	extent	that	a	collision	is	imminent	if	their	movements	remain	unchanged	[8]. 

Our game-theoretic 
vehicle interaction 

modeling 

Driver behavior 
modeling Traffic modeling 

Vehicle	system	level Transporta;on	system	level 

Intermediate	models	capture	corner	cases	



Two	conflict	scenarios	involving	the	interac;on	among	mul;ple	vehicles	
detected	by	our	model	[7] 

These	two	scenarios	involve	more	
vehicles	than	shown	in	the	diagram! 

So	they	make	
lane	changes 

A	traffic	conflict	is	a	situa;on	where	two	or	more	road	users	approach	each	other	in	;me	and	
space	to	such	an	extent	that	a	collision	is	imminent	if	their	movements	remain	unchanged	[8]. 

Intermediate	models	capture	corner	cases	



Real	traffic	scenarios	include	complex	interac,ons	among	road	users. 

Our	research	addresses	 

Intermediate	models	capture	corner	cases	

Our game-theoretic 
vehicle interaction 

modeling 

Driver behavior 
modeling Traffic modeling 

Vehicle	system	level Transporta;on	system	level 



Game	Theore;c	Traffic	Simula;on	

Main	Collaborators:	Ilya	Kolmanovsky,	Yildiray	Yildiz,	Nan	Li,	Ran	Tian.	



Hierarchical	reasoning	game	theory	

q  Modeling	humans	precisely	is	difficult	(Variability,	
small	data	sets).	

q  Hierarchical	reasoning	game	theory	(level-k	game	
theory)	atempts	to	describe	human	thought	
processes	in	strategic	games.	Assumes	that	players	
base	their	decisions	on	their	predic;ons	of	the	likely	
ac;ons	of	other	players.	

q  Players	in	strategic	games	can	be	categorized	by	the	
“depth”	of	their	strategic	thought.	Players	have	
bounded	ra;onality.	

q  Level-k	theory	predicts	human	decisions	beZer	than	
equilibrium-based	models	in	a	range	of	games.	



An	example:	the	Keynesian	“beauty”	contest	
q  Keynesian	beauty	contest:	Pick	a	number	between	0	and	100.	Winner	is	the	person	whose	

number	is	the	closest	to	half	of	the	average	of	all	the	(many)	par;cipants'	guesses.	

q  Level	zero	players:	choose	a	number	non-strategically	(at	random,	42	for	Doug	
Adams,	birthday,	etc.)	

q  Level	one	players:	choose	their	number	consistent	with	the	belief	that	all	other	
players	are	level	zero.	If	all	other	players	in	the	game	are	level	zero,	the	average	of	
those	guesses	would	be	about	50.	Therefore,	a	level	one	player	chooses	25.	

q  Level	two	players:	choose	their	number	consistent	with	the	belief	that	all	other	
players	are	level	one.	Since	a	level	one	player	will	choose	25,	a	level	two	player	should	
choose	13.	This	process	repeats	for	higher-level	players.	

q  Studies	from	other	domains	show	humans	are	usually	level	0,	1	or	2,	rarely	3.	



Level-k	reasoning	and	reinforcement	learning	

•  Level-𝟎	agent	makes	ins;nc;ve	decisions	and	does	not	take	into	account	the	interac;ons.	
•  Level-𝟏	agent	assumes	all	of	the	other	agents	are	Level-𝟎	and	makes	op;mal	responses	based	on	this	assump;on.	
⋮	
•  Level-𝐤	agent	assumes	all	of	the	other	agents	are	Level-(𝐤-1)	and	makes	op;mal	responses	based	on	this		agent	assumes	all	of	the	other	agents	are	Level-(𝐤-1)	and	makes	op;mal	responses	based	on	this	-1)	and	makes	op;mal	responses	based	on	this	

assump;on.	

•  To	obtain	the	level-k	policy,	we	put	a	learner	in	traffic	consis;ng	of	level-(k-1)	drivers,	and	use	reinforcement	
learning	to	train	the	learner.	In	other	domains,	humans	have	been	shown	to	usually	be	levels	0,	1	or	2	decision	
makers.		



MDP	for	highway	driving	

q  Control	Hierarchy.	Focus:	Higher-level	Controller	

𝑅= ​𝑤↓1 𝑐+ ​𝑤↓2 𝑣+ ​𝑤↓3 𝑒+ ​𝑤↓4 ℎ 

Environment 

Higher-level Controller 

Lower-level Controller 

Vehicle Dynamics 

Accel, decel, change lane, 
… 

Observation Vehicle 

Engine torque,  
gear, steering, … 

•  Set	of	states:		
•  3	states	per	vehicle,	longitudinal	posi;on	and	

velocity,	lateral	posi;on	
•  30-50	vehicles	in	simula;on	

•  Set	of	ac<ons:	7	dimensional	
•  Maintain	
•  Change	lane	lea/right	
•  Accelerate/decelerate	(regular	maneuver)	
•  Emergency	Accelerate/decelerate	

•  Reward/Penalty:	(safe	distance)	constraint	viola;on,	
vehicle	speed,	maneuver	effort,	headway	

•  Observa<on	space	(POMDP):	18-dimensional	
•  Observe	states	of	5	neighboring	vehicles	+	self	



Level-1 vs Level-0 Level-2 vs Level-1 

	 Mixed traffic (10% Level-0, 60% Level-1 and 30% Level-2) 

Game	theore;c	traffic	modeling	results	



Un-signalized	Intersec;ons	

q  Represent	roughly	50%	of	intersec<on	crashes	in	the	US	
q  Require	a	balance	between	overly	aggressive	ac;ons	(that	do	not	take	into	account	behavior	of	

others)	and	overly	conserva;ve	ac;ons	(deadlock)	
q  Challenges:	predict	other	drivers’	ac;ons	(interac;ve),	take	op;mal	decision	corresponding	to	

the	predic;on	

Four-way intersection Roundabout 



Un-signalized	intersec;ons:	Scenarios	

Unsignalized four-way intersection Roundabout 

2-vehicle interactions at: 



MDP	for	intersec;ons	

•  Set	of	states	(MDP,	not	POMDP):		
•  4	states	per	vehicle,	longitudinal	and	lateral	

posi;ons,	speed,	yaw	angle	
•  2-vehicle	interac;ons	at	first	

•  Set	of	ac<ons:	6	possible	combina<ons	
•  Accelera;on	
•  Yaw	rate	

•  Reward/Penalty:	(safe	distance)	constraint	viola;on,	
vehicle	speed,	maneuver	effort,	headway	

		
	

				penalty	for	collision,	penalty	for	being	too	close,	penalty	for	driving	off	road,		
penalty	for	driving	in	wrong	lane,	reward	for	approaching	objec;ve	lane	



Un-signalized	intersec;ons:	Results	

Humans are usually level-0, 1 and 2 reasoners in their interactions (Costa-Gomes, M. A., & Crawford, V. P. (2006). Cognition and 
behavior in two-person guessing games: An experimental study. American Economic Review, 96(5), 1737-1768). 

L1 vs L0 L2 vs L1 L1 vs L1 L0 vs L0 L2 vs L2 

Fail Fail 

L0 driver treats the other car as 
a stationary obstacle and does 
not take into account her 
potential actions → aggressive  

L1 driver predicts the other car 
to be aggressive, thus yield the 
right of way. 

L2 driver predicts that the other 
car will yield the right of way, 
thus decides to pass first.  

Both cars yield the right of way 
at the beginning, then reach an 
agreement. 

When predictions are incorrect… 
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D vs L0 D vs L1 D vs L2 

Controller	𝒟	versus	level-𝓀	drivers	



D vs L1 D vs L2 D vs Human 1 

Roundabout scenario: 

D vs Human 2 

We let a human operator control the red car using the keyboard. 

3/14/19	 28	

Controller	𝒟	versus	level-𝓀	and	human	drivers	
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Generaliza;on	to	𝑛–vehicle	scenarios	

•  POMDP:	
•  The	ego	car	considers	its	interac;ons	with	its	

two	nearest	neighbors	



3/14/19	 30	

Generaliza;on	to	arbitrary	road	geometries	



Our game-theoretic 
vehicle interaction 

modeling 

Driver behavior 
modeling Traffic modeling 

Vehicle	system	level Transporta;on	system	level 

Support development, testing, 
verification and validation of 
advanced driver assistance 
systems and automated driving 
functions [7,9]. 

Study impacts of autonomous 
driving technologies in 
improving traffic capacity, fuel 
economy, and reducing traffic 
congestion. 

Intermediate	models	can	be	used	to…	
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