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Robots are increasingly capable and prevalent

Robots, including collaborative robots, are becoming
more capable, better accepted, and more
commonplace.




Unmanned Air Vehicles are here
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Estimated number of UAVs shipped in
2017: almost 3 million

Projected number of UAVs in US by
2020: 7 million

Estimated number of commercial
UAVs in the air by 2018: 600,000
Number of UAVs registered with the
FAA: 770,000

Estimated value of UAV industry: $ 3.3
billion

Projected value of UAV industry in
2025: $ 90 billion

Percentage of Americans who own a
“drone:” 8%
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Self-driving cars are being tested

Self-driving cars: from 2020 you will

TESLA'SCARSNOW DRIVE become a permanent backseat driver
THEMSELVES, RINDA

Driverless cars will revolutionise motoring, claim the
manufacturers. But is the greatest danger that they will be too
safe?

A A BMW "highly automated prototype on the German autobahn. Photograph: PR

Self-driving cars: it’s only a
matter of time until they
take over

11 hours

Nichols Tocker, Staf Reporter The maximum amount of time
Fled vl Ok truckers can spend at the wheel

before being penalized, under a
new federal law.

MIT Technology Review

Self-driving trucks are coming—and this law just made things
even worse for truckers




Safety/validation concerns are relevant

A Tesla Driver Died in a
Crash While His Car Was
on Autopilot

3y Will Oremus
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Traffic Simulation




Why do we need traffic simulation?

Estimated that one must drive >100 million
kilometers to validate autonomous driving
software

Use traffic simulators to:

Q
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Create a pool of traffic scenarios,
trajectories, inputs,

Evaluate the performance of control
algorithms in different scenarios,
Compare vehicle control algorithms,
Detect “faults” in the algorithms, e.g.,
conditions under which the algorithm
may cause unsafe driving behavior.
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Fatality rates with introduction of
new technology (Aircraft data)



In extreme situations, traffic modeling is easy

At very low traffic densities, everyone travels At very high traffic densities, we have
their desired speed. The interaction between (almost) complete stoppage. The traffic
vehicles is negligible. dynamics are irrelevant, and queueing theory

is a good model.



Important, and challenging, traffic modeling

If the traffic is dense but moving:
U Microscopic traffic models: how do vehicles interact with each other?
U Macroscopic traffic models: temporal evolution of traffic density? Traffic waves?



Micro vs. macro traffic models

Microscopic traffic models:

Macroscopic traffic models:

O Track individual vehicle trajectories O Track field quantities, defined everywhere
O Quantities of interest: vehicle position, O Quantities of interest: vehicle density,

speed, acceleration
O Popular framework: car-follow

velocity field, flow rate field
ing models O Popular frameworks: LWR, ARZ

L Small number of vehicles (as low as 2) O Large number of vehicles (thousands)
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Macroscopic = traffic density

Microscopic = individual cars
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Opportunity and Challenge:

Intermediate models that consider interactions

between 10-50 vehicles



Intermediate traffic models

To study microscopic
phenomena:

predicting driver intent, driving
maneuvers, vehicle and driver
states, to improve driving safety

To study macroscopic phenomena:
analyzing statistical properties of traffic
flow, transportation capacity, traffic
jams, to improve transportation system
effectiveness and efficiency [2].

and experience [1]. f
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A driver behavior model example [3] A fundamental diagram of traffic example [4]



Modeling vehicle interactions is important

Vehicle system level -~ Transportation system level
)\ n
. . Our game-theoretic
Driver behavior . . . . .
. vehicle interaction Traffic modeling
modeling < .
y modeling
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Top five contributing factors to collisions [5]:
Driver failed to look properly, 41%; ) l

Driver failed to judge other person’s path or speed, 22%; — related to vehicle interactions
Driver careless, reckless or in a hurry, 15%; J

Poor turn or maneuver, 14%;

o . . . . -
Loss of control, 12%. Real traffic scenarios include complex interactions among road

users. Modeling and handling interactions with other road users is

necessary to provide safety, and remains an unsolved problem for
autonomous driving [6].



Intermediate models capture corner cases

Vehicle system level Transportation system level

(
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Driver behavior . . . . .
. vehicle interaction Traffic modeling
modeling < .
y modeling
\_
t+1 t t+1

m_" : These two scenarios involve more
: i » i vehicles than shown in the diagram!

e
4#

Two conflict scenarios involving the interaction among multiple vehicles
detected by our model [7]

A traffic conflict is a situation where two or more road users approach each other in time and
space to such an extent that a collision is imminent if their movements remain unchanged [8].



Intermediate models capture corner cases

Two conflict scenarios involving the interaction among multiple vehicles

So they make -
lane changes " rl Y
t+1 \ e

o i

detected by our model [7]

=

These two scenarios involve more
vehicles than shown in the diagram!

A traffic conflict is a situation where two or more road users approach each other in time and
space to such an extent that a collision is imminent if their movements remain unchanged [8].



Intermediate models capture corner cases

Vehicle system level

) .
. . Our game-theoretic
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Real traffic scenarios include complex interactions among road users.

Transportation system level

Traffic modeling




Game Theoretic Traffic Simulation

‘ v, = 27.2222 m/s % 20
7 . | J L
10
& &
: - : 0- - Q) |
- - O B

& & " \ i

Main Collaborators: llya Kolmanovsky, Yildiray Yildiz, Nan Li, Ran Tian.



Hierarchical reasoning game theory

NOW LIVE partypokerLIVE Millions Dusk Till Dawn

Modeling huma ns precisely is dimcult (Va riability’ @pokernews NEWS VIDEOS STRATEGY POKER ROOMS FREEROLLS LIVE REPORTING PLAYERS
small data sets).
K Multiple-Level Thinking in Poker: At What
Level Are You?
. - . 9,
Hierarchical reasoning game theory (level-k game %

theory) attempts to describe human thought —
processes in strategic games. Assumes that players swwrrsumes 4 SIEI] wiznnos oecx S
base their decisions on their predictions of the likely WHATS HEGOT 2 7B IMAGE 3
actions of other players. —pn

I LIKE GUM 0 7 icoramm H

Players in strategic games can be categorized by the
“depth” of their strategic thought. Players have
bounded rationality.

Level-k theory predicts human decisions better than
equilibrium-based models in a range of games.




An example: the Keynesian “beauty” contest

Keynesian beauty contest: Pick a number between 0 and 100. Winner is the person whose
number is the closest to half of the average of all the (many) participants' guesses.

Level zero players: choose a number non-strategically (at random, 42 for Doug
Adams, birthday, etc.)

Level one players: choose their number consistent with the belief that all other
players are level zero. If all other players in the game are level zero, the average of
those guesses would be about 50. Therefore, a level one player chooses 25.

Level two players: choose their number consistent with the belief that all other
players are level one. Since a level one player will choose 25, a level two player should

choose 13. This process repeats for higher-level players.

Studies from other domains show humans are usually level 0, 1 or 2, rarely 3.



Level-k reasoning and reinforcement learning

Reinforcement
Learning

Learning agent Level-k policy

r

----- —
Level-0 policy

Level-(k-1) policy

Level-0 agent makes instinctive decisions and does not take into account the interactions.
Level-1 agent assumes all of the other agents are Level-0 and makes optimal responses based on this assumption.

Level-k agent assumes all of the other agents are Level-(k-1) and makes optimal responses based on this
assumption.

To obtain the level-k policy, we put a learner in traffic consisting of level-(k-1) drivers, and use reinforcement
learning to train the learner. In other domains, humans have been shown to usually be levels 0, 1 or 2 decision
makers.



MDP for highway driving

Q Control Hierarchy. Focus: Higher-level Controller

* Set of states:
* 3 states per vehicle, longitudinal position and
velocity, lateral position
* 30-50 vehicles in simulation

—> Environment

Vehicle Observation
* Set of actions: 7 dimensional

Higher-level Controller * Maintain
* Change lane left/right

Accel, decel, change lang,  Accelerate/decelerate (regular maneuver)
* Emergency Accelerate/decelerate

Lower-level Controller ¢ Reward/Penalty: (safe distance) constraint violation,

l Engine torque, vehicle speed, maneuver effort, headway

gear, steering, ...

P=wll c+wl2 v+wl3 e+ wlid A

Vehicle Dynamics * Observation space (POMDP): 18-dimensional

I * Observe states of 5 neighboring vehicles + self
]




Game theoretic traffic modeling results

Level-1 vs Level-0 Level-2 vs Level-1

\ v, =27.2222 m/s y = v, =19.7222 m/s




Un-signalized Intersections

Lo

Four-way intersection Roundabout

Represent roughly 50% of intersection crashes in the US
Require a balance between overly aggressive actions (that do not take into account behavior of

others) and overly conservative actions (deadlock)
Challenges: predict other drivers’ actions (interactive), take optimal decision corresponding to

the prediction



Un-signalized intersections: Scenarios

2-vehicle interactions at:

20 \lill

0 __________
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Unsignalized four-way intersection Roundabout




MDP for intersections

' * Set of states (MDP, not POMDP):
20 [ ] * 4 states per vehicle, longitudinal and lateral
10 positions, speed, yaw angle
e 2-vehicle interactions at first
L] =
—) —) . . . .
* Set of actions: 6 possible combinations
-10 * Acceleration
[ ] * Yaw rate
-20
20 -10 O 10 20

* Reward/Penalty: (safe distance) constraint violation,
vehicle speed, maneuver effort, headway

penalty for collision, penalty for being too close, penalty for driving off road

penalty for driving in wrong lane, reward for approaching objective lane




Un-signalized intersections: Results

LO driver treats the other car as L2 driver predicts that the other
car will yield the right of way,
thus decides to pass first.

a stationary obstacle and does
not take into account her

potential actions — aggressive
L1vsLO

20 v =4.625m/s

v =4.625m/s

20 15 -0 5 0 5 10 15 20

L1 driver predicts the other car
to be aggressive, thus yield the
right of way.

Humans are usually level-0, 1 and 2 reasoners in their interactions (Costa-Gomes, M. A., & Crawford, V. P. (2006).

7 D v =4.625m/s

L2 vs L1

v =4.625m/s

When predictions are incorrect...

Fail
LOvsLO

Fail

L1 vs L1 L2vs L2

v =4.625m/s

20 v =4.625m/s 20 v=5m/s 20
15 D 15 D 15 D
10 10 10
5 5 5

20 45 40 5 0 5 10 15 20

v =4.625m/s

5 -5 5
-10 -10 -10
-15 D -15 D -15
20 v =4.625m/s 20 v =4.2229 m/s 20

20 45 40 5 0 5 10 15 20 20 15 -0 -5 0 5 10 15 20 20 45 40 5 0 5 10 15 20

Both cars yield the right of way
at the beginning, then reach an
agreement.

Cognition and

behavior in two-person guessing games: An experimental study. American Economic Review, 96(5), 1737-1768).



Controller » versus level-: drivers

Dvs LO D vs L1 DvslL2
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Controller » versus level-: and human drivers

Roundabout scenario:
We let a human operator control the red car using the keyboard.

D vs Human 1 D vs Human 2
20 20 v=25m/s 20 v=25m/s
10 10 10
‘ e\
-~ 0 : 0 o 0 ‘
- -10 -10 -10
-20 D e ieion 2 -20 D o e -20 ﬁ s -20 D o et
20 10 0 10 20 20 10 0 10 20 20 10 0 10 20 20 -10 0 10 20
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Generalization to .—vehicle scenarios

* POMDP:

401 * The ego car considers its interactions with its
| .
; two nearest neighbors
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Generalization to arbitrary road geometries
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Intermediate models can be used to...

Vehicle system level Transportation system level

[

. . D Our game-theoretic
Driver behavior > AT . . i
. vehicle interaction Traffic modeling
modeling = -
) modeling

o
Support development, testing, Study impacts of autonomous
verification and validation of driving technologies in
advanced driver assistance improving traffic capacity, fuel
systems and automated driving economy, and reducing traffic

functions [7,9]. \congestion. )
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