Cybersecurity for autonomous systems Vulnerabilities and threats 11.03.2019 sopra Steria

Agenda

- 1. Systems overview
- 2. Vulnerabilites
- 3. Incidents and trends
- 4. Future threats?
- 5. Mitigation?

Industrial Automation and Control System (IACS)

Process control systems

Safety instrumented systems

Dynamic positioning

IACS

Manufacturing

Production lines

IACS

Power & Energy

IACS

Nuclear power plants

Converging names

SAS, SIS, ICS, IACS, SCADA, DCS, IIoT, ++

SAS = Safety and Automation System

SIS = Safety Instrumented Systems

ICS = Industrial Control Systems

IACS = Industrial Automation and Control Systems

Autonomous system

Simple IACS lab

The controller

HMI

Human Machine Interface

Priorities

Source: Critical Facilities Summit 2017

Incidents and trends

Major incidents

- 2008: Conficker Windows worm, infected 9-15 million PCs all over the world
- **2010**: Stuxnet Targeted virus against Iran, caused mechanical breakdown of over 1000 sentrifuges for enrichment of uranium.
- **2012**: Shamoon Virus against Saudi Aramco **35**.000 PCs got their disks deleted.

• • •

• • •

- **2017**: WannaCry **230.000** PCs in over 150 countries hit by ransomware.
- 2017: NotPetya New wave of ransomware. Maersk lost 300 million USD.
 - Triton Emergency shutdown system in i Saudi Arabia was hacked. Target: physical
- **2017**: destruction.
- Xenotime The group behind Triton develops more capabilities through increased
 2018 amount of knowledge sharing in security forums.

Threats – trends

Reported incidents:

Source: RISI Online Incident Database

Threats – trends

Most Targeted Industries for Cyberattack (2017)

Demonstration of Relative Attack Frequency

Source: IBM Institute for Business Value

Threats – trends

Source: RISI Online Incident Database

Future threats

What do we need to be aware of in the coming years?

Threats increase

Incidents in 2017 and Xenotime in 2018 is a good illustration.

Digitalization, remote operations, more inter-connectedness with more functionality and more autonomity:

Increasing complexity, more vulnerabilities in code and configuration.

Future threats

Security experts (white-hats, pentesters, hackers etc) constantly develop new tools and methods, and share diligently between themselves:

- Evasion and stealth-methods
- Databases of weaknesses and exploits (Shodan, Exploit-db, virustotal)
- Bypass of antivirus, SMS-authenthication, phishing
- Fileless attacks
- Living-off-the-land
- Hardware hacking
- Command & Control (C2) over DNS, MySql, Https, etc
- Worms for PLCs due to more functionality in PLCs

Frameworks for building cybersecure systems

IEC 62443

NIST CSF

CIS CSC

Some recommended actions

- Zone/conduit-model. Segregation
- Continously monitor and assess weaknesses and status of security boundaries and -functions.
- Continously patch known vulnerabilities once they get published or detected.
- Extra solid border protection between IT and OT, in DMZ (Zone 3.5). Whitelisting, EDR, MFA.
- Understand the threats and vulnerabilities
- Assume breach, go threathunting

Move cybersecurity into the world of electronics and physics

Move cybersecurity into the world of electronics and physics

DataDiodes

DataDiodes

