

Norwegian University of Science and Technology

Trondheim, Norway March 11th to 13th

Key topics

- Making the case for autonomous system Safety, Reliability and Security (SRS)
- Modeling and analysis methods for assessing autonomous system
- Human in the loop benefits and risks
- Dealing with complexity of integrated systems of Software– Hardware–Human
- Safety standards, oversight, regulations, ethics and liability

Origin of participants

First International Workshop on Autonomous Systems Safety Affiliations

		Rolls Royce Marine	DNV GL		B. John Garrick Institute for the Risk Sciences, University of California, Los Angeles		UAS Consulting	
			Aalto University	Institute for Energy	National Technical University of Athens	Norweg Maritim Director	e	Sopra Steria
			Boeing Research and Technology	Technical University Dresden	Univers Liverpo		University of Massachusetts	
			Equinor	Tsinghua University	University of Nottingham		Volvo Penta	
	NTNU	SINTEF	Haylion Technologies	UBER	Univers Southar			han versity of nnology

Expected outcome

Proceedings

- Abstracts of the presentations
 - Summary of discussions
- Breakout groups conclusions

Level of Autonomy

First International Workshop on Autonomous Systems Safety

Safety Challenges

First International Workshop on Autonomous Systems Safety

Interaction of software, hardware, and human operator

Misleading Information

Failure Propagation

First International Workshop on Autonomous Systems Safety

Assessment methods for safety, reliability and security

Cyber security

Jamming

Spoofing

Ransomware "Robot-napping"

Update existing regulations

Developing new regulations

Manning

Norwegian University of Science and Technology

Develop and test within regulatory boundaries

Demonstrate safety

Liability

Catch-22:

need to test and use AVs to assess their safety

we do not want them until we know that they are safe

Ethical and social aspects

Fixed and embedded in the algorithms?

"Replicate" human-

alike decisions?

Mundane traffic situations

- approaching a crosswalk with limited visibility
- turn taking
- traffic-heavy intersections
- liability factors

