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Preface 
The First International Workshop on Autonomous Systems Safety 

(IWASS) was organized by the Department of Marine Technology at the 

Norwegian University of Science and Technology (NTNU) and the B. John Garrick 

Institute for the Risk Sciences at the University of California, Los Angeles (UCLA). 

IWASS took place in Trondheim, Norway, from 11th to 13th of March 2019. The 

participation in the workshop was by invitation only and included 47 subject 

matter experts from Europe, Asia, Australia, and the U.S., working in both 

academia and industry. 

The idea to organize IWASS originated from a discussion by the organizers 

on the challenges concerning autonomous ships’ safety. A natural question that 

emerged was whether such challenges are unique to the maritime domain or 

there are commonalities with other technology sectors such as aviation and land 

transport. And if there are identifiable similarities, could common solutions be 

envisioned and developed? Answering these and related questions motivated 

IWASS as a platform for an interdisciplinary  discussion on risks, challenges, and 

foremost potential solutions concerning safe autonomous systems and 

operations. 

The awareness on autonomous systems’ similarities is not a novelty in the 

field. Yet, to our knowledge, no event before IWASS had assembled experts on 

different autonomous systems with the purpose to discuss safety, reliability, and 

security (SRS). In the past, similar events have been organized around a specific 

type of autonomous system (e.g. cars, ships, aviation) or a particular safety or 

security related aspect of such systems (e.g., the risk of cyber-attack, software 

reliability). IWASS distinguishes itself from these events – and complements 

them – by bringing these topics together in an attempt to focus on proposing 

solutions for SRS challenges common to different types of autonomous systems. 

These proceedings document the discussions and the main results from 

the workshop. It includes (i) an overview of the different applications of 

autonomous systems and its challenges concerning SRS; (ii) summaries of the 

discussions on key topics held at IWASS; and (iii) complementary papers from 

several participants. 
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Introduction 
The introduction of automation is rapidly changing how society interacts 

with machines. The enablers include new applications of artificial intelligence, 

machine-learning, and powerful integrated software and hardware systems. The 

push towards higher levels of autonomy is challenging how society should safely 

design, operate, interact, approve, and accept such systems. The challenges are 

interdisciplinary in nature and require a collective effort by the research 

communities to categorize and classify risks and conceptualize and develop 

mitigating solutions. Hence, the workshop aimed at discussing challenges related 

to safety, reliability, and security (SRS) of autonomous systems, covering 

autonomous maritime, marine, land vehicle, railway, and aerospace systems, and 

proposing possible solutions to the identified challenges. 

A Whitepaper prepared by the organizers and sent to the participants 

before the workshop presented preliminary challenges regarding SRS of 

autonomous systems. The whitepaper provided a background for the discussions 

of the workshop and the interdisciplinarity of the topics, namely: (i) Interaction 

of software, hardware, and human operators; (ii) assessment methods for safety, 

reliability and security; (iii) cyber security; (iv) legal and regulatory aspects; and 

(v) ethical and social aspects. 

The topics above guided the presentations and discussions held during 

IWASS. The first day of the workshop was dedicated to lectures by experts from 

both the industry and academia. The summaries of these lectures are presented 

in these proceedings, following the take-away messages. The lectures covered 

topics ranging from cybersecurity to trust in autonomy and, along with the 

whitepaper, provided a foundation for discussion in four breakout sessions 

during the second day of the workshop. During the breakout sessions the 

participants addressed challenges and possible solutions related to (i) human 

factors, ethics, and regulations, (ii) SRS methods and modeling, (iii) system 

verification and testing, (iv) intelligence and decision making. The discussions 

were guided by a proposed setoff research questions from Table 1. Preliminary 

conclusions of the breakout groups were presented and discussed during the 

final day of the workshop. Each group further prepared a report of their 

discussions, which have become chapters in these proceedings. In addition, the 

participants were invited to submit their recent work on autonomous systems’ 

SRS. 

These proceedings document the discussions and the main results from 

the workshop. Following this introduction, the whitepaper presents an overview 

of the state of the art of autonomous systems development and related SRS 
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challenges. The following Chapters provide summaries of the four breakout 

group discussions, namely: 1) Autonomous Transportation Technologies: Society 

and Individuals in the Loop; 2) Safety, Reliability and Security Modelling and 

Methods for Autonomous Systems; 3) System Verification, Processes and Testing; 

and 4) Intelligence and Decision Support.  Thereafter follows papers from several 

participants addressing topics from the workshop. 

Take-away Messages 

Autonomous systems are emerging and are crucial for enabling new 

operations, such as autonomous land-based, maritime, and air transportation, 

mapping and monitoring of oceans and areas on land, and inspections of physical 

structures that are difficult to access. Autonomous technologies are intended to 

be a step towards safer and efficient operations, but the corresponding software 

and advanced control systems also involve complexities that pose formidable 

challenges to identification and removal of cause of functional failure, safety 

issues, and security concerns.  

Developers of autonomous systems and autonomous functionality must 

develop strategies and methods for safe, reliable and secure performance so that 

the autonomous systems comply with requirements. Operators need to plan and 

execute safe and robust operations, with effective risk control. The authorities 

need new standards and guidelines for autonomy as a basis for their regulatory 

and oversight activities. Acceptance and approval of autonomous systems with 

integrated learning and optimization capabilities require risk identification, 

assessment, modelling, testing and verification as drivers of the design, 

operation, and system validation. 

Widespread acceptance of any new technology depends on trust in the 

technology itself and in the organizations that implement and regulate it. This 

means that the technology itself must not produce significant unpleasant 

surprises and the organizations must demonstrate competence and act 

consistently with the societal values. Hence, social acceptance of autonomous 

systems, composed of advanced control, decision, and sensor systems, with 

increased intelligence, requires open and inclusive development processes to 

determine what societal values are embedded and affected by the technology. 

Autonomy in systems adds new and formidable complexity with respect 

to ensuring SRS. The main challenges related to effective and adequate methods 

for SRS assessment concern the inadequacy of existing methods, the lack of 

integrated modelling of hardware, human, software, the challenge of learning 

systems, and data requirements. 
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Software malfunctioning, and cyber threats are different from hardware 

and human failures. Past failures do not indicate future behavior which means 

that calculation of the expected likelihood or frequency is not feasible. In addition, 

learning capabilities of the software increase the difficulty in validating 

performance. Nevertheless, many of the current methods can still play a part in 

supporting SRS of autonomous systems, but new modelling techniques, which 

holistically capture the strong connectivity and interdependencies between 

software, hardware and human operators, are required. Further, simulations may 

assist in the detailed understanding of autonomous systems behavior, 

identification of SRS issues, and performing system validation. The importance of 

quantifying SRS may increase in the future to enable real-time decision making 

and to identify when the system performance drops below the acceptable 

threshold during operation. 

The verification and testing of autonomous systems are related to 

regulatory, societal, and ethical requirements. These requirements need to be 

included at the beginning of the design process and fed through the verification 

phase. A main concern, however, is how to obtain the necessary requirements 

against which to verify the system. Validation of requirements is a concern for the 

verification of any system, but it may be a particular challenge with autonomous 

systems because of the complexity and a lack of consensus on regulation and 

ethical guidelines for autonomous systems. 

Further, the identification of the best verification processes for 

autonomous systems is a concern. Due to the complexity of the such systems, and 

their potential for learning, continuous and integrated processes seem to be 

needed. Communicating the verification efforts to regulators and the public is 

important to ensure that the autonomous systems can be certified by a regulator 

and trusted by the public. Formal methods can provide automatic verification and 

unambiguous specification of the autonomous system’s intended behavior.  

Autonomous systems are cyber physical systems and may include 

Artificial Intelligence (AI), for example, in their automated decision making. The 

capabilities and interpretation of AI is often vague and misunderstood by the 

public. AI is a collection of mathematical methods, helpful for solving tasks 

associated with intelligence. AI is mainly comprised of some form of learning, 

some degree of reasoning, interaction with an environment, and should have the 

ability to explain how or why the AI makes its internal decisions. Reasoning is an 

important aspect of autonomous systems and AI and refers to the ability to 

explain actions and decisions. 

AI methods try to find regularities in sets of data. AI has some advantages 

over humans, for example, enabling quick analysis of large sets of data. Therefore, 
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AI may be used to learn the operational parameters for an autonomous system, 

identify weights for risk factors, or to detect system or operational deviations. 

Summaries of lectures and the discussions in the breakout sessions are 

provided in the following sections. 

  



10 
 

 

Summary of the Lectures1 

 

Modelling and assessing risks of autonomous systems: Challenges and 

perspective on solutions 

Ali Mosleh, The B. John Garrick Institute for the Risk Sciences, University of 
California Los Angeles, USA 

This talk characterized autonomous systems as Cyber Physical Human 

(CPH) systems, noted by their complexity, heterogeneity, functional and physical 

distribution, interconnectivity of technology and social dimensions, and 

openness, and learning ability. The development and deployment of CPH occurs 

with a high pace through often distributed supply chains of varying quality, 

reliability, and safety standards. All these attributes may lead to emergent 

failures that are rare and difficult to identify, with possibly catastrophic 

consequences, often through conflicts and masking effects.  

The presentation argued that traditional modeling and analysis methods 

(such as FMEA and FT) have significant limitations in analyzing and improving 

safety, reliability, and security (SRS) of CPH systems in general and autonomous 

CPH systems in particular. The talk suggested that a very promising approach is 

dynamic probabilistic simulation of such systems. An overview of the emerging 

simulation methods for risk analysis was provided.  

 

The Norwegian maritime authority´s approval process of autonomous 
ships - Our challenges and guideline 

Nils Haktor Bua, Norwegian Maritime Directorate, Norway 

When it comes to new technology and alternative design the Norwegian 

Maritime Authority (NMA), as the flag authority, is the one to evaluate the 

projects towards a certificate. As a basis for evaluating alternative design, NMA 

uses IMO circ. 1455, which gives the general process. For projects regarding 

autonomy and in which people are taken away from functions onboard ships, 

NMA is working on a guidance for the evaluation process, with basis in IMO circ. 

1455. 

Any alternative design needs to be shown to be as safe or safer than a 

conventional design. The burden of proof for showing this lays on the project. The 

                                                        
1 The presentations held at IWASS are available and can be downloaded at: 
 https://www.ntnu.edu/web/imt/iwass/presentations 

https://www.ntnu.edu/web/imt/iwass/presentations
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presentation pointed out this process and what needs to be evaluated and shown 

during such a process. At the end, some of the challenges with projects with new 

technology and autonomy were listed. 

 

Qualification of autonomy for risk and regulation - A behavioral 
approach 

Tristan Perez, Boeing Research and Technology, Australia 

Trusted operations of Autonomous Systems (AS) with increased levels of 

autonomy, moving from remotely operated systems onto higher levels of system 

decision making and autonomy to act, are far from being enabled today.  Enabling 

these systems and their operations will require the development of trust in the 

combined technological, regulatory, and social environments.  

This presentation discussed some technological challenges associated 

with autonomous system capability and a potential framework to assess system 

behaviours in relation to risk assessment and certification. The approach takes a 

behavioural viewpoint of mathematical system theory, links it to an epistemic 

view of uncertainty quantification and finally to the decision-making process of 

different stake holders. Moreover, the presentation reviewed part of the previous 

and current work at Boeing in these areas and discuss challenges and extensions 

that will be needed to assess systems with high levels of autonomy. 

 

Industry perspective on the development of autonomous busses - 
Robustness development 

Matthew Minxiang Hu, Haylion Technology, China 

This presentation gave an overview of the efforts undertaken to design 

and test a robust autonomous bus system. The main consideration when 

designing a robust system is to make the product/process insensitive to 

uncontrollable user environments. This includes the users’ interaction with the 

system and the manufacturing process, which may deviate from the original 

intend. Five main strategies can be employed to make a system more robust: (i) 

change the design concept, (ii) use design assumptions that are insensitive to the 

noise, (iii) reduce and remove noise factors, (iv) insert a compensation device, 

and (v) disguise the noise effects. 
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Unmanned aerial systems and risk 

Adrian Arjornilla, UAS consulting, USA 

This presentation summarized ongoing research work in the UAS CG and 

challenges to be dealt with when operating unmanned aerial systems from an 

operator perspective. Human workload is seen a key factor regarding the level of 

risk of an operation. The workload is driven by mission complexity, aircraft 

status, communication, and environmental conditions. In a current research 

project, it is attempted to integrate and display information intelligently, such 

that the workload is optimized, and the situational awareness is maximized. 

Important questions that need to be answered for such a system are: How can the 

handover between autonomous flight and manual flight be assessed in terms of 

risk and used as decision criterion for handover?  How can the risk be measured 

in real time and predicted in the future? How can risk models be used to mitigate 

risk proactively? How can an autonomous system be assessed for their 

airmanship (similar to pilots)? How to make risk informed decisions during 

normal operation and emergency situations? 

 

Cybersecurity for autonomous systems – Vulnerabilities and threats 

Kenneth Titlestad, Sopra Steria, Norway 

To assess safety, reliability and security for autonomous systems we 

primarily consider the three factors: software, hardware and human-in-the-loop. 

For properly addressing cybersecurity for such systems we should also take into 

account the possible cyberattack-agents which act as ghosts-in-the-loop. In the 

presentation this was exemplified with the Trisis-attack at a Saudi-Arabian 

petrochemical plant in 2017. At the plant there were several, repetitive 

malfunctions of a specific type of safety-controller. The safety controllers are part 

of the most critical automation systems at the plant, and they are in place only to 

detect unsafe conditions in the production process. When this is detected these 

controllers automatically run production shutdown or emergency shutdown. At 

the specific plant in Saudi-Arabia, after weeks of troubleshooting, including 

malfunctioning of several replacement units, cybersecurity-analysts detected an 

advanced, unknown malware in the safety-networks. This malware exploited 

vulnerabilities of the controllers and replaced the firmware on them once they 

were installed in the safety-network. 

All autonomous systems have central controllers that act as the hardware- 

and software-based brains of the system. These get input from sensors and 

provides output to effect-generators, such as actuators and motors. The 

controllers also provide an interface into the system for the Human-Machine-
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Interface (HMI). All parts of these systems are increasingly consisting of 

programmable components, which results in new unknown vulnerabilities, and 

new unknown ways of attacking the systems. This problem is accentuated in 

Operation Technology (OT) and autonomous systems due to a higher focus on 

availability compared to systems in Information Technology. Doing security 

upgrades on the former is a rigid process that cannot be done often, which results 

in most parts of the systems on a daily basis having more security vulnerabilities 

than in an upgraded state. 

In the presentation several known attack vectors were presented and 

some of the major cyberattacks within industrial systems are listed. Trends and 

possible future threats were discussed. The presentation concluded with an open 

challenge to the industries to establish barriers which provide safety more by the 

laws of mechanics, physics and electronics. This is already being done within 

electronic opto-isolators, rupture discs, spring-return-valves and can be further 

developed for industrial- and autonomous systems for example with the use of 

data diodes to segregate safety-critical components from the rest of the system. 

 

Intelligent machinery systems for autonomous ships 

Sverre Torben, Rolls Royce Marine, Norway 

Rolls Royce Marine delivers services ranging from ship design, over 

system integration to through-life support. Current efforts aim at making ships 

and their system more intelligent and digitize systems that are currently to a 

large extend analogous. Future ships systems need intelligent data collection to 

improve maintenance planning and situation awareness. Digital twins and 

platform clouds will enable shipping companies to make better design and 

operational choices.  

Developments that are necessary for future remote and autonomous 

vessels are intelligent engine health monitoring, intelligent awareness systems, 

autonomous navigation system, all-speed track pilot system, and remote-control 

stations. 

 

Trust in autonomy: Cyber-human learning loops 

Asun Lera St. Clair, DNV GL, Norway 

This presentation addressed the ethical and societal implication of 

autonomous systems. It argued that these are far more complex that the mere 

aspiration to embed ethical reasoning into algorithms. The presentation argued 
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that morality is a characteristic of human beings and cannot be transported into 

machines. It is important to distinguish between explainability of autonomous 

systems versus trustworthiness. Trust is underpinned by shared ethical and 

societal values, and the conditions for trusting technologies are similar to those 

of trusting other people or institutions. In the case of autonomy this means both, 

an assessment of the goals and purpose of the technology as well as assessment 

of the technical robustness of the system. The core ethical and societal issues 

associated with autonomous systems emerges from the complex interactions 

between software, hardware and human beings, alongside the context in which 

the system operates and the consequences it may have-- directly or indirectly, on 

people and the environment. Even if autonomous, human beings are part of their 

design, construction, deployment, operation, maintenance, evaluation and 

verification of these systems. A potentially normative approach to aim towards is 

the generation of cyber (physical)-human (social) learning loops, requiring true 

interdisciplinarity, in particular with the social sciences and the humanities. 

 

Some recent advances in human-automation interaction design 
methods and future research directions for safety 

David Kaber, North Carolina University, USA 

This presentation reviewed recent advances in human-automation 

interaction modeling approaches, including new ideas to account for how tasks 

are interactively managed and traded by humans and machines. Another aspect 

of the work is focused on how these new design methods may be synergized and 

applied throughout the systems design and engineering cycle to better support 

human-machine system design. An additional section focused on the 

development of advanced vehicle automation based on current practices of 

automation design and implications for systems safety. This research reveals a 

paradox of automation for safety in which operator reliance on low-level 

automation for low severity hazard exposures may lead to skill decay for manual 

performance necessary in system negotiation of complex and high severity 

hazards. 

 

Game theoretic simulation for verification and validation of 
autonomous vehicles 
Anouck Girard, University of Michigan, USA 

Autonomous vehicles have been the subject of increased interest in recent 

years in defense, industry and academia. Serious efforts are being pursued to 
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address legal, technical, and logistical problems and make autonomous vehicles 

a viable option for broad ranges of applications. One significant challenge is the 

time and effort required for the verification and validation of the decision and 

control algorithms employed in these vehicles to ensure a safe and reliable 

experience. 

For example, for driving, hundreds of thousands of miles of tests are 

required to achieve a well calibrated control system that is capable of operating 

an autonomous vehicle in an uncertain traffic environment where interactions 

among multiple drivers and vehicles occur simultaneously. Traffic simulators 

where these interactions can be modeled and represented with reasonable 

fidelity can help to decrease the time and effort necessary for the development of 

the autonomous driving control algorithms by providing a venue where 

acceptable initial control calibrations can be achieved quickly and safely before 

actual road tests. 

In this talk, a game theoretic traffic model was presented, that can be used 

to model human-driven and autonomous vehicles and their interactions, test and 

compare various autonomous vehicle decision and control systems and calibrate 

the parameters of an existing control system. The simulator is highly scalable and 

can handle several dozen interacting vehicles in near real time. The presentation 

demonstrated applications to highway driving and intersections, and discussed 

extensions to other transportation domains. 
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Breakout sessions – Research Questions  

The breakout sessions addressed the research questions in Figure 1, which 

provided the overall scope of the discussions. Chapters 1-4 give more insights 

into the details. 

 

Table 1: Research Questions  

General research questions: 

What are currently the main challenges with respect to safety, reliability, and security (SRS) of 

autonomous systems and operations? 

What are similar challenges between the different autonomous systems, operations and 

industries? 

Are there challenges with respect to SRS that only apply to one or few applications (and not 

all)? If so, which? 

Which type of autonomous system/ operation is most advanced currently (has the highest level 

of autonomy and highest complexity)? 

Which type of autonomous system/ operation is most feasible to realize in the near future? 

Why? 

Human factors, ethics, and regulations: 

How can we make risk related autonomous systems acceptable for society for widespread use?  

Monitoring, remote operation and supervision from some sort of control center is relevant for 

many autonomous systems. This means that huge amounts of data are generated, collected, 

and stored. In an accident investigation, how can the authorities ensure that official 

investigation groups are authorized correct access to the data they need to identify root 

causes? 

Who is responsible for decisions made by an autonomous system (in case of accidents)? 

How should autonomous systems communicate in operation? How should they communicate 

with non-autonomous systems? 

How should autonomous systems communicate safety to users and third-party stakeholders? 

Do autonomous systems and operations need to be “as safe as” or safer than other types of 

systems? 

Are AI systems suitable to make ethical decisions, what would be necessary for ethical 

decisions? 

SRS methods and modeling: 

Risk assessment needs to be integrated in the early stage of the design and development phases 

of all kinds of technological systems. Is this more or less challenging for autonomous systems?  

A challenge with hazard identification and risk analysis of novel systems is to identify 

everything that can go wrong. How can we deal with the unknown unknowns? 
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What type of data is needed to analyze safety and reliability of autonomous systems and control 

risks during operations? How should such data be collected and utilized? 

How can risk assessments and risk models of autonomous systems take shared control and 

“adaptive autonomy” sufficiently into account in the identification of hazards and the analysis 

of risk? 

How can risk analysis contribute to improved situation awareness and intelligence in 

autonomous systems? 

How can we determine “acceptable risk” for autonomous systems and operations? Should 

“acceptable risk” change with level of autonomy (LoA)? 

A holistic approach is needed for SRS assessment of autonomous systems. What does this 

actually mean? 

How can vulnerabilities in the software and communication systems of autonomous systems 

be reduced to mitigate cyber-attacks and security problems? 

System verification and testing: 

How can verification and the corresponding test scope for autonomous systems be managed 

dynamically? 

What role does standardization play in the realization of autonomous systems? 

Online operational data can be useful for managing risks related to autonomous systems. How 

can we assess the system performance and correctness from such type of data? 

Can improved health monitoring of autonomous systems justify less reliable components? 

Intelligence and decision making: 

Uncertainty in sensor data is a challenge. How should this uncertainty be handled in the design 

and operation of autonomous systems and operations? 

Sensor performance is affected by weather and climate conditions. Are autonomous driving/ 

navigation systems, on land and at sea, possible to realize in areas with such environmental 

conditions as in Norway? How? 

Improved intelligence and online decision-making capabilities are needed in autonomous 

systems. Existing control theoretic approaches are not explicitly connected to risk assessment 

and modeling. What parameters, constraints and cost functions should be developed for 

control algorithms to minimize risk? 

The control system architecture can roughly be divided into three levels; the execution layer, 

the guidance and optimization layer and the supervisory layer. What risk reduction measures 

are needed in these layers?  

Some reports and documents state that artificial intelligence (AI) is a threat to human 

existence? Is this true? If yes/ no – why and how? 

How can risk modeling of hazardous scenarios be used for autonomous optimization-based 

decision making and control under uncertainty? 
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Revised Whitepaper of the First International Workshop on Autonomous 

Systems Safety 

Autonomous Systems Safety – State of the 

Art and Challenges 

Marilia A. Ramos1; Christoph Thieme1; Ingrid B. Utne1; Ali Mosleh1,2  

1Department of Marine Technology, Norwegian University of Science and Technology 
(NTNU), Trondheim, Norway 

2The B. John Garrick Institute for the Risk Sciences, University of California in Los 
Angeles (UCLA), Los Angeles, U.S.A. 

 

This whitepaper provided a starting point concerning some of the topics 

that were to be addressed at IWASS, including the current state of the art on 

autonomous systems development and challenges it faces. In the following pages, 

we discuss challenges in respect to risk assessment techniques, human-machine 

interaction, cyber security, regulatory issues, and ethical aspects.  

Autonomy and autonomous systems  

The introduction of automation in a wide range of activities has changed 

how society interacts with machines. For years, automation was applied only to 

physical activities, rather than cognitive aspects, such as, situation assessment, 

sense-making and decision-taking. The advent of artificial intelligence, machine-

learning, and easier access to powerful software and sophisticated hardware 

have brought a new revolution into how we interact with automated systems, 

both as users as well as operators. The outcome of this revolution are highly 

automated and autonomous systems.  

Autonomy can be defined as a system’s ability to make independent 

decisions and to adapt to new circumstances to achieve an overall goal. This is 

achieved without additional input from human operators or other systems [1]. 

Automation, on the other hand, is often understood as the reproduction of an 

action, without any choice made by the machine executing the action [2]. The 

degree of autonomy of a system may be assessed through Level of Autonomy 

(LoA). Several authors have proposed different scales for LoA [3], either 

generalizable to autonomous systems or specific to an industry [1]. In general, 

the LoA scale starts at a lower level autonomy in which information reception 

from the system and surroundings, situation assessment, decision-making, and 

command giving to the hardware are responsibilities of human operators. The 

LoA scale progresses to a higher level, when these tasks become responsibilities 
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of a software. Between the lower and higher levels, these tasks are shared 

between software and human, as illustrated at the Figure below. 

 

 

 

A system may be designed with an adaptive autonomy [4], or dynamic 

autonomy [5], i.e., it may operate as highly autonomous during part of its 

operation or for performing certain tasks, and then operate in a lower autonomy 

level for other types of operations. An autonomous system may also be both 

manned and unmanned.  

Many areas of life and business comprehend systems with some level of 

autonomy. For instance, autonomous chatbots are found on the internet, 

autonomous manufacturing systems are taking up production, and autonomous 

transportation systems are being tested on land, in water, and in the air. Although 

the first industrial sectors to introduce some level of autonomy into 

transportation were aeronautics and the aero-spatial domains, significant 

investments have recently fast-tracked the development of autonomous cars, and 

put those in the spotlight. 

The rapid evolution of technology enabling autonomous cars can be 

illustrated by the Grand Challenge, an event organized by DARPA2. The Grand 

Challenge consisted of a competition of autonomous cars to go through 

California's Mojave Desert. In 2004, no car finished the race and the most 

successful one, the Red Team’s vehicle, reached a maximum of seven miles of the 

course. In the following year, five vehicles completed the race. In fact, Google’s 

first project on autonomous cars was launched in 2009 with a team from DARPA 

veterans. The development of autonomous cars is driven today by giants of the 

                                                        
2 DARPA (Defense Advanced Research Projects Agency) is an agency of the United States 

Department of Defense. 
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tech and auto industry, such as Google and Tesla, Ford, and General Motors. These 

are followed 3by smaller startups as May mobility and Drive.ai. 

 Autonomy is also applied in other land transportation systems, such as 

buses and trains. China has launched the world’s first self-driving bus in August 

2015. The bus drives with guidance from cameras, lidars, and a master controller, 

along with a human driver behind the wheel, who should take over control in case 

of any problems. Other examples include the Norwegian city Stavanger, where 

the mass-transit company is testing autonomous buses, and Catalonia, Spain, 

where an autonomous bus called Èrica is being tested to help citizens become 

familiar with driverless technology. In Finland, three cities are expected to 

receive autonomous buses by 2020. The technology will be provided by the 

Japanese company Muji, and it should be the first autonomous bus in the world 

suited to all types of weather.  

Land transportation on railways has also advanced using automated and 

autonomous systems. Automatic metros have been used for a long time – being 

present in over 25 cities. Highly autonomous trains’ journeys, on the other hand, 

started in 2018 in Western Australia, by the Rio Tinto Company, and were a 

breakthrough. The company claims that by the end of the year, the train has 

completed more than 1 million km autonomously with remote supervision.  

The revolution of autonomous transport modes has reached the maritime 

sector, as well. Yara Birkeland, an autonomous and electric container vessel 

developed by Yara and Kongsberg, is expected to go through the first operational 

tests at the start of 2019, and to conduct fully autonomous operations by 2020 

                                                        
3 Sources: 2004 DARPA Grand Challenge website  
(https://archive.darpa.mil/grandchallenge04/index.htm) and 
 https://www.digitaltrends.com/cars/waymo-self-driving-cars-reach-8-million-miles-on-public-roads/ 
 

DARPA Challenge 2004 Red Team’s car (left side) and Waymo (formerly the Google self-driving 

car project) autonomous car (right side) 3 

 

http://www.erica.cat/
https://www.dezeen.com/tag/muji/
https://archive.darpa.mil/grandchallenge04/index.htm
https://www.digitaltrends.com/cars/waymo-self-driving-cars-reach-8-million-miles-on-public-roads/
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[6]. DNV ReVolt, an unmanned, 

zero-emission, shortsea concept 

vessel developed by DNV GL, is 

being tested in a 1:20 scale, in 

collaboration with the 

Norwegian University of Science 

and Technology (NTNU) [7]. In 

addition, NTNU is currently 

testing a 1:2 scaled autonomous 

passenger ferry, which is 

expected to run on full scale in 

2020 [8].  

In aviation, automation was initially applied in military operations. The 

Hewitt-Sperry Automatic Airplane first flew in 1917 and was designed as a 

pilotless aircraft to deliver explosives during World War I. From those early 

flights, the aviation industry has propelled itself further, with systems such as 

autopilot and auto-throttle.  

Discussion on autonomy in aviation ranges now from autonomous 

unmanned aerial vehicles (UAV) systems to pilotless commercial aircrafts. 

Unmanned systems are not only re-shaping transportation systems, but also 

allowing exploration and research of harsh remote environments with no human 

life exposure. The Arctic Unmanned Aircraft System Initiative of the Canadian 

government is testing drones to monitor Canadian Artic for oil spills, ice coverage, 

marine habitats and activity on the oceans [9]. Unmanned aircraft and remotely 

operated ground vehicles have also been used to monitor Japan’s Fukushima 

nuclear power plant accident in places too dangerous for humans [10]. Currently, 

UAVs use range from policing and surveillance to product deliveries and aerial 

photography. Civilian UAVs now vastly outnumber military UAVs.  

Autonomous Underwater Vehicles (AUVs) are also used for tasks in harsh 

and unstructured environments, such as for ocean monitoring, in detailed 

mapping of the seafloor, and for inspection of subsea infrastructure. Similarly, 

autonomous systems have been used in space exploration. NASA has a team 

responsible for developing a suite of intelligent system technologies to extend 

ground support for deep-space exploration. In addition, to reduce manpower 

requirements and account for the time delays in communications, the 

International Space Station (ISS) incorporates advanced autonomous feature. 

These include smart sensors for failure recognition, diagnostics and prognostics, 

model-based reasoning for scheduling maintenance, and automation of low-level 

routine tasks [11].  

Prototype of NTNU Autonomous passenger ferry 
Photo: Kai T. Dragland / NTNU 
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The rapid development of the technology-enabling systems with some 

degree of autonomy is driven by the extensive benefits it brings to the wide range 

of applications mentioned above. Autonomous systems may bring enhanced 

solutions to city traffic, cargo transport, data collection and knowledge building 

of harsh environments, and space exploration. The development of autonomous 

system applications is, however, not without challenges.  

Recent accidents have put emphasis on the need to discuss the safety 

aspect of these systems. The media has particularly featured recent accidents 

involving autonomous cars, especially the ones causing fatalities. In 2016, two 

accidents led to drivers’ fatalities, in China and in the United States of America 

[12,13]. These were followed by two 

accidents in 2018 in the U.S, which led to 

a pedestrian fatality and a driver fatality 

[14,15]. More recently, in January 

(2018), a self-driving car hit and 

destroyed a Promobot, an autonomous 

robot who was attending the Consumer 

Electronics Show in Las Vegas [16]. The 

car continued to move for 50 more 

meters before coming to a halt, leaving 

the robot non-assisted.  

Other incidents involving autonomous systems include, among others, an 

autonomous bus that collided with a truck in Las Vegas in 2017, an autonomous 

train that crashed into a wall during a test in India in 2017, a U.S. military drone 

that was hijacked in 2011. Considering these incidents, development of safe 

solutions for autonomous systems are, more than ever, crucial for their use. In 

particular, it is essential to: 

• Recognize, understand and assess the risks involved with 

autonomous systems operations; 

• Implement safe solutions in the design phase of these systems; 

• Monitor, follow up, and ensure that the risk level is acceptable 

during operation; 

• Establish regulations and procedures that assure safe operations; 

• Communicate safety to society in order to establish trust in 

autonomous systems. 

Promobot robot (source: @promobot 

instagram) 
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Autonomous systems development: what are the 

challenges? 

A common challenge concerning all autonomous systems refers to safety, 

reliability and security goals being met. Safety can be defined as the state where 

freedom from unacceptable risks is achieved, or the condition where a system is 

successfully operating [17]. Reliability, on the other hand, can be defined as the 

probability of a system or component working as intended under specified 

conditions for a specified amount of time [18,19]. It is important to note that 

reliable systems are not necessarily safe. A reliable autonomous system may 

execute an action each time perfectly but, in conjunction with external 

circumstances, such a reliable action can lead to an accident.  

The difference between reliability and safety becomes more apparent 

when the software used in autonomous systems is considered: The software may 

be executed reliably but may not be safe. For instance, instead of stopping when 

being operated outside its design envelope, the control software may attempt to 

recover the system. Similarly, a safe system is not necessarily secure. Security can 

be defined as the freedom from unacceptable risks being created through 

voluntarily actions targeting directly or indirectly the system [18,19]. The 

vulnerabilities that a threat agent exploits arise from within the system or 

through design flaws. Safety features may be exploited by hostile agents in order 

to gain control of or access to an autonomous system. Conversely, a secure system 

may be not safe for users, e.g., due to an over complicated operation. 

In the following pages, we will present five key areas that can pose a 

challenge for SRS of autonomous systems. 

Interaction of software, hardware, and human operator  

One of the complexities that characterize autonomous systems is the 

strong interaction among its different components. These are hardware, 

software, computer hardware and the human operator or supervisor, when 

applicable. All these interactions occur in a partially unknown and difficult to 

predict environment. Human operators are often seen as responsible for 

accidents, either by initiating them or by not responding properly in the course 

of events. Indeed, one of the motivations for autonomous systems development 

is their potential to rely less (or not rely at all) on humans for operation and, 

consequently, for accidents where human failure would be involved to be 

avoided. However, depending on the LoA of the autonomous systems, it will still 

rely on humans for remote control, for onboard operation in part of their task, or 

for monitoring.  
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In autonomous systems, operators may use system’s functionalities out of 

the intended context or design envelope, or not behave as expected when their 

actions are required for emergency response. Their interaction with the system 

may, thus, voluntarily or involuntarily, jeopardize the SRS of the system. 

Likewise, a failure of the software may provide misleading information to 

operators or not provide the necessary data, thus leading to human failure. 

Similarly, the hardware may produce noise or faulty signals that are interpreted 

incorrectly by the software, which may lead to unanticipated and often unwanted 

effects. Software, in turn, may not work as intended and lead to faulty activation 

of actuators or display imprecise information, due to the discrete nature of the 

software – both in time and enumeration. 

Finally, interactions may create vulnerabilities that can be used by 

malicious agents to take control of the autonomous system. The challenges 

regarding SRS lie in identifying failures that may arise from this complex 

interaction, as well as from the propagation of those throughout the system’s 

components and subsystems. Solving this challenge will allow for providing 

valuable contributions to the identification and development of efficient risk-

reducing measures and SRS management strategies. 

Assessment methods for safety, reliability and security 

The software-hardware-human interaction discussed above is one of the 

main challenges for SRS assessment of autonomous systems. Most current 

quantitative assessment methods used in conventional risk and safety 

assessments rely on the separation principle. System components are assumed 

to be independent of each other and are often analyzed separately [20]. The 

interaction among components and emerging complexity is thus often neglected 

or reduced to a minimum. This makes it possible to use proven methods; 

however, complex systems may be abstracted and not sufficiently represented.  

Some qualitative methods incorporate the different system elements, 

assessing the emerging properties and system interactions. These are, for 

example, STPA [21] or FRAM [22]. Such methods, while providing useful 

qualitative analysis, are still very limited in unravelling complex failure modes 

and mechanisms in addition to being qualitative and of limited value in 

prioritizing risks and risk reducing measures. The assessment of hardware with 

respect to SRS is generally well established. Mathematical approximations of 

failure probabilities of elements, such as engines, valves, or drive trains, are well 

developed and publicized. However, computer hardware is subject to different 

failure mechanisms and patterns and the established methods only apply to a 

limited extend.  



25 
 

 

For software, SRS assessments are more difficult to establish. Reliability is 

approximated by such measures as the remaining amount of errors in the 

software, which does not clarify how the software may fail. In particular, the 

interaction of different software components, from possibly different suppliers 

or development teams, is challenging. Several thousand lines of code need to be 

analyzed and checked for possible interactions. Risk analysis for software has 

been addressed recently, which is different from reliability methods [23]. Many 

of the commonly used approaches for software SRS assessment in the industry 

build on checklists and or focus on fulfilling formal requirements as proof for SRS 

compliance [19].  

An additional challenge concerns security assessment of AS, including, but 

not limited to cybersecurity. New threats and vulnerabilities may emerge with 

autonomous systems. The complexity of autonomous systems may mask 

vulnerabilities, and attackers may use the complexity to hide their intrusion or 

access. The assessment of still unencountered threats, malicious intentions and 

attackers is a key step for addressing security [24].  

Autonomous systems are complex, with emerging properties from the 

interactions of the systems’ components. Therefore, a holistic approach is 

required for the SRS assessment, considering the possible interactions and their 

potential outcomes and implications [22]. Theory on cyber physical systems and 

systems of systems may assist in in handling this complexity. 

Cyber security 

Cyber security, data security, Information Technology (IT) security and 

physical security may be one of the major challenges concerning autonomous 

systems. The autonomous behavior may be exploited, and passengers and goods 

may be endangered. Security addresses the malicious exploitation of 

vulnerabilities through threat-agents to cause harm or benefit from it. The threat 

agent may be internal or external to the system. This is often connected with 

hacking, where software vulnerabilities are abused, and the attacker accesses the 

target system to control it or extract information [25]. Vulnerabilities are created 

through the design of hardware or software, the human users, or process related 

flaws. Hardware hacking is another method to access a computerized system. 

Microchips or micro computers are introduced in the system and allow an 

attacker to access the computer system [26]. 

Practices and components that can create vulnerabilities are shared 

among different types of autonomous systems, for example, communication 

protocols between components that have been developed many years ago and do 

not have any security mechanisms. Vulnerabilities may also arise from poorly-

integrated system components, wireless communication and/ or entertainment 
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systems, interaction of a human user with the system, processes the system is 

involved in, remote monitoring systems, inadequately trained machine learning 

systems [24,27–31]. A cyber-attack may not always target the autonomous 

system itself. A ransom ware or a virus may inflict collateral damage to the 

autonomous system and disable it.  

Although autonomous systems may not have an email address or allow 

downloading of files, the user or operator may connect to the system using his/ 

her own device. This may open the system for intrusion or give access to malware 

[32]. Another aspect of cyber security for autonomous systems is jamming and 

spoofing of sensor systems [24]. A jammed sensor is not able to fulfil its function 

due to a disturbing signal that disables it. A spoofed sensor, on the other hand, 

will produce fake signals. Jamming and spoofing may affect, among others, visual 

sensors, radio wave sensors and global navigation satellite systems. It has been 

demonstrated that by jamming and spoofing autonomous systems can be 

hijacked and stolen [25,30].  

Autonomous Systems should be developed having in mind these 

vulnerabilities. A sound cyber security management system is required from 

early development stages on. 

Legal and regulatory aspects 

Legal and regulatory aspects may be particularly challenging for 

unmanned autonomous transport systems. Transport systems are regulated to, 

above all, assure their safety regarding communities, users and drivers. However, 

these regulations, when developed, did not contemplate autonomy being 

introduced in these systems. Regulators are thus facing the challenge of 

developing or adapting existing regulations to accommodate autonomous and 

semi-autonomous vehicles (AVs); and to keep up with the pace of technology 

development. Developers, on the other hand, face the challenge of demonstrating 

and communicating safety of their systems to regulators. 

Autonomous ships are a current example of the abovementioned 

challenges. Ship operations are broadly regulated by the International Maritime 

Organization (IMO)4. Although having a centralized regulation scheme brings 

uniformity of regulatory approach, IMO regulations also move slowly. One of the 

legal issues is the safe manning requirements applicable to merchant vessels. 

Several conventions require that vessels shall be properly manned to maintain a 

safe lookout, which is a challenge for unmanned autonomous ships.  

                                                        
4IMO develops guidelines, and those are implemented and enforced by each member state. 
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In general, such requirements may demand major adaptations within 

current regulations. For instance, the autonomous bus to be adopted in 

Stavanger, Norway, will have to operate with an employee onboard, in order to 

comply with Norwegian legislation. This employee must be able to manually 

override the autonomous controls with a brake button if a dangerous situation 

occurs. 

Road traffic is generally regulated by The Vienna Convention on Road 

Traffic [33], an international treaty, since 1968. The convention initially 

stipulated that a human driver must always remain fully in control of and be 

responsible for the behavior of their vehicle in traffic. The treaty has been signed 

and ratified by 75 countries, and examples of non-signatory countries include the 

United States and China. The fact that the U.S. is not a signatory, combined with 

the possibility of federal states establishing their own legislation, may have 

influenced that it was one of the pioneers in legislation for autonomous cars. 

Nevada was the first US state to authorize the operation of autonomous vehicles, 

in 2011. Since then, 21 other states have passed legislation related to autonomous 

vehicles. Recently, the US National Highway and Transportation Safety 

Administration (NHTSA) released new federal guidelines for automated driving 

systems (ADS). It has a voluntary nature, without compliance requirement or 

enforcement mechanism.  

In December 2016, an act implementing an amendment to the Vienna 

Convention on Road Traffic entered into force in Germany [34]. The amendment 

allows the transfer of driving tasks to the vehicle itself, provided that the 

technologies used are in conformity with the United Nations vehicle regulations 

or can be overridden or switched off by the driver. Once again, a licensed driver 

is required to be behind the wheel to take control if necessary. 

Liability is another challenge in regulating AV. Who should be responsible 

when an accident happens? Will anti-collision algorithms developers be 

responsible when a collision occurs? To what extent is the remote driver or 

supervisor responsible in case s/he does not act in time to override an action 

from a mal-functioning system?  

In addition to the questions above, some ethical aspects must be assessed 

in terms of liability. For instance, in the U.S., the income of the victim is related to 

her/his liability damages – the more someone earns, the greater her/his liability 

exposure. To protect themselves against major liability claims, AV manufacturers 

may adjust the car’s driving behavior according to the average income in an area 

[35]. The problem of regulations for autonomous vehicles comes with a catch-22: 

we need to test and use AVs to assess their safety; yet we do not want them on 

the road / ocean / sky until we know that they are safe.   
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Ethical and social aspects  

“Never in the history of humanity have we allowed a machine to 

autonomously decide who should live and who should die, in a fraction of a 

second, without real-time supervision. We are going to cross that bridge any time 

now, and it will not happen in a distant theatre of military operations; it will 

happen in that most mundane aspect of our lives, everyday transportation.” [36] 

The above quote is retrieved from the report of the developers of the 

Moral Machine5. The experiment, launched in a website, was developed to collect 

large-scale data on how people would want autonomous vehicles to solve moral 

dilemmas. The interest in the platform was significant, and they collected almost 

40 million decisions from nearly all countries of the world. The experiment 

presents users with an unavoidable accident scenario and offers them the choice 

of the car to swerve or stay in course. The outcome of this choice is to spare one 

group over the other during a collision; for instance, if the car stays in course it 

may run over pedestrians, and if swerving it will collide with a fixed object and 

danger the passengers. They collected decisions data over nine main factors, as 

sparing men versus women, or humans versus pets. 

 

The type of choice the users confronted in the Moral Machine follows the 

framework of the trolley cases and has been addressed by ethics researchers on 

analyzing autonomous cars. The choice on who to harm in case of unavoidable 

accidents is a necessary question regarding the development of autonomous 

vehicles. Should this decision be fixed and embedded in the algorithms during 

                                                        
5 http://moralmachine.mit.edu/ 

Moral Machine (source: http://moralmachine.mit.edu/) 
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development? Will cars use machine learning and “replicate” human-alike 

decisions? These questions become more difficult to address given the results of 

the Moral Machine experiment. Although there were some consensuses 

regarding some dilemmas, as sparing humans over animals; significant socio-

geographical differences arose when dealing with other choices. For instance, a 

preference to spare younger characters/ people is less pronounced in far eastern 

countries and in some Islamic countries, and higher in Latin America. The same 

is true for the preference in sparing higher status characters [36]. 

Imitating human drivers’ behavior for establishing moral decisions is, 

thus, a challenge given the socio-geographical differences. In addition, humans 

may show unethical biases when driving, such as deciding whether to yield at 

crosswalks based on pedestrians’ race and income [37]. Ethics of autonomous 

vehicles are not restricted to the trolley problem [38]. Mundane traffic situations, 

such as approaching a crosswalk with limited visibility, making a turn, navigating 

through busy intersections, or factors related to how liability is determined raise 

important ethical question [35]. 

The first and only attempt so far to provide official guidelines for the 

ethical choices of autonomous vehicles is the German Ethics Commission on 

Automated and Connected Driving [39]. One of the rules states that, in a dilemma, 

protection of human life should have priority over other animals' life. Another 

rule affirms that distinction based on personal features such as age, should be 

prohibited. How ethics and moral are implemented on AS will influence its 

societal acceptance. People's willingness to buy autonomous vehicles and 

tolerate them on the roads will depend on the palatability of the ethical rules that 

are adopted. In addition to moral aspects, trust in autonomy is an important 

factor for societal acceptance. Trust in automation is a highly discussed subject in 

the human factors and human reliability community.  

In short, autonomy creates a new depth in the human-machine 

relationship from the users’ side, the operators that supervise it or remotely 

control it, and the people interacting with the autonomous systems externally. 

Communicating safety to society is thus a must to gain trust in autonomy and 

societal acceptance. 
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Social Acceptance and Trust 

Autonomous transportation systems strive to replace human decision-

making with computer decision-making. For the immediate future, this 

transformation takes place in an open system in which human decision-makers 

are likely to be present. 

Out of necessity, autonomous technologies, like all other technologies, will 

contain embedded values. Engineers, scientists, designers, regulators, sponsors 

all make choices that, either intentionally or unintentionally, enhance certain 

cultural and societal values [1]. Consequently, “pure” or “morally neutral” 

technologies are rarely, if ever, deployed. The more pervasive the technological 

system, the more profoundly will be the “techno-moral changes” it stimulates [2].  

Widespread implementation of virtually all technologies is likely to 

differentially affect how values are distributed. Sufficient attention to and self-

conscious reflection on this inevitable dynamic is necessary to secure socially 

responsible research and innovation in the area of autonomous technology. Only 

in that way will it become transparent what specific values are subverted, 

supported, or unaffected. In particular, recent developments in the area of 

autonomous systems technology, such as deep learning, come with certain 

challenges. While transparency and accountability are key values for any 

approach to technological development, these values may be harder to uphold for 

systems where the possibilities for explicability of the involved operations are 

limited. Thus, Floridi et al. [3] suggest that for these forms of technology, 

explicability in the sense of a need to “understand and hold to account the 

decision-making processes” is a key value. 

Ultimately, social acceptance of any new technology depends on trust, 

both in the technology itself and in the organizations that implement and regulate 

it. Trust in a technology requires that it not produce significant unpleasant 

surprises. Trust in an organization requires that it demonstrates both 
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competence and fairness. Put differently, a trustworthy organization knows what 

it is doing and acts in a way that is consistent with the values of the large society. 

Social acceptance of autonomous transportation technologies requires 

that open and inclusive processes be put in place in order to identify and evaluate 

what values are embedded in the technology and what values are affected by it. 

The framework developed by Stilgoe et al [4] describes for dimensions of 

responsible innovation: anticipation, reflexivity, inclusion and responsiveness. 

These are intended as general rules of thumb to guide the governance of socially 

responsive and responsible innovation, and this framework has become 

influential in European research and innovation policy. 

In the next section, the question of governance is explored in greater 

depth. 

Governance 

Governance refers to all acts of managing technology, whether by laws and 

regulations from governments of a country or groups of countries or by the 

market, industry standards, or by a network or group (such as a tribe or family). 

The term also implies that there is a degree of self-regulation by societal actors 

and to private-public cooperation in solving societal problems. Because 

governance is concerned with realizing public goals, it always entails a process of 

steering (regulating) a particular constituency of actors and is regarded as 

authoritative and legitimate. 

Autonomous systems are receiving close scrutiny because they hold the 

potential to incur high societal impact (both positive and negative) and because 

of the ethical issues posed by the substitution of human decision-making for 

machine decision-making. In particular, artificial intelligence (AI) and machine-

learning components of autonomous systems are under the scrutiny of public 

regulators and society at large. This attention is warranted because safety is 

harder to assure, as these technologies exhibit “emergent” behaviors that are a 

priori unpredictable and can lead to unanticipated failures.  

Governance can be public, private, or a hybrid of both. Public governance 

is most commonly exercised by public institutions, government agencies, at 

different scales (local, national, regional, international or global). Public 

governance is often legally binding and entails liability. Public governance 

regulates the behaviors or people and organizations, by setting procedures and 

constrains for products. Public governance is a reflection of the social contract 

between citizens and those governing, reflecting the values and societal 

expectations of citizens. Presumably, individuals and organizations possessing 
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skills related to autonomous systems such as design and testing will be called 

upon more frequently to contribute their knowledge to effective governance of 

these systems. 

Private governance emerges when private actors self-organize and create 

rules and recommendations. These are voluntary and often emerge from a 

combination of self-interest, cooperation and negotiation. Private governance 

operates via industry rules and regulations, best practices, and standards. Often 

private governance is simply the result of a public organization delegating a 

governing role to a private actor. There may also be circumstances where 

individuals and organizations possessing skills related to autonomous systems 

act independently or in unison to ensure desirable properties of these systems 

are achieved or negative outcomes prevented. Examples include consortia of 

companies, groups of concerned scientists, and similar groups of experts who do 

not hold equal access to the reigns of regulatory power.   

Very often, public and private governance meld to form hybrid 

governance, with elements of both public and private actors, resulting from their 

interactions, negotiations, and collaborations. An example of a hybrid governance 

system is the maritime safety regime which has elements for national (flag 

states), global (International Maritime Organization [IMO]), and private actors 

(shipping industry or Class societies). (The latter is a hybrid organization, to 

whom governmental organizations delegate power and authority to carry on 

governance roles, but that are also dependent from and interacting with the 

maritime industry players.)  

The governance of autonomous systems must encompass all these 

different forms of governance. One governance goal may be to map a path toward 

more nimble forms of autonomous, potentially partially or fully autonomous 

systems that preserve desirable attributes such as safety while increasing the 

potential for utility through deployment of services valued by consumers and 

citizens. 

Historically, it could be argued that regulatory power has been 

consolidated in the hands of a minority. Pluralistic systems of government have 

experienced convergence to equilibria in which corporate interest 

disproportionately influence regulation through monetary control. In these 

environments, business interests take precedence over stakeholders who are not 

represented fairly nor protected in an equitable manner. Mechanisms to 

disassemble these structural inequalities in an orderly manner will enable 

preservation of social stability. However, this transition will likely experience 

uneven progress and become the focal point of fierce debate. 
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Governance challenges  

Autonomous transportation technologies present very serious challenges 

to traditional forms of governance due to:  

• their being in an early stage of development but in need of testing;  

• the independent decision making and the changing nature of these 

systems; 

• the technological competence needed by regulators;  

• the fast pace of technological advance. 

Most laws address human behaviors and are typically inadequate to deal 

with complex human-machine interactions. Machine-machine and human-

machine interactions will (may) provide value lessons on how humans should 

treat each other and behave. 

 Autonomous systems require adaptable and agile governance regimes. 

These need to be iterative and ongoing through the whole lifecycle of systems and 

cover all the human- machine-interaction elements. Software updates can change 

the nature and capabilities of a system; even if the systems had met the criteria 

of regulators and the country where it operated before the software update, it 

may no longer do so after the update is implemented.  

These interactions would benefit from formal modelling. This strategy 

would enable incremental approval for progressively more widespread use of 

systems in environments where they come into contact with humans. It would 

also help constrain how these interactions take place to decrease the likelihood 

of safety related incidents and other undesirable outcomes. 

At least part of the solution could be achieved through software 

frameworks that explicitly codify discrepancies at various levels of jurisdiction 

such as transnational, national, or state/province. These software frameworks 

may need to be sufficiently complete to ensure continuous operation of systems 

to avoid creation of safety and other compliance related issues. For example, to 

ensure laws are observed, autonomous vehicles approaching a national border 

may wake the human to take control because the country they are entering only 

permits a lower level of autonomous driving. An autonomous vehicle could rely 

on existing technologies such as geofencing to verify safety and other attributes 

through test cases. Methods that attempt to enumerate combinations of scenarios 

could provide a process by which gaps in these rules are filled with explicit 

guidance. The severity of these gaps could also be specified to prioritize 

consideration of their implications as well as to search for other areas where such 

scenarios may arise. 
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Simulation technologies (including human-machine interactions) would 

also inform such testing to expose gaps in regulatory policy. These efforts could 

be informed by past research in expert systems (now referred to as first 

generation or rules-based artificial intelligence). 

Technological development ahead of governance  

Technological development outpaces current governance systems for 

many industries and sectors. This circumstance may continue to be the case for 

the foreseeable future until alternative mechanisms that are sufficiently robust 

can be designed and implemented. Moreover, there are major gaps in the 

regulation for autonomous technologies. Existing regulations prevent the 

development or a license to operate of autonomous systems. These restrictions 

will likely be contested by organizations that stand to gain financially or 

otherwise from the deployment or marketing of these systems. 

Autonomous systems also pose challenges to the current governance of 

many sectors. For example, although autonomy requires collaboration at the 

international level, organizations like the IMO may not have sole jurisdiction in 

autonomous systems. Thus, while the IMO can regulate shipping at sea, 

autonomous shipping will likely have elements of their system (control 

operators) on land in a particular country. Accordingly, the IMO and every nation 

state that has land operations would have to agree on a common set of 

regulations. The ecosystem of governance participants will likely advocate for 

reforms that allow them to protect their own interests, including economic and 

security concerns. 

At the same time, it is important to acknowledge that there are existing 

rules and regulations that are applicable or can be easily revised to address 

autonomy issues. Understanding which ones those are and identifying critical 

gaps may be a challenge. Formal methods could ensure this is accomplished in a 

repeatable and correct manner. 

The processes of creating rules and regulations (whether public laws or 

the development of new standards) for autonomous systems needs to be 

inclusive and democratic as well as reflect the diversity of concerns of different 

stakeholders. Mechanisms to hear and respond to the voice of under-represented 

stakeholders are not well developed. Procedures to enhance opportunities for 

input from those individuals could provide broadly beneficial.  Without avenues 

to collect missing inputs to inform decision-makers, corporate interests will 

continue to exert outsized influence on regulation to ensure future profits, but 

this circumstance compromises the integrity of democratic value elicitation to 

guide resource allocation. 
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Due to the increased complexity of autonomous systems, moves are 

already underway to develop goal-based rules and regulations (emerging from 

hybrid governance).  More research is needed, in collaboration with the industry, 

to identify a new generation of assurance methods for complex and intelligent 

systems. These methods may be informed by social media and technologies such 

as natural language processing. Crowdsource sentiment analysis can provide 

more fine-grained details to characterize stakeholder values. 

Automation poses key questions for third party assurance providers, as 

the cyber component of systems is often not part of the mandatory requirements 

or often overlooked or incomplete. Certification organizations within a particular 

industry sector need to quickly recruit additional expertise to ensure they have 

both digital and domain competence to deal with new digital risks. In some cases, 

it will not be possible to market or deploy products without sufficient 

understanding of the system to be able to attribute liability. This may in turn 

require that regulators restrict the level of autonomy and emergent behavior that 

a system exhibits until developers can demonstrate the technologies have 

achieved an acceptable level of maturity and that risks have been mitigated in a 

reasonable manner. Spaceflight and the nuclear power industries are two 

examples where heavy regulations are enforced to ensure human safety and 

environmental protection. 

A key aspect in the governance of autonomous systems relates to the 

training of needed skills required to design, operate, maintain and evaluate 

autonomous or semi-autonomous systems. The accidents of the Boeing 737 Max 

offer glaring examples of this point.  

Automation can lead to changes in business models, and this shift means 

that new and existing actors take on different roles. For example, a ship owner or 

operator may become a transport company. New rules and regulations will have 

to address this possibility. Autonomy is a disruptive technology and, like any 

industry, it is important to understand whom the players in a particular 

autonomous system are and how responsibilities need to be shared.  

Ethical and societal challenges  

Because autonomous systems are likely to introduce ethical and societal 

challenges, it is essential to pay attention to the societal impacts in the emerging 

governance of autonomous systems.6  

                                                        
6 See for example the US NSF’s 10 Big Ideas 

(https://www.nsf.gov/news/special_reports/big_ideas/) includes the future of work at the human-
technology frontier. 

https://www.nsf.gov/news/special_reports/big_ideas/
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Autonomous systems hold promise to enhance society broadly including 

quality of life, environment, and simply greater convenience. However, the 

traditional extended process of defining regulatory procedures may be poorly 

stressed as corporate entities developing autonomous systems aggressively 

challenge how long it takes to market a new technology. 

This conflict should raise citizen pressure to ensure that all stakeholders, 

underrepresented or not, are properly engaged in all domains in which 

autonomous systems impact their lives. Without such engagement, issues that 

have been raised in the context of racially biased machine learning algorithms are 

likely to repeat themselves. Other instances noted in the media include gender 

discrimination in the display of job advertisements. 

It has been presumed that autonomous systems will always be used for 

good purposes and will hold the promise of enhanced quality of life. However, 

more oppressive uses of such technologies seek to assert social control through 

surveillance and monitoring to enforce conformance. Most commentary assumes 

that no party will seek to subjugate the majority of humans to machines. More 

positive examples might include a holistic educational system that retrains 

individuals based on their educational profile after automation renders their 

present occupation obsolete. Past research in intelligent tutoring systems could 

inform this process and be coupled with more recent technologies such as virtual 

and augmented reality. 

How humans regulate autonomous systems technology can serve as a 

model to understand how humans regulate their behavior and the discrepancies 

involved in the inequitable application of laws. Not only would humans like to act 

and autonomous systems to follow, they would also like regulation/ laws to 

follow according to collective valuations tempered by the trade-off between 

utility and corresponding risks. For example, autonomous vehicles are typical 

trained on images representative of developers, predominantly fair skinned men. 

As a result, autonomous vision systems have lower detection rates of other 

populations such as women wearing skirts and dark skinned people. Thus, while 

autonomous systems could reduce driver related fatalities, some populations 

may be disproportionally impacted by the bias in the training data. Hence, if the 

deficiencies in reliability and safety of technologies go undetected, we may 

experience rapid and unanticipated shifts that results in a substantial increase or 

decrease in stakeholder acceptance of policies imposed.  

We need regulation that enables testing but at the same time enhances 

learning and safety. However, not all systems enable completely safe learning. 

Some types of systems are designed to take calculated risks to learn from their 

exploratory actions. Too much regulation at the early stages of technological 
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maturity may have negative impacts on the ability of these systems to mature in 

their intended environments. At the same time, a rush to deploy products in the 

market and the prioritization of industry interests by regulators may lead to 

accidents or failures with unacceptable societal and ethical consequences. 

Autonomous Transparency 

Automation transparency describes how the automated system 

communicates with humans to ensure mutual understanding and promote good 

“teamwork.” How the system presents information to individuals in the 

environment will be critical for the acceptance and safety of the system. 

Autonomous systems will constantly interact with a variety of individuals:  

• Humans in the environment outside the autonomous vehicle, 

• Humans inside the system if it for example transport passengers or 

• If the system is not fully autonomous, remote operators in a control 

center. 

An example from the marine domain is the small passenger ferry that is 

currently being developed by the Norwegian University of Science and 

Technology in Trondheim. The ferry will go back and forward across a 100 

meters-wide harbor canal. The passage time will be around one minute. This task 

might seem simple at first, but it contains several complicating issues relating to 

the three bullet points noted above: 

The canal is not a controlled space like an elevator shaft. Instead there are 

both commercial and leisure traffic, especially in the summer time. Even if the 

ferry is programmed to follow the international collision regulations 

(“COLREGS”) we cannot rely on tourists in the kayaks and every boater are 

familiar with these rules. The ferry needs to communicate its intentions in an 

unambiguous way. It also needs to behave in a way that is understandable and 

makes sense to humans in other boats – even if such behavior is not optimal from 

an efficiency point of view. 

The ferry automation also needs to communicate with the passengers 

onboard. The communication extends from counting passengers embarking and 

disembarking to informing passengers about the regular safety issues and 

regular performance. But the most important and difficult task will be to handle 

emergency situations without crew onboard, such as if the ferry needs to be 

evacuated on the canal. 

The ferry is monitored from a remote location. The human-machine 

interaction between the automation and the human remote operator will be 

crucial. From the start, this monitoring will be very watchful, but as systems are 

expected to become more and more reliable we expect the monitoring to become 
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more relaxed and eventually we envision that the remote monitoring to be 

switched over to a more limited environment and also a small tablet based mobile 

control environment.  

Human-Machine Interactions 

Humans have, when faced with completely new situations, the ability to 

adapt to the new situations and improvise to handle the situation appropriately. 

These skills are especially important for high-consequence scenarios. Current 

state-of-the-art autonomous systems however, have limited adaptation and 

creativity skills and will in the future be required to improve them. 

Does machine learning have what it takes when it comes to high-risk 

systems in terms of adaptation and creativity? Machine learning algorithms build 

a mathematical model of sample data, often referred to as training data, in order 

to make decisions or predictions. In order to properly train a machine-learning 

model, large quantities of data are needed. 

For low-probability scenarios, limited or no data are available. In such 

cases, the uncertainty associated with the predictions will be substantial. This 

situation will significantly reduce the predictive accuracy of the machine-learning 

model for high-consequence scenarios. In those cases, the tolerance for 

erroneous predictions should be low, as faulty predictions may have severe 

consequences. 

Machine learning algorithms aim to find patterns and causalities directly 

from historical data. Therefore, machine learning models will, by definition, be 

held tightly to previous events. Relying on purely data-driven models for safety-

critical systems may have important limitations. 

Adaptation and creativity may involve simulating and evaluating all 

possible actions and choosing the best feasible action. However, as the state-

space increases with the complexity of the systems, evaluating all possible actions 

may will not be feasible in real-time. In order to enable real-time simulation-

based decision-making, it may be necessary to abstract the system, using 

heuristics to guide the simulations and state-space searches, or use simplified 

surrogate models.  

The Role of the Operator in Autonomous Transportation Technologies  

The primary reason for including human operators in autonomous 

systems is to cope with situations that are beyond the reach of automation or 

designers’ foresight [5]. An effective autonomous system means that previously 

considered “beyond the reach situations” are now considered within the control 

boundaries of the automation; ideal (or acceptable) system performance is 
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assumed also in environments (and for users) formerly considered 

unpredictable or intractable. 

Yet, for all activities that cannot be completely reduced to a set of 

algorithms (e.g., transients, extremes and rare cases) human operators (and even 

users) may still be required to perform two functions: (1) discretionary decision-

making and (2) recovery, i.e., response in case of failures, including automation 

failures. This means that highly automated systems’ productivity and safety will 

be dependent on their capability to support the necessary human intellectual 

abilities underlying the two ‘adaptive’ functions. Operator support in this sense 

is beyond good ergonomics (usability concerns) and also beyond the models and 

analysis techniques developed in control engineering. The expertise of 

researchers from a wide variety of disciplines including human factors 

engineering, industrial/ organizational psychology, management science, 

sociology, anthropology and information science, is called upon. 

 Highly automated systems modify the very role of the operator from one 

of active controller and effector to that of a passive supervisor whose primary 

responsibility is to monitor the system and assume manual control if the 

automation should fail. In this passive role, operators might experience problems 

with understanding what the automation is doing (automation induced 

surprises) and knowing when to intervene [6]. The term “out-of-the-loop” 

(OOTL) has been coined to refer to such performance problems [7,8].  

 Automation failures, when they occur, will be very difficult to deal with.  

Failure detection is an inherently ambiguous situation, one in which there are no 

straightforward ordering of priorities between (1) actions to ensure safety, (2) 

actions to maintain production, and (3) diagnostic actions to identify the causes 

and location of the fault. In the first place, failures might not be detected due to 

complacency (over-trust): the more reliable the automation is, the more it is 

trusted and the higher the operators’ expectations that the automation will not 

fail. Reliable automation will also be less monitored and the operators less 

vigilant, in which case it will be harder to intervene when a failure is detected due 

to reduced situation awareness.  

Independently of complacency and vigilance, automation leaves the 

operators less aware of the control actions made, as it is easier to remember own 

actions than if witnessed on other agents. Furthermore, the operators might no 

longer have the skills called upon in a recovery if the automation has effectively 

replaced the worker and this is not trained recurrently on manual intervention.  

 Introducing autonomous systems requires a thorough analysis of the 

tasks previously allocated to workers as well as the ones that will continue to be 
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allocated. This is not a trivial evaluation. When new types of automation are 

introduced in complex human-machine systems the operators’ roles and tasks 

change, often in unanticipated and negative ways [9,10]. The analysis requires 

considering all human and organizational factors encompassed by the system, 

identifying the successful operators’ heuristics and adaptations, as well as 

uncovering the informal skills of the trade formerly taken for granted (important 

operator tasks seldom described in formal documents). 
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Assessment of Safety, Reliability and Security of 

autonomous systems 

The introduction of autonomy into systems adds new layers of complexity 

regarding safety, reliability and security (SRS). The main challenges related to 

methods for SRS assessment concern the following: i) the adequacy of existing 

methods; ii) the integrated modelling of hardware, human, software and human 

interaction; iii) self-learning systems; and iv) data requirements.   

Risk Assessment 

The general goal of risk assessment is to identify hazardous events, 

prevent their occurrence and mitigate their consequences. A broadly accepted 

definition of risk is the expected likelihood of a hazardous event combined with 

the expected consequences. Important questions arise regarding this definition, 

such as if risk (in the sense of statistically expected loss) is a relevant measure. 

Further, is risk related to autonomous systems the same as for traditional 

systems?   

The assessment of the likelihood or frequency of events involving 

autonomous systems is the most challenging part of risk analysis.  An additional 

challenge concerns risk related to software aspects. Methods to investigate 

hazards resulting from hardware failure and human error are relatively mature; 

however, the same is not true for software implementation.  The assessment must 

address not only the occurrences of incorrect responses from the software, but 

also the failure mode that this induces in the system.  Yet, most software 

reliability methodologies focus on the number of bugs remaining in a code, 

regardless of their effect on the system.  In addition, unlike hardware, the 

historical performance of a software cannot be considered as indicative of future 

performance.  For autonomous systems the problem is compounded by the fact 

the software can incorporate self-learning and there is no clear rule-based 

algorithm to examine.  This last property may make a systematic evaluation of 

the potential hazards problematic and hence the risk quantification breaks down.   
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Regarding consequences, they may be mostly the same as for non-

autonomous systems. Exceptions are systems that currently operate manned and 

that may become unmanned with the introduction of autonomy, e.g., offshore 

platforms. In this case, the consequence of an accident could potentially be 

reduced, given that no life of workers would be threatened. Nevertheless, the 

negative environmental impact would remain the same. 

Risk assessment may be adapted for different applications. Traditional 

hazards, such as fire and collision, are present in existing frameworks and should 

be included in autonomous systems’ risk assessment. However, autonomy 

includes new hazardous events for which the risk community must investigate 

the possibility to address and incorporate in the existing frameworks. Threats 

due to system connectivity, such as cybersecurity, may be challenging to 

incorporate in traditional risk assessment frameworks. In particular, the 

frequency of such events may be difficult to define. Hence, a cooperation and 

exchange of methods and approaches between industries and application areas 

is highly necessary. 

Reliability and availability  

For safety critical applications, there is commonly a strategy for 

component failures to be ‘fail safe’.  Whilst enhancing safety, this can have a 

detrimental effect on reliability.  Autonomous systems must be reliable over the 

time of their mission, as there may not be any option for repair during the 

mission. 

Resilience is indicative of how the system can bounce back after a problem 

has occurred and therefore may also provide a useful measure of system 

performance. Availability also indicates the ability of a system to return quickly 

to the working state following a failure. In the maritime sector, it is advantageous 

to have a high likelihood of completing several missions for the vessel to be 

returned to a dock with the required maintenance facilities to prepare the vessel 

for its next sequence of missions.  This is a similar concept to the Maintenance 

Free Operating Periods proposed by the aeronautical industry.  

In addition to being resilient, it is beneficial if autonomous systems can 

include some form of self-repair. The analysis should not solely rely on 

probabilities or frequencies, since there is a lack of data and a need for make 

assumptions in all cases.  

Security 

Security is related to threats from external agents who have the intention 

to harm the system. Attacks on autonomous systems can exploit some 

weaknesses that are particular to those systems, and difficult to foreseen. The 
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assessment of resilience strongly correlates with security: can the system operate 

after a security breach?  

In security, one needs to look at the different realms, including human, 

software, hardware, society. One of the most frequently used attack methods is 

to “hack” the human since this may be the weakest link. Humans can also be a 

security barrier, and their effectiveness needs to be assessed.  

In addition to using humans as a breach for an attack, a concern regarding 

security of autonomous systems are cyberattacks. During a cyberattack, hackers 

first scan the system and find an open “port” or a vulnerability. They attempt to 

get the credentials to infiltrate the system. A challenge concerning this type of 

attack is that while the hacker needs only one port in, the defender must defend 

all ports. It is therefore necessary to identify which ports are insufficiently 

protected. A probabilistic method may help in this identification. Also, the 

analysis of security can leverage from other application areas.  

One approach to security analysis is to use game theory. Other methods 

are attack trees, expert judgements and scenario roleplays. Vulnerability analysis 

should be a part of security analysis. This is an essential part of security risk 

assessment in several industries. 

Adequacy of current modelling approaches 

One of the key topics in the discussion of SRS assessment for autonomous 

systems is the adequacy of the existing modelling approaches. Could existing 

approaches be applied directly? The difficulty in obtaining frequencies for some 

of the events would be an issue and so existing modelling frameworks can work 

for part of the system assessment only. However, since these methods have 

served well in the past, and are relatively efficient for existing systems, they 

should not be dismissed for autonomous systems. Rather, they can be enhanced 

with additional assessments for the command and control structures. 

The types of accidents that can occur in autonomous systems may not be 

different from conventional systems; yet, the causes to the accidents will change. 

Autonomous ships, for instance, differ from a traditional ship mainly regarding 

the responsible agent for decision: with autonomy, some or all the decision-

making processes are moved from a human to software. Also, system design and 

maintenance for autonomous systems may not be direct “copies” of their non-

autonomous predecessor (e.g., additional redundancy, predictive or preventive 

maintenance may be needed to ensure adequate mission reliability). 

Qualitative assessment methods are believed to be largely applicable, 

although improved methods to move further “to the left in the bowtie” are 
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required, with a focus on the causal analysis.  Security and “software failures”, 

however, pose significant challenges, as stated in the previous section. The 

challenges are essentially related to two aspects: (i) failure to identify all the 

circumstances that the software need to be able to handle, and (ii) failure to 

understand how the software works in all circumstances. While the first 

challenge is related to hazard identification methods, the second is closely related 

to the self-learning aspects of the software, which provide challenges in 

verification and testing. 

The identification of all the hazards, situations and scenarios that the 

systems need to deal with is critical. In the car industry, it is attempted to define 

each subpart of the driving process, for example parking. The problem is then 

limited to only some parts of the operation, for which safety issues are identified. 

To identify all the different events that can happen, the analyst must 

consider an appropriate level of abstraction for the problem, in addition to 

historical data and experience. The autonomous platform cannot be considered 

in isolation. The response to an unsafe state is dependent upon the location and 

environmental conditions. A car, for instance, will operate in different regions, 

that may have very different traffic patterns (e.g., in Norway / Sweden or in India 

/ Pakistan). As a validation approach, in the car industry, autonomous systems 

are running in the background while a human driver is controlling the car. This 

helps to identify new scenarios that the autonomy should react to, but it does not 

ensure all possible scenarios are covered. 

A risk model needs to accommodate the environment, the weather, and 

the mode of operation. A challenge is the identification of all circumstances that 

the system may meet. More complex systems may imply that more systematic 

methods are needed, e.g., to assess the interfaces. Some methods that are 

currently used and may be applied to autonomous systems include: 

- Fault and event tree analysis (FTA & ETA) 
- System theoretic process analysis (STPA) 

- Functional Resonance Analysis Method (FRAM) 

- Simulations 

Fault tree and event tree analysis are traditional methods that focus on the 

graphical representation of the risk analysis. The methods represent events and 

not every accident is event driven. It may be the circumstances deviating from 

those expected that lead to an accident. 

STPA is a rather new qualitative hazard analysis method. It is a systemic 

and systematic approach that treats safety as a control problem. It is not limited 

to component failure, as the more typical risk analysis methods, but it attempts 
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to identify complex interactive scenarios. Software, hardware, humans, 

organizations, and regulations can be modeled within the same framework. Also, 

different levels of abstraction may be employed, and it can be used for all system 

properties (e.g., safety and security). The main disadvantages are the high need 

for resources, the lack of competency in the industry, lack of prioritization and 

ranking, and the lack of the right tools for using the process efficiently. 

FRAM is designed to qualitatively communicate risk and the complexity of 

a system. It is less operational, compared to STPA. The disadvantages are the 

same as for STPA, i.e., resource intensive, lack of competencies, prioritization, and 

lack of tools for efficient use. 

In general, simulation is a very powerful tool, if applied correctly. It may 

enable analysts to collect a large number of data for different situations and 

scenarios at a low cost. Simulation may also include the human, operating in the 

loop, for a holistic assessment approach. Simulation can be an efficient solution 

to demonstrate efficiency and transparency of the autonomous system capability.  

In the future, simulations should be combined with real (on site) testing 

to prove to society that the system is safe and capable. It is possible to acquire 

environmental and operational data offline. Moreover, it is also possible to 

simulate and test the autonomous systems’ responses to very rare events. 

Modelling of human, hardware, software and interfaces 

Existing risk assessment methods tend to focus mainly on the hardware 

and human elements of the system. Humans will still be an essential part of 

autonomous systems in the near future. Depending on the Level of Autonomy, 

humans will need to remotely control the system or supervise it and step in when 

problems occur. Models are required to evaluate the contributions from the 

human in failing to achieve a successful recovery from a problem. It is critical to 

establish what information is required at handover, how the information is 

provided, and the time frame for handover.  

The probability of software failure is required as input to risk 

quantification. Software failure is different in nature from physical components. 

Software will fail when circumstances that have not been predicted by the 

designers occur or when mistakes have been made by the programmer.  

Occurrences of these failures are not stochastic but deterministic in nature.   

An additional vulnerability in software is that resulting from an intended 

attack, as stated previously.  Hackers exploit unknown vulnerabilities in the 

system and for critical infrastructure such as transport systems, these may be 

state sponsored. Since the current and future frequency of these attacks is not 
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related to their historical occurrence, it is not possible to evaluate this 

requirement for a risk study.  Decisions on the risk posed through such cyber-

attacks cannot therefore be evaluated with a risk framework and alternative 

approaches are needed. 

Assessment of self-learning systems 

Self-learning autonomous systems may develop their own “personality”. 

They may learn and adapt to specific people and environmental conditions, 

events and actions. If the analysis of an autonomous system SRS (particularly for 

the software elements) will rely in testing, updates which change capabilities will 

need to be formally assessed.  

An example is autonomous car driving systems, which exhibit very high 

complexity. They need to account for all road junction types, regional driving 

cultures and individual driver characteristics.  To physically test a vehicle for all 

potential options encountered for global operation is not viable. In these 

circumstances, testing and validation are only possible using simulators which 

can replicate the full range of options encountered (including those rarely 

encountered).  Simulators can conduct the testing considerably faster than rear 

time road testing.  

Immaturity of risk assessment and validation methodologies in this area 

pose a potential safety risk. New methods and tools need to be developed. The 

implementation of autonomous systems should only proceed at the pace of the 

assessment methods.  

Resilience  

Resilience engineering approaches were considered to offer an alternative 

philosophy to risk assessment by which autonomous systems can be assessed 

and worthy of more detailed consideration.  A resilient system is one which can 

anticipate, absorb, adapt to or rapidly recovered from a disruptive event.  This 

focus on the ability of the system to recover from an unwanted event gives a 

means by which software malfunction may be evaluated without the need to 

predict the occurrence frequency.    

When a system fault is observed, a response needs to be fast and the initial 

incident management may have to be performed without knowledge of its cause.  

Once the cause is determined a transition from incident management to full 

system rectification can be implemented.  Such an approach enables the system 

to be safely operated in all circumstances, not only those with a low risk 

prediction. 
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The potential benefits of such a resilience approach needs further 

investigation. Measures of system performance (MoP), which should be 

predicted throughout any incident, would need to be established. It is expected 

that these will vary depending on the occurrence of a safety problem or reliability 

problem. Methodologies to predict how this MoP varied through the phases of 

threat occurrence, system performance degradation, incident management and 

full system recovery would be needed and the exact definition of resilience which 

was predicted from these factors established. Different MoPs would be required 

for different autonomous system applications. 

Real time operational decision support 

Conventional risk analysis techniques such as fault tree analysis are 

usually used off-line in order to certify that a particular system delivers 

acceptable safety performance.  An autonomous system will need to establish 

when it is no longer operating safely and requires a mission abort strategy to be 

activated. Determining unacceptable performance can be rule based or it can 

exploit the system failure analysis approaches in real time to predict when the 

safety performance is no longer acceptable. Events which represent deteriorated 

or failed hardware (established through fault diagnostics), changes in 

environmental or operational conditions can be input as updated event 

probabilities to the system failure models. The analysis of models formulated as 

a fault tree can be rapidly performed using Binary Decision Diagrams. 

Such approaches have been explored to establish unsafe conditions for 

pilot-less aircraft, UAVs (Unmanned aerial vehicles), the timeframes in which 

decisions need to be made would certainly make these approaches applicable in 

the maritime and marine applications.  Since the operating environment of 

aircraft is less complex than cars, the response time of such predictions may 

currently limit the potential for automobile application. 

Data requirements  

Several types of data are needed for the SRS assessment of autonomous 

systems, including 

- Sensor data and understanding of their usage 

- Service, repair, warranty and maintenance data 

- Experimental data and test data 
- Condition data 

- Surrogate data gained through simulations  
- Data on the frequency and nature of cyber-attacks on the system 
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These data may be used in real time, in virtual and dynamic models, to 

manage failures and plan and predict maintenance. However, the data needed is 

frequently not available and, when available, may be of low.  Standards for data 

collection are needed across companies and sectors.  

Some data may be transferred between industries. For example, 

information related to human factors and human error may be transferred 

between highly automated systems. It is important that historic data, or data from 

manned systems, is assessed for their applicability for autonomous systems. 

Similarly, environmental data needs to be assessed for case relevance. 

Data needs to be analyzed together with the associated uncertainty, to 

ascertain if data is complete or if there gaps in the observations, due to an 

insufficient monitoring frequency.  

Conclusions 

From the group discussions the following conclusions were drawn 

regarding the safety, reliability and security of autonomous systems. 

- The software elements of autonomous systems challenge the 

applicability of current risk assessment approaches.  This is due to 

software malfunction being very different from hardware or human 

failure and not stochastic in nature.  Since their historical occurrence 

does not indicate future expectations it is not possible to formulate 

their expected likelihood or frequency.  The same problem exists in 

predicting the frequency of malicious, intentional attacks on the 

software.  Self–learning features of the software also add difficulty in 

the validation of acceptable performance. 

- Many of the currently available methods can still play a part in 

supporting the safety, reliability and security of autonomous systems.  

- New modelling techniques, which holistically capture the strong 

connectivity and interdependencies between software, hardware and 

human operators are required. 

- Simulations provide a practical approach to assist in the detailed 

understanding autonomous systems with respect to SRS, to collect 

data, and to validate systems SRS behavior.  

- The concept of resilience engineering is an alternative approach to 

risk assessment and offers a focus on absorbing and recovering from 

failure events which can be applied without knowing the frequency of 

the failure. 

- Data requirements are application specific with standards required to 

ensure quality. 
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- Quantification methods for SRS can play a bigger part in the future.  In 

addition to the certification process for an autonomous system they 

can be incorporated for real-time decision support during a mission 

to identify when the system performance drops below the acceptable 

threshold. 
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A challenge related to autonomous systems concern their verification 

process and testing. This discussion is not detached from regulatory, societal, and 

ethical requirements. Indeed, being able to verify issues of governance and ethics 

is of high importance; yet, a key concern is which governance body and whose 

ethics are being adopted. The verification process should not be entirely removed 

from these concerns, and ensuring that the right properties are being verified will 

require interaction with domain experts in those areas. The regulatory, societal, 

and ethical requirements should be included at the beginning of the design 

process and should be fed through to the verification phase. However, the 

verification process may identify ethical concerns (especially if they have not 

been identified during the requirements and design process) and engineering 

practice should ensure that these concerns are included into the system’s design. 

A main concern is how to obtain the right requirements against which to 

verify the system. While the validation of requirements is a concern with the 

verification of any system, it may be a particular challenge with autonomous 

systems. Firstly, this is because of the complexity of autonomous systems; 

secondly, this is because of a lack of consensus on regulation and ethical 

guidelines for autonomous systems.  

An additional concern is the identification of the best verification 

processes to use for autonomous systems. Given their complexity, their 

embodiment in the real world, and their potential for adaptation or learning, 

continuous and integrated processes are recommended. Briefly, the adoption of 

a more DevOps-like approach and designing online (continuous or periodic) re-

verification systems.  

Other elements of the discussion on the topic includes methods for 

communicating the results of verification efforts and the inclusion of formal 

methods. Communicating verification efforts to both regulators and the public is 

important to ensure autonomous systems can be certified, by a regulator, and 

trusted, by the public. The application of formal methods to the development of 

autonomous systems can provide automatic verification and unambiguous 

specification of the system’s intended behavior. However, how the autonomy is 
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implemented can have an impact on how challenging the application of formal 

verification can be.  

The following sections deepen those discussions.  

 Verification Processes for Autonomous Systems 

In general, the verification process for autonomous systems should 

contain firstly an initial verification and testing process and secondly, an on-going 

process to deal with changes in the system or its operating environment. This can 

be achieved by adapting classical models such as the V-model into DevOps-like 

models.  

Considering behaviors are the key pathway towards frameworks for 

certification of autonomous systems. Behavior can be evaluated in terms of 

safety, performance and ethics. The process of initial verification and testing 

consists of first identifying desired behaviors for safety, performance, security 

and ethics. Then metrics and verification criteria must be established before the 

actual verification and testing activities take place. After being built, verified, and 

accepted a system may change due to, for example, software updates or any 

potential learning ability of the system. In addition, the system environment may 

change. For example, an autonomous car may be taken to a new area where other 

cars and pedestrians behave differently. The on-going verification process is 

intended to deal with such changes. In order to achieve this, changes must be 

detected and analyzed to determine the effect in terms of verification needs. The 

verification and testing process can be discussed in terms of three steps:  

1. Defining desired behavior for the autonomous system; 

2. Identifying and conducting tests and verification to satisfy 

verification criteria; 

3. Monitoring systems and conducting change analysis during 

operation to detect any new needs for verification due to system or 

environmental changes. 

Step 1  

When defining the desired behavior for the autonomous system, it is 

necessary to determine a level of granularity at which the desired situational 

behaviors are defined. This raises questions, such as, to which levels systems 

should be decomposed and how systems should be decomposed. In general, 

desired behavior should be specified at the system level and then refined as much 

as necessary into components or sub-functions in order to determine sub-system 

or sub-function behavior that ensures the desired system level behavior.  
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Methods for specifying desired behavior may need to be specified case by 

case. It is reasonable to assume, however, that elements of hazard analysis (i.e. 

identifying what can go wrong and how the system should handle these 

situations) as well as formalizing design requirements and requirements from 

standards into behavioral models will be highly relevant approaches. An 

important part of the documentation of this step will be to record the 

assumptions made regarding the system and its operating environment.  

Step 2  

The next step of the verification process for autonomous systems, is to 

identify and conduct tests and verification to satisfy verification criteria. The goal 

of this step is to observe the system behavior under tests and other verification 

activities, and to evaluate the observed behavior to determine our confidence 

that the system will behave according to the desired behavior. Increasing this 

confidence corresponds to reducing uncertainty. There are two general types of 

uncertainty in this context. First, there is uncertainty about whether an observed 

behavior should be classified as desired or undesired behavior, and secondly, 

there is uncertainty when a certain behavior is observed in one scenario related 

to the extent to which this can be considered representative for similar scenarios. 

Verification then is about collecting evidence to reduce these uncertainties. To 

achieve this, verification needs both to be broad in terms of capturing as many 

types of scenarios as possible while it also is necessary to test each type of 

scenario extensively to ensure that results are representative of all similar 

scenarios. A formal verification, model-in-the-loop, process-in-the-loop and 

hardware-in-the-loop methods may be central methods for collecting evidence to 

reduce uncertainty and increase confidence.  

Verification of autonomous systems may be more resource demanding 

than verification of traditional systems because there will be more focus on 

system behavior and there can be a huge number of possible behaviors. It will be 

more critical for autonomous systems than for human operated systems to 

foresee abnormal scenarios because the autonomous systems may be less robust 

and innovative with respect to handling the unforeseen. Therefore, any possible 

scenarios must be foreseen and considered in the verification process. This may 

cause state explosions and the necessity for rare event simulations.  

Step 3  

The third step of verification is to monitor operations and detect emerging 

verification needs during the operational phase of the system. One important 

aspect of this is to define the operational environment for which the system has 

been verified, as well as the system that has been verified. The assumptions being 

made regarding the system and its operational environment must hold true for 
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each conclusion reached during verification to be a valid verification. Once these 

assumptions are known they can be monitored during the operational phase of 

the system and if one no longer holds true, further verification is necessary. 

Change analysis is proposed to achieve this. 

Communicating Verification Results  

The group discussed the challenge of communicating the results of 

verification to stakeholders –regulators and the public.  

Some sectors in which autonomous systems are being explored require 

that a system is certified. Regulators need to be able to understand how an 

autonomous system is verified (and be confident in the verification results) in 

order to certify a system for use. Given the complexity of autonomous systems 

and their potential to change (either through learning, self-reconfiguration, or 

simply by changing their operational environment) efforts must be made to 

ensure that verification approaches for autonomous systems are amenable to the 

regulator(s) of the sector in which they are to be deployed.  

Communicating the concept and results of verification to public is key to 

gaining public trust of autonomous systems. Society seems to have lower 

tolerance for accidents and unexpected behavior from autonomous systems, so 

efforts to ensure public trust should help with the adoption of autonomous 

systems in meaningful use cases within society. Results from verification must be 

interpreted and presented in a way that helps decision-making, such as, whether 

it is safe to deploy a system into society. Other key challenges here are how to 

communicate the level of confidence and uncertainty in the system's ability to 

continue to operate according to desired behavior, and how to communicate 

what the desired in a digestible way.  

Formal Methods  

Formal methods are mathematically defined techniques to the 

specification, design, and verification of computer systems and software. They 

enable the expression of requirements and description of systems with precision 

and no ambiguity. Often the tool support for checking that a system exhibits the 

required properties is automatic and exhaustive. The formal specification and 

verification of autonomous robotic systems is an ongoing topic of research for the 

formal methods community.  

The successful application of formal methods to autonomous systems can 

largely depend on how the autonomy is implemented. Neural networks, for 

example, are challenging for formal methods to deal with because it is often not 
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understood how they produce their output. Formal methods work best with more 

symbolic approaches to autonomy.  

Arguments were put forth arose that including formal methods into the 

specification, design, and verification of autonomous systems is very important 

because of their increasingly safety-critical nature. Formal Methods can be 

introduced at several stages during the development process. For specification, 

they can help to clarify the requirements (and even check that the requirements 

themselves have not introduced unintended errors). During design, they can be 

used to check that the designs meet the requirements. During verification, 

various automatic tools exist to exhaustively check that the description of the 

system preserves the required (safety, legal, ethical, etc.) properties. This 

automation will help with the DevOps-like process of ongoing verification 

described above.  

An obvious final challenge is that of ensuring that the final system 

represents the formal descriptions of the system, and so preserves the required 

properties. This is a challenge faced by any software development process. Some 

formal methods can verify program code (for example the Agent Java Pathfinder, 

a program model checker for agent-based autonomous systems) and there are 

other methods from which program code can be automatically generated. Even 

without these types of method, using formal methods during the requirements 

and design phases can help to reduce errors introduced at these early stages of 

the development process.  

Conclusion  

Six main challenges and four distinct opportunities related to verification 

and testing of autonomous systems can be pointed out. The following challenges 

were identified:  

1. The V-model may no longer be adequate and is necessary to either 

replace it or adapt it into a DevOps-like model. 

2. Autonomous systems may sometimes need assistance from 

operators, and in certain scenarios, control needs to be handed 

over from the autonomous system to the operator. Verification of 

the control handover may be a particular challenge 

3. In traditional systems, the behavior of the system is to a greater 

extent governed by human operators than what will be the case for 

autonomous systems. Operators are often trained and certified, 

and together with their general human experience. This is accepted 

as sufficient. Once the system behavior starts being governed by 

software, rather than human operators, how does this process 
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translate to training and certification of human operators and the 

consequent level of trust?  

4. Learning algorithms may be central to autonomous systems 

control. A specific verification challenge is how can trust in a 

system be established that may continue to adapt itself after 

deployment. Thinking of the verification process as ongoing 

through the life cycle of a system will be a central issue with respect 

to this challenge.  

5. It will also be a challenge to formulate and parametrize desired 

behaviors. It may be close to impossible to cover all operational 

profiles. While systems operated by humans have a certain 

robustness because they can adapt to situations, and as such can 

handle unforeseen scenarios, autonomous systems are not robust 

in this sense. This means that any scenario must be foreseen, and a 

system response must have been planned for the system to be able 

to handle this situation. 

6. In order to cope with a huge number of scenarios, automated and 

customizable methods and tools for verification and testing must 

be developed. 

 

While there are challenges related to verification of software rather than 

human operators, who are governing the behavior of systems, there are also 

opportunities related to this. In addition to the six challenges, four main 

verification and testing opportunities for autonomous systems are identified:  

1. When the human operator is replaced by software, this enables 

replacing periodic inspections with continuous performance 

monitoring which can be used to revoke operating license in the 

event of inadequate performance. 

2. The behavior of software can be considered more deterministic 

compared to human operators. In general, it is believed that it is 

possible to predict the behavior of software with higher precision 

than that of human operators. While it is not possible to inspect an 

operator’s brain to determine how the operator will respond to 

different inputs, it is possible to inspect the software code to 

determine this. 

3. Once the human operator is out of the loop, it is possible to predict 

and verify behavior online through online model-based verification 

where variations of the current operational scenario can be 

simulated into the future to verify safe system response. 
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4. With human operators in the loop, automated accelerated testing 

of the complete system is not possible. With the human out of the 

loop, testing can be conducted in simulators faster than real-time. 
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Authors: Christoph A. Thieme, Marilia A. Ramos 
 

Autonomous systems and Artificial Intelligence 

Autonomous systems are cyber physical systems. They may include 

Artificial Intelligence (AI), e.g., in decision making or other autonomous 

processes. However, although an overlap exists, an autonomous system is not a 

subset of AI, nor vice versa. Reasoning is an important aspect of autonomous 

systems and AI. Reasoning refers to the ability to explain actions and decisions. 

For humans, many actions are learned intuitively and do not result from 

reasoning. Still, the reasons for these actions can be described in retrospect, even 

though it was based on intuition. 

AI needs to be interpreted in a simplified manner than what is currently 

expected in the public opinion from AI. AI is a collection of mathematical 

methods, helpful for solving tasks associated with intelligence. AI methods try to 

find regularities in sets of data. An operational perspective may help to better 

clarify the concept: AI is mainly comprised of some form of learning, some degree 

of reasoning, interaction with an environment. It should have an ability to explain 

how or why the AI made its internal decisions. 

The definition that “AI is always the thing that humans can do and 

machines cannot do” is not suitable and in itself unachievable. However, AI has 

advantages over humans, for example, analyzing quickly large sets of data. 

Therefore, the human standard might not be ideal. AI may be used to learn the 

operational parameters for an autonomous system, identify weights for risk 

factors, or detect abnormalities. 

The focus of AI should lie on the autonomous system, meaning that AI 

methods comprise tools that may help to realize autonomous systems. 

Autonomous systems are more than AI, since they comprise hardware and other 

software. By excluding the physical systems from an autonomous system and 

reducing it to AI, the extended Turing test is not achievable, i.e., one is unable to 

detect different behavior of AI and humans. 

Adaptive autonomy is an often-used term in the context of autonomy and 

AI. However, adaptive autonomy is an ambiguous term. It may refer to a system 

that uses a learning (AI) system, to a system that changes the degree of autonomy 

during an operation, to software updates that adapt the system when needed, or 
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to the behavior that occurs adapting to a situation. Commonly, self-adaptive 

systems change their behavior based on experience.  

Risk in control and decision making 

For intelligent autonomous systems it is required for risk to be considered 

during the early design phases. Decisions of an autonomous systems need to be 

based on an implementation of risk considerations that are defined clearly 

mathematically and operationally. Risk is often defined in probabilistic terms, in 

a pseudo mathematical equation: risk equals probability or frequency times 

consequences. Successful implementations of (quantitative) risk assessments 

(QRA) in applied projects on autonomous systems should be developed to 

highlight the advantages of QRA. 

AI may be seen as a factor contributing to risk. However, it is generally the 

complexity of the system from which risks emerge. Hence, it is important to 

understand the system, not only the AI. Systems might become so complex that 

nobody can see the full picture. Therefore, it may be impossible to understand the 

associated risks and failures that may occur. Methods and approaches are needed 

to manage and assess complex systems. 

There is no essential difference between decision-making and 

optimization based on parameters. Autonomous systems and AI algorithms make 

continues choices between a spectrum of operational parameters. Making only 

discrete choices is not a property of an autonomous system, besides decision 

making; parameters are optimized to achieve the most efficient execution under 

the given circumstances. This resembles the behavior of, e.g., human drivers that 

follow a set of rules and optimizes constantly the vehicle speed and heading, and 

their own behavior to avoid accidents and penalties. 

Therefore, risk is a cost and a constraint for operation of an autonomous 

system. Different types of risks emerge for autonomous systems that are not 

possible to be covered by only one measure to measure the risk level of operation. 

Identification of relevant risk measures and risk factors is one of the main tasks 

during development. These need to be implemented in the control system and 

the decision module of the system. 

During the development of an autonomous system, a baseline 

performance needs to be defined, as reference for acceptable performance and 

risk. The baseline performance should not be lower than the performance by a 

human operator. One challenge that arises when approaching performance 

requirements is that the evaluation of the human performance is difficult. The 

performance acceptance criteria may be vague. Perceived risk versus real risk is 
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also relevant with respect to this evaluation. For example, car crashes occur 

frequently, while an autonomous vehicle accident is paid much more attention 

and is perceived as more severe by the public. 

Risk reduction across the system architecture 

Several definitions, views and hierarchies exist for control systems. The 

system architecture depends on system purpose, size and complexity. A general 

guideline is that low levels of control are reactive, while higher levels of control 

are more proactive. Higher levels may include a proactive planning layer and a 

supervisory layer for fault detection. Using the term “executive layer” may not be 

useful, since everything is executed. 

In each of these three suggested layers, different risk measures may be 

used. This depends on the layer purpose and the anticipated level of autonomy. 

Several risk measures may apply, e.g., probability of failure and probability of 

collision, mission failure, system failure. Using one measure across all levels is not 

sufficient. Current systems do not include explicit risk models in their control 

structure.  

One challenge for the supervisory layer is the identification of the fault 

source when a fault is detected. Subsystem integration between components and 

systems may be inadequate and detected faults may be propagated from the real 

source. A clear structure and hierarchy are needed to filter faults and identify 

their sources. 

The risk that emerges during an operation may be reduced prior to 

operation and during operation (post-deployment). However, risk reduction 

should be mainly achieved during the design and pre-deployment phases. Risk 

reduction may be achieved in all architectural levels. 

In the post-deployment phases, the risk level and the system condition 

need to be monitored. The autonomous system should detect critical and pre-

critical situations. It should use pre-critical situations to avoid critical situations 

in all equivalent systems. For identification of such situations, the autonomous 

system may use statistics or other machine learning (ML) approaches. 

Development of safe autonomous systems 

Industry practice shows that risk assessments and modeling are necessary 

processes in the development of autonomous systems. Using risk-informed 

decisions enables better design decisions. Through integration of the risk 

information, it is possible to identify opportunities for monitoring and prognosis 

of failure development. This in consequence will reduce the need for unnecessary 

maintenance. ML algorithms may be one tool to monitor the system. There are 
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“best practices” in the software industry for testing, validation and verification. 

However, there is not a general recipe for future developments. Simple, “if-then-

else” structures, can be proven to work correctly and reliable. For ML and AI 

learning techniques, these methods are not available yet. 

Risk models need to reflect the assumptions made in the system design. 

During design, these assumptions need to be identified and it must be 

consequently assessed how the level of risk may be affected by these 

assumptions. So-called legacy systems, systems that build on former generations, 

build on certain inherited assumptions. However, it is often undocumented why 

the assumptions were made. In a few cases, it is assessed if the assumptions are 

still reasonable. 

Currently, airline pilots report anomalies based on previous experience 

and training. A system should be required to self-report data that can be used for 

further development and improvement. Near misses are a significant learning 

source for autonomous systems and AI. They provide more insights than just the 

accidents themselves. 

Self-adaptive systems must be designed to detect if the adaptive behavior 

is performing worse than the previous learned behavior. Mechanisms need to be 

in place to return to proven and safe behavior in such cases. The most safety-

critical parts of the system should not build on adaptive methods. A predictable 

and verifiable behavior is required. It is necessary to define what changes need 

to be verified from the outside and which can be done based on learning. 

A hierarchal structure regarding the regulation of autonomous systems is 

required, analogous to the regulatory framework for current human operators. 

Since autonomous systems will become a reality relatively soon, the regulations 

need to be put in place. However, there needs to be room for future improvement 

and adaptation. The autonomous systems will not appear abruptly, and systems 

will change incremental. Certification for drones, for example, has requirements 

in place, to be commercially viable already. For consumer drones such rules are, 

for example, the inability to fly into no-fly zones, etc. Newly emerging companies, 

working on autonomous systems may be less conservative than the established 

companies. Hence, regulations are needed to create a common baseline. 

Risk awareness in autonomous systems 

Decision making 

Improved intelligence and online decision-making capabilities are needed 

in autonomous systems. Existing control theoretic approaches are not explicitly 

connected to risk assessment and modelling. Some control strategies use 
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methods that deal with constraints and unwanted states. This leads to robust 

control but tends to be conservative. A clear risk definition is needed for that 

purpose. Risk consideration should also include events that are not known. 

Simple control strategies and models cannot include such considerations. There 

exist few control strategies for handling extreme cases with low probabilities. 

There is another gap between control theory and control practice today. 

Switching between discrete states is used to adapt to certain situations. There is 

a lack of usage of established control strategies in practice. Proactive approaches 

are required: Actions in case something might happen, being ready for “black 

swans”, i.e., rare but extreme incidents. In contrast, a reactive approach would 

imply to act when something is happening. In any case, there is a difference 

between safe behavior and safe state. In certain situations, it may not be practical 

or safe to go into a safe state, e.g., shut down the system, or stop it. A safe 

alternative needs to be designed and chosen. 

Model predictive control (MPC) is one control strategy that is suitable for 

autonomous systems. However, using only one risk measure in such a control 

strategy is not suitable. A vector of several risks is needed to optimally use the 

method; these may be probability of collision, time to collision, etc. Risk may be 

then a cost and a constraint in the MPC algorithm. Using risk just as an 

optimization criterion for minimization would lead to the system never starting, 

since then the risk is lowest. In addition, using the risk as a constraint enables the 

user to demonstrate that the system will not accept a higher risk than prescribed 

by a legislator. In the MPC method, this may have the disadvantage, that the 

system will always choose a solution close to the accepted risk limit. 

Online risk models may assist in decision-making. Online risk models are 

models that have been developed before the mission is executed and that use data 

measured online to constantly update the current risk level. Necessary data 

measurements can be identified in risk analysis. It may be possible to sample the 

measures directly or it may be necessary to use risk indicators. ML may be used 

to tune the different risk factors and other objectives to give the behavior we 

want. Game theory may be useful, too. It must be taken into consideration how 

other entities involved might act.  

An intelligent system must not only follow the rules and trust that other 

traffic participants do the same. An autonomous system must be able to detect or 

predict intentions. A good example is the maritime sector, where COLREG rules 

exist. However, human navigators may violate these. Initially in the aviation 

traffic collision avoidance system (TCAS), for example, only positions were 

communicated. This was not an intelligent system, since it only detected other 

planes, but did not coordinate maneuvers with each other. After serious 
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accidents, the rules of behavior had to be adapted and the system is now more 

prescriptive and solving traffic situations automatically. 

Health monitoring 

The performance of an autonomous system also affects the decision 

possibilities. Hence, it is necessary for an autonomous system to be aware of its 

health status. Parameters that define the health status are the conditions of 

sensors, actuators and the control system performance. In addition, mission 

external parameters, such as information on maintenance and available spare 

parts in the operation basis may affect the decision possibilities for an 

autonomous system. 

Two different time horizons need to be taken into account with respect to 

health monitoring: the long time perspective gives information on degradation of 

components the overall system’s condition that may be used for service planning, 

e.g., changing parts, and general maintenance. The short time perspective 

provides information on the system’s performance degradation, its effect on the 

mission outcome, and the ability to handle possibly critical situations. 

For a system to detect that its performance is degrading, it needs to be 

designed knowing the baseline performance. Risk assessments are essentially 

identifying what types of situations the system cannot deal with. Therefore, risk 

assessments aid to identify performance requirements to the design of the 

systems and the operational design limitations. The system is then limited to 

function properly in situations the designer managed to envision. Hence, the 

system also needs to be able to detect that it is operating outside the operational 

design envelope. 

Input for this type of behavior needs to be supplied in manuals for sensing 

equipment. Similar to the commonly found curves “efficiency vs. environmental 

parameters”, the measurement uncertainty could be described by the behavior 

over a combination of environmental parameters. However, a device may not be 

tested in all operational conditions. Then the reliability data needs to be produced 

by the user, e. g., NASA is producing reliability information for most of the 

components themselves, such as charge and discharge curves of batteries under 

extreme temperature conditions. 

Sensors may be subject not only to physical degradation, but also to snow, 

fog, dust, or alike. This may inhibit the performance. In addition to monitoring the 

physical condition of the system, information needs to be combined and the 

reasons for degraded performance need to be detected. AI methods may assist to 

monitor the system health and detect the causes to a degraded component. 
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Sensor requirements 

Sensors need to be reliable during an operation. The environment 

influences the uncertainty of measurements. Components degrade, which 

increases the uncertainty. An autonomous system needs to handle these facts by 

sensor redundancy, better sensors, etc. However, redundancy adds to costs, 

increases power consumption, and adds weight. One possible solution could be 

using the payload sensors as redundant sensors (e.g., using visual flow to validate 

accelerometer measurements). The ability to handle uncertain situations is also 

needed when facing sensor degradation. 

An autonomous system is not only about sensors, but it must be able to 

comprehend the meaning of the sensor measurements. Many systems can detect 

if the weather and climate conditions exceed the design limitation. 

Data requirements for safety and reliability analysis and safety 

monitoring 

Data and information from the sensors should be reliable and available 

when needed. In addition to pure measurements, sensors should give 

information on the sensors’ uncertainty of the measurement. In this way, the 

uncertainty and the effect on the system may be assessed mathematically. 

It is known that navigation systems are prone to both noise and design 

flaws, which may be undetected until their effect is experienced. However, when 

the system is deployed, it may be too late to correct the error. Hence, an 

appropriate design process needs to be chosen, to ensure that necessary data is 

collected in the appropriate frequency and quality. 

One approach may be to use information trees, which are similar to fault 

trees. The challenge with such a tree structure is the interpretation of the Boolean 

logic. The trees can be used to identify: 

• What is the information that needs to be gathered (the top event)? 

• What needs to be measured based on what the needed information? 

• What types of data and sensors are needed to meet the knowledge 

condition in the top event? 

• Which data types are dependent or independent? 

• What are the success metrics? 

• Where are the best places to collect information? 
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Internal and external data uncertainty 

Three types of uncertainty can be differentiated: 

1. Measurement or data uncertainty 

2. Model uncertainty 

3. Interaction uncertainties 

Measurement uncertainties are well defined and inherent to the 

measurement system and method. Methods for describing this uncertainty are 

well established, e.g., Gaussian distributions. The uncertainty can be expressed 

numerically. Its effect can be propagated through the system and the effect can 

be assessed. Sensors should give information on the certainty of the 

measurements. 

Model uncertainty reflects the completeness and correctness underlying 

the models that are used in a system. Statistical distributions may not be able to 

capture this type of uncertainty and some parameters that are used in a model 

may be highly uncertain, e.g., turbulence is difficult to capture numerically. 

Assumptions need to be made that are imperfect. Model uncertainty may be 

introduced to keep the system simple. Adding many parameters, whose effect is 

uncertain, will not improve the model. Hence, parameters may be neglected, if the 

effect is highly uncertain or negligible, in order to make the system more efficient. 

The third type of uncertainty is the uncertainty with respect to the 

interaction with other parties, humans or manually operated/autonomous 

systems. The behavior of others is difficult to predict. An autonomous system may 

be “perfect” in itself. However, other traffic participants may cause an accident.  

The system is a conservative system if the estimated uncertainty exceeds 

the real uncertainty. Unsafe behavior is to be expected if the estimated 

uncertainty is lower than the real uncertainty in a given situation. Risk analysis 

is required to estimate the uncertainties with respect to the control environment. 

The analysis needs to include the operators or supervisors and the autonomous 

system themselves. The state of the operator needs to be reflected in the control 

system. 

With respect to the third type of uncertainty, one challenge is to robustly 

detect and identify obstacles and other participants. For AI methods, such ML and 

deep learning, it is difficult to predict their output, due to their prediction 

accuracy and often in tracible behavior. Both, identification and prediction are 

time dependent. Small variations in timing may affect the predictions. A test 

approach may require a very low uncertainty level, which will correspondingly 

take a lot of time. Without a verifiable equation, it is difficult to quantify this 
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uncertainty. There are methods for handling noise, i.e., environmental 

disturbances, but the theory is lacking when it comes to working with probability 

density functions. 

An approach to verification should be to test first the algorithms, e.g., 

through simulations. These tests, then need to be validated in the real operational 

environment. There is need for clear guidelines and checklists for building an 

autonomous system. 

If an operator or supervisor is involved in an autonomous operation, it 

may be necessary to monitor the operator and assess the uncertainty with 

respect to the operator’s ability to cope with a situation. Information could be 

extracted from the performance during the current task and projected on the 

execution of the next task. The visualization of uncertainty to the supervisor/ 

operator remains one challenge. 

A core demand for AI-based systems is that they need to be able to detect 

if they are outside of their operating range. The system needs to detect if the 

uncertainty in a given situation is too high. This includes the detection of 

anomalies that were not included in the training data sets and the appropriate 

reaction to these. This can be compared to a human driver who will adapt to a 

new situation and identify untrained situations. 

Autonomous systems´ interaction with the operator 

Autonomy in many cases shall reduce the number of operators needed to 

run a system safely. There are benefits to be realized with higher levels of 

autonomy. A system does not need to be fully autonomous to be cost effective. 

There are different areas or operational time intervals, where it is better to be 

more autonomous, e.g., for the maritime industry at open sea. In any case, there 

will be an interaction with humans even for fully or highly autonomous systems. 

In many planned autonomous systems, the operator takes a supervisory 

role. The operator is used as backup to cope with situations that the system may 

not be able to handle. When such a situation is detected, the level of autonomy 

can be changed. It is critical that the communication between autonomous system 

and pilot is adequate. Information needs to be presented clearly and 

comprehensively. 

The operator needs to know the state of the vehicle when receiving 

control. There should be a smooth transition between autonomous piloting and 

human piloting. It is important to identify the necessary information for the 

operator to carry out the necessary actions. The system needs to be designed 

accordingly. Recent accidents in the aviation industry show that pilots need to be 
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trained sufficiently in order to not fight against the autonomous systems. It needs 

to be defined what is part of the “autonomy” and what is the human’s role. 

The state of the human operator must be taken into consideration when 

attempting to give control. The workload for the operator may increase and it 

may be safer to continue autonomously, as there might not be enough time for 

the human to react or if the human may be unable to react. For an unmanned 

aircraft, it is better to use the autonomous system when taking off and landing, 

because of the increased stress levels and reduced perception capabilities of the 

operators during these tasks.  

One concern is that the human operator suffers from skill degradation 

over time without continuous training. The operator may also suffer from a low 

workload and decrease of situational awareness. Similarly, one aspect that needs 

to be assessed in design is the confusion by sudden error messages to the 

operator, so called automation etiquette. The design of warning and handover 

messages needs to be clear. The autonomous system cannot just be stopped in 

the middle of the operation, e.g., this may create hazards for other participants. It 

is critical that the autonomous system relies on the operator when operating 

outside the design envelope rather than in a predefined set of situations that may 

be actually manageable by the autonomous system. 

Industries that are currently attempting to automate their systems and 

products, such as, the automobile and maritime, must learn from aviation. 

Especially, skill degradation is widely researched in this field. Just assuming that 

the human is a good backup when the autonomous system reaches its operational 

limitations, is not viable. 

Autonomous systems interaction with each other/ 

other systems 

To improve cooperation and the predictability of the behavior of 

autonomous systems communication of planned actions is needed. Consequently, 

communication standards are necessary to be developed. In the future, an 

autonomous system might communicate with an infrastructure to get high-

resolution maps or similar information about the area or attain feed forward 

information from a non-autonomous agent. It may enable people and other 

systems to better understand the current state than just by looking at the current 

behavior. Communication may also reduce time-delays, which is especially 

relevant for slow responding systems, such as ships.  

Non-autonomous systems may benefit from using the information on the 

future actions and intentions of an autonomous system. For example, in the 



 74 
 

 

maritime sector, information on pilots´ actions (rotating the steering wheel) 

could be fed forwarded to the autonomous system and communicated to other 

systems nearby, such that these do not need to detect that the ship is turning. 
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Introduction 

Research and development projects on autonomous systems have faced 

increasing interest, and some are currently in a testing phase. Autonomous 

systems’ operation may be safer than traditional manned systems, since human 

error may be a contributing factor to many accidents. Nevertheless, a fully 

autonomous systems with no supervision and/or interference from humans are 

not expected soon. The operation will thus rely on a human-autonomous system 

(H-AS) collaboration. This interaction may not be constantly the same and the 

role and tasks of the operator may change. Then the autonomous system is 

designed with a dynamic Level of Autonomy (LoA), i.e., the LoA may change 

during operation depending on certain conditions. 

As humans will still be involved in the operation at some level, human 

error may still occur [1–3]. In addition to human error, autonomous systems 

create new challenges, such as increased cyber security threats, detection of 

unforeseen conditions and actions from other people or the possibility of losing 

communication with other partners. Hence, risk assessments of operation are 

important [4]. They face two main challenges: i) the strong reliance on H-AS 

collaboration during the operation, and ii) the possibility of a dynamic LoA.  

Few publications address topics related to hazards and risks associated 

with autonomous systems’ operation. A recent review [4] of risk models aiming 

conventional and maritime autonomous surface ships (MASS) revealed that 

current approaches do not sufficiently model the functions carried out by 

software-based systems and that human operators are often treated superficially. 

Different operational modes of vessels are only covered to a limited extent. The 

current literature concerning autonomous systems does not model and analyse 

the H-AS interaction as potential contributor to the risk of operation, nor does it 

reflect the dynamic LoA of the operation. The Human-System interaction in 
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Autonomy (H-SIA) method intends to fill this gap. The method, although being 

developed foremost for MASS, is generic in nature, reproducible and structured. 

This paper summarizes the H-SIA method, its background advantages and 

current limitations. More detailed information on the method and a case 

application can be found in the full article [5]. 

Methodology 

The H-SIA method, presented in this Section, is initially composed of two 

elements: (i) an event sequence diagram (ESD), and (ii) a concurrent task 

analysis (CoTA). The method was specifically developed for and applied to 

collision scenarios between an autonomous ship and another vessel or object. 

Nevertheless, it is expected to have general applicability for autonomous systems.  

Figure 1 presents the three main steps in the H-SIA method. Steps 2 and 3 

are described in more detail in the following sub-sections. The general approach 

comprises familiarization (Step 1) to ensure that the analyst can apply the 

flowchart for the ESD development. The ESD development is the second step, 

where the ESD is built by answering design related questions of the autonomous 

system and the LoA of its operation. The developed ESD can be further analyzed 

with the CoTA (Step 3). 

 

 

Figure 1: H-SIA method application steps (from [5]) 

Figure 2 presents a general view of the H-SIA method results. The CoTA is 

success-oriented; it describes the tasks involved in the success paths of the events 

of the ESD. The interactions between the interface tasks of the agents are 
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indicated with circles: a circle with an arrow exiting the event indicates that the 

task results in an output necessary to the accomplishment of a specific task of the 

other agent. Similarly, an arrow entering the event indicates a task that receives 

input from a specific task from the other agent. Interactions are identified by 

following the rules for task re-description and the CoTA stop rules. The events in 

the ESD cover either events related to the human operator or the autonomous 

ship. Some events may be related to both entities. 

 

 

Figure 2: Simplified example of H-SIA method elements. (Adapted from [5]) 

Abbreviation: AS - Autonomous ship 

Event sequence diagram and flowchart for development 

ESDs are a generalized form of event trees. The ESD framework is flexible 

in modeling the behavior of key processes and hardware and operator state 

changes. The timing aspect is considered through the order of events. Thus, it is 

a more literal representation of a system state than event trees [6]. ESD are used, 

e.g., in the Phoenix Human Reliability methodology, which makes use of a 

flowchart approach to build a Crew Response Tree [7–9]. This is encouraging to 

apply the ESD framework and flowcharts for their development. 

H-SIA provides a flowchart for the ESD development. The questions guide 

the building of the ESD and assist in including only relevant issues in the ESD that 

appear in the logic order of the questions. The use of the flowchart ensures 
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traceability and reproducibility of the analysis. Furthermore, it provides the 

flexibility for assessing in the ESD development for different LoAs and system 

designs – from a LoA as low as remote control to high as fully autonomous. The 

flowchart and guidelines can be seen at [5]. 

Concurrent task analysis 

The CoTA developed for the H-SIA method is built over Task Analysis (TA) 

theory and methods, and expanded to explicitly include the interactions between 

different parts or agents of the systems.  TA was developed in the 1960s [10] and 

had the initial focus of analyzing human performance. Task analysis is “the 

collective noun used in the field of ergonomics, which includes HCI, for all the 

methods of collecting, classifying, and interpreting data on the performance of 

systems that include at least one person as a system component”. Different forms 

to develop a TA exist, such as Hierarchal TA, Tabular TA, and Cognitive TA [11]. 

TA allows analyzing complex tasks through the decomposition of goals 

into sub-goals, so called re-description. The goals and sub-goals are organized in 

HTA through plans [10]. Plans state the order of the sub-goals to achieve the main 

goal. From a systems perspective, the HTA should focus on the analysis of the task 

to understand how the system is supposed to behave and how it may fail. An 

important element of HTA are the stop rules that determine when to end the re-

description. In this work the stop rules are based on the Information Decision 

Action (IDA) framework. 

The IDA model was initially developed as a human behavior model for the 

operation of nuclear powerplants [12]. It consists of the cognitive phases I 

(Information collection and pre-processing); D (decision making and situation 

assessment); and A (action taking). The IDA model has been developed and 

extended further in recent years [12–16]. It is possible to adapt IDA to different 

agents of a system. Since the H-SIA method analyzes the interaction between two 

or more agents, it is beneficial to use a similar model that allows for decomposing 

functions into the same low-level unit of analysis. In the H-SIA method, thus, IDA 

model was extended to describe phases and categorize tasks of the autonomous 

ship as well. 

The CoTA consists of several TAs, in which the tasks described as the 

events in the ESD are re-described until the tasks correspond to one of the IDA 

phases and the relationship between the sub-task and another agents’ task can 

be established, if this exists. In addition, the CoTA includes a new type of task 

named "parallel task". Parallel tasks are supporting tasks, i.e., they are necessary 

for the execution of the other tasks and the interaction between the agents but 

not explicitly included in the ESD. Parallel tasks are related to the normal 

operation of the system being executed continuously, not following a specific 
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order in a plan, i.e., they are executed at the same time with the other tasks. The 

parallel tasks are normally the ones related to gathering data, monitoring, or 

communication between the agents. 

The CoTA is based on the ESD developed in step 2. The events from the 

ESD translate into tasks that are performed by the agents. Hence, the ESD 

presents what can happen, and the CoTA further details how these events may 

occur. The CoTA is a success-oriented method that enables the analyst to 

understand better each agent’s tasks that needs to be accomplished for the events 

of the ESD to take place.  

For instance, an event in the ESD may be “Detection of the collision 

candidate by the autonomous ship”. This event is translated into the task “Detect 

the collision candidate” in the AS’ Task Analysis. This task is then re-described 

using the CoTA stop-rules. The re-description details the sub-level tasks that 

must be accomplished for the AS to successfully detect the object as a collision 

candidate, e.g.: gathering and processing data, apply relevant norms, among 

others.  

There are two main approaches when using the CoTA: Analyze the tasks 

involved in all events of the ESD (i), or to (ii) analyze a specific sequence of events 

in the ESD scenario. When developed for all the events of the ESD (alternative i), 

the CoTA provides a detailed overview of how the agents should act to be 

successful in the possible events of the ESD. The scenario specific CoTA (ii), 

presents the tasks that should be performed for a success outcome in a specific 

sequence of events. 

The CoTA adopts and expand the HTA plans described in [17]. The CoTA 

plans describe the order of sub-tasks in order to achieve a successful main task. 

The CoTA plan may determine for instance a sequence (e.g. 1→2→3 – the tasks 

1, 2, and 3 must be performed in this order); or a decision (e.g., Task 1 is 

performed and, if a condition is satisfied, task 2 is performed; if no, task 3 is 

performed). In addition, it contains the parallel tasks, and a scenario-specific 

plan.  

The CoTA can be developed from the ESD following the steps below, the 

relationship between CoTA and ESD is highlighted in Figure 2: 

1. Definition of agents to be analyzed, each of the agents will have an HTA; 

2. Definition of Task 0, this may be to avoid collision and recover successfully 

from the initiating event; 

3. Definition of agents that are mainly acting in each event agents; 
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4. Definition of high-level tasks: each event of the ESD translates into a high-

level task in each of the respective HTAs. It is recommended to develop a 

table for correspondence between the event from the ESD and the Task ID 

in the CoTA;  

5. Identification of parallel tasks; 

6. Re-description of tasks until stop rules are satisfied. The first rule always 

must be satisfied, whereas the second may not be satisfied. 

i) The task is associated with only one of the I-D-A phases and, for the 

dependent tasks; 

ii) The task represents the interaction with another agent.  

7. Identification and highlighting of interface tasks.  

 

The CoTA can be used for multiple purposes, such as development of 

procedures, identification of specific subsystems and components that are 

necessary for a successful task, identification of failure sources of the human 

operator or the autonomous system identification of tasks that need to be 

accomplished for a certain outcome, identification of interface tasks, and analysis 

of failure propagation.  

The scenario specific CoTA 

As stated previously, the CoTA may be used for analyzing a specific 

sequence of events instead of all events of the ESD.  This may be achieved from 

the complete CoTA or directly from the specific sequence of events. In both cases, 

the development of the scenario specific CoTA starts with the identification of the 

events involved in the desired ESD path. To make use of the complete CoTA, the 

analysts identify and selects the tasks of each agent’s TA that belong to that 

sequence. This process may be assisted by the table developed in Step 4. When 

developing the CoTA from the sequence of events, the analysist follows all the 

steps outlined above, just for these specific tasks. An example of a scenario 

specific CoTA is shown in Figure 3. 
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Figure 3: Scenario-specific CoTA example (Adapted from [5]) 

Discussion and conclusion 

In the H-SIA method an autonomous system is analyzed as whole, rather 

than focusing on each component separately. The process may assist in the 

comparison of different concepts and designs of an autonomous system. The use 

of a generic flowchart and generally valid principles produces results that are 

comparable, reproducible and traceable. An additional benefit of the H-SIA 

method is the identification and tracking of interdepend tasks of different agents 

in a system. 

The features of the ESD and CoTA makes the H-SIA method a valuable 

technique for analysis of safety of autonomous systems’ operations. It may be 

used in the design phase, to develop procedures and to derive specifications, for 

failure events identification, and the results can be further integrated into risk 

assessments.  

Some limitations of the methods are that although the CoTA is developed 

using clear guidelines and stop-rules, the identification of parallel tasks and the 

re-description depends also on the analyst. This may lead to different CoTAs 

when the H-SIA method is used by different analysts. This variability is, in one 

sense, a limitation of the method. On the other hand, it offers flexibility for the 

CoTA to be developed and detailed according to the purpose of the analysis.  

Future work includes the detailing of the failure events, through e.g., the 

development of fault trees and BBNs, in a hybrid causal logic model. The method 
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can benefit from validation through applications to existing autonomous systems 

and projects, as well as through feedback from experts use.  
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Formal Methods are mathematically based techniques for software design and engineering, which 
allow the description of and reasoning about a system’s behaviour. Autonomous systems are 
inherently safety-critical and increasingly being introduced into everyday settings, so using 
robust development and verification methods is prudent. We argue that formal methods are an 
effective tool for the development of autonomous systems. They allow unambiguous description 
of requirements and systems, and are effective in several phases of the engineering life-cycle. 
Modern formal methods often include highly automated tool support, even older methods have 
some automation in their tools. Formal Methods should take their place alongside a variety of 
other robust software engineering techniques for developing autonomous systems. 

Introduction 

Autonomous Systems (AS) are often embodied in a robotic system and are 

increasingly being used (or proposed for use) in situations where they are near 

or interact (physically or otherwise) with humans. This means that AS are safety-

critical systems, where failures can cause harm or death. For AS used in industry, 

the people at risk are likely to be workers; for systems like autonomous vehicles 

and domestic assistants, the people at risk will be users and bystanders. The 

security of AS must also be ensured, both because of the sensitive data they are 

likely to contain and because a security failure can cause a safety failure. 

Formal Methods (FM) are mathematically defined techniques for robustly 

reasoning about systems. They allow the unambiguous description of rules about 

a system’s data and behaviour, and can be applied to the specification, design, and 

verification phases of systems engineering. Formal Verification (FV) uses FM to 

show that a system behaves according to a rule (or a property). Like verification 

by testing or simulation, FV requires a good description of the system and what 

properties to check for; without this knowledge the verification is unlikely to be 

valid. 

AS need to be safe, correct, and trustworthy, so the most robust design and 

verification methods available must be used. FM have been used successfully in 

various industrial projects [1] and there are many academics uses of them to 

tackle the inherent challenges of AS [2]. 

The challenges of engineering AS may be external to the system, such as 

the need to model the system’s operating environment and provide robust 
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evidence of its safety to a regulator. One way to bridge the gap between design-

time models of the environment and the real world is Runtime Verification (RV), 

where a formal description of how the system should behave is used to monitor 

the running program, an example of which is described in Sect.3. FM are 

unambiguous and often exhaustive, so provide robust regulatory evidence and 

traceability. 

Other challenges of engineering AS may be internal to the system, for 

example they could relate to how the autonomy is implemented or how the 

system may reconfigure itself. Again, FM’s unambiguous and exhaustive nature 

help us to check these complex systems. Some formal models can be animated, 

allowing a user to step through each state and make any available choices. This is 

similar to step-by-step debugging of program code, so formal models can be used 

as rapid prototypes. 

The rest of this paper is organised as follows. Section 2 introduces some 

popular approaches to using formal methods, Sect.3 describes some current 

examples of applying FM to AS, Sect.4 discusses opportunities for using FM with 

AS, and Sect. 5 concludes the paper. 

Types of Formal Approaches 

This section introduces four approaches to using FM, by which we mean 

the framework(s) or technique(s) used for verification. This is not an exhaustive 

description of the available approaches, but they are some of the most popular 

approaches we found in previous work [2]. 

Model Checking 

Model checking checks if a property holds in every state of a formal 

specification. It is a flexible approach that can use a variety of formal notations, 

though the most prevalent is temporal logic. Some model checkers accept timed 

(e.g. Uppaal7) or probabilistic models (e.g. PRISM8), and there are program model 

checkers (e.g. Java PathFinder9) that operate on the program itself [3] 

Model checking has some advantages over other approaches: model 

checkers are automatic, which makes them relatively easy to use; also, the 

concept of checking every state in a model to see if a required property holds is 

relatively intuitive. However, because model checking exhaustively explores a 

specification one must be careful about the input specification and the chosen 

properties to avoid state space explosion (where the number of states that the 

                                                        
7 http://uppaal.org/ 
8 http://www.prismmodelchecker.org/ 
9 https://github.com/javapathfinder 

http://uppaal.org/
http://www.prismmodelchecker.org/
https://github.com/javapathfinder
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model checker has to search becomes intractable). State space explosion, and 

building the specifications themselves, are the two obvious overheads to this 

approach. 

Theorem Proving 

Theorem Proving is an approach that can produce formal proofs of the 

correctness of a software system. A variety of logical systems exist for describing 

a system, and there are powerful tools to aid the user. Formal proofs can be used 

to provide robust evidence to regulators for the certification of autonomous 

systems. They also have the advantage of being able to describe systems with an 

infinite state. 

Theorem proving is effective and powerful, but the learning curve for the 

approach and its tools may be higher than the others we discuss here. Also, the 

concept and results may be more difficult to explain to stakeholders without 

formal methods experience. 

Runtime Verification 

In Runtime Verification (RV) a component called a monitor consumes 

events from a system and compares them to a formal model of the expected 

behaviour. If the system’s behaviour differs from that described by the model, 

then the monitor can log the failure, alert the user, or trigger mitigating 

behaviour. 

On its own, RV cannot guarantee a program’s behaviour, but it can sidestep 

the challenge of verifying a complex system. The formal model used is often 

simpler than if the entire system has been captured, which reduces overhead in 

developing the model. Runtime verification also helps bridge the reality gap 

(between a model and the real world) by checking formal properties and 

assumptions at runtime. Because the monitor is another runtime component of 

the system, it can add to the resource overhead. Reducing this overhead is one of 

the aims of Predictive Runtime Verification [4], [5] 

Formal Synthesis 

Formal Synthesis is an approach that automatically derives low-level 

controllers for AS (often movement plans for autonomous robotic systems) from 

high-level task specifications. The utility of this approach lies automating the 

conversion of complex task specifications into controllers, when they cannot be 

trivially converted to a sequence of “go here" statements. 

Formal synthesis is an active research area, and can be a powerful 

technique for deriving a controller that implement a particular task or behave 

according to certain rules. Various synthesis approaches adapt model-checking 
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algorithms, but for more complex systems this can also cause state space 

explosion [6]. Automating controller synthesis moves the development overhead 

to an earlier phase; like with model checking, developing the right specification 

is key. 

Current Examples 

This section describes some recent examples from the literature of 

applying FM to the inherent challenges of developing AS. This is nowhere near 

being an exhaustive list, but is intended to show a range of approaches. A fuller 

account can be found in previous work [2]. 

Webster et al. [7], [8] tackle an AS controlling a pilotless aircraft. They use 

a program model checker to check that the AS meets the requirements described 

in the Rules of the Air, from the UK’s Civil Aviation Authority. The Rules of the Air 

tell pilots how they should fly, so this process replicates licencing a human pilot 

in the verification of the AS. These studies show how FM can validate natural 

language requirements (the Rules of the Air) and verify program code. 

Ethical concerns must be dealt with if AS are to behave (and be 

considered) trustworthy. Enabling robots to deal with ethical choices is an open 

challenge. This is often approached by looking at the choices of an AS and 

deciding if they are ethical or not [9]–[11]. While this is a useful place to start, 

real-life situations are unlikely to be so simple. One study that does tackle less 

dichotomous situations provides a language that captures the ethical weighting 

of the AS’s choices. [12] This language allows the AS to reason about its choices 

and is amenable to program model checking. This allows the verification of more 

complex ethical properties, such as in situations where there are only unethical 

choices and the AS much choose the least bad option. 

As mentioned in Sect. 2, RV can help to bridge the reality gap by checking 

a running program. This has been used to check assumptions made during the 

system’s design using runtime monitors [13]. This enables the authors to validate 

the formal modelling of the system and the environment it will operate in. RV can 

also highlight when design-time assumptions about a system’s environment 

become invalid during execution [14]. 

Finally, several studies have shown the utility of formally synthesising 

(usually movement) plans that satisfy some specified properties (e.g [15]). Some 

have tackled generating movement plans for autonomous robots [16], [17]. This 

approach has the potential to be used during execution by the AS itself [16]. Since 

this is a similar technique to model checking, it too can suffer from state 

explosion. Both [16] and [17] plan a short distance ahead to help sidestep this 
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issue. Formal synthesis has also been applied to systems made of several 

autonomous robots [6], [18]. 

Future Directions 

This section discusses some potential future uses of FM in the engineering 

of AS. Generally, AS are deployed to perform a task that a human is currently 

doing. This presents challenges for verification, because the software is 

responsible for making more choices; but it also enables new opportunities, like 

being about to look inside the ‘brain’ of the system and ensure it’s making correct, 

ethical, and safe decisions. This requires transparent and explainable AS. An 

example is the concept of an ethical black box [19], which records the sensor 

input and internal state of a system to enable offline checking of the system’s 

decisions in the event of a failure. 

As previously mentioned, FM are useful for clarifying what a system 

should and should not do because they allow the unambiguous description of the 

system and its requirements. Obviously, this can improve the implementation of 

those requirements, because they are not open to interpretation like natural-

language requirements might be. Additionally, FM are useful as an intermediate 

language between regulatory frameworks or requirements and a system’s design. 

Again, they will clarify what the system should and should not do, but they also 

provide traceability of those requirements into the final system. The work of 

formalising regulatory requirements is not to be underestimated, but once done 

they would be reusable in building other systems implementing these regulatory 

requirements. 

Formal specifications can also be reused on the same system. We should 

be considering using some kind of RV in AS to ensure that the system is still 

fulfilling its original specification. This could be online, or a set of checks rerun at 

regular intervals. It would be especially useful if the system learns online, is 

capable of reconfiguring itself, or will be in use autonomously for a long time. 

Autonomous Vehicles are a good example of where both formal 

specification and RV can be used. We have had many decades of learning how to 

safely develop vehicles, so this is of less concern when developing a vehicle that 

is autonomous; the challenge lies in developing the AS controlling the vehicle. 

When a person learns to drive a car, they must (usually) pass some tests to obtain 

a licence – these are also the requirements of an AS for controlling a car. A 

formalisation of these requirements gives us what we need to check before giving 

an autonomous vehicle a ‘licence’. More interestingly, checking these 

requirements regularly allows us to revoke the ‘licence’ if the checks fail. 
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Conclusion 

This position paper argues that Formal Methods can help engineer safe, 

correct, and trustworthy Autonomous Systems. It describes a snapshot of what 

kinds of formal methods exist and some examples of current applications of 

Formal Methods to different challenges of Autonomous Systems. Finally, it 

discusses potential uses of Formal Methods in the future. 

The discussion here has only talked about applying a single Formal 

Method to a system, but has hinted at there being other methods (both formal 

and non-formal) involved in the engineering of one system. In previous work [20] 

we argue that Autonomous Systems (specifically in the context of autonomous 

robotic systems) require integrated Formal Methods (iFM), which refers to the 

integration of multiple Formal Methods or of formal and non-formal methods. 

Joining Formal Methods in this way can produce a formalism able to capture, for 

example, both static and dynamic behaviour. Blending formal and non-formal 

methods can produce easy to use approaches, such as graphical notations the are 

automatically formalised by a tool. In both cases, iFM can allow the combination 

of the best methods for examining a particular domain. 

As previously mentioned, Formal Verification needs good descriptions of 

systems and their requirements, just like other verification techniques. This 

means that the Formal Methods and Autonomous Systems communities need to 

be better at collaborating. Formal Methods need to be able to cope with the 

architectures and requirements of Autonomous Systems. In turn, Autonomous 

Systems engineering must ensure that it enables robust verification techniques 

and works on clear definitions of the system’s scope and requirements. 

Formal Methods are, by no means, a panacea for the challenges of 

engineering safe, correct, and trustworthy Autonomous Systems; however, they 

can provide robust specification and verification of various parts of an 

Autonomous Systems. Because of the safety and security implications of failures 

of an Autonomous Systems, the most robust methods must be chosen for each 

system component and development phase, so Formal Methods should be 

included as part of the toolbox for engineering Autonomous Systems. 
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During the last years, there has been an increasing use of agile methods 

when developing safety-critical systems, such as autonomous cars and ships. In 

the near future, we do also expect that DevOps, which unifies software development 

(Dev) and software operation (Ops), will be part of this rapidly growing industries. 

New technology has made it simpler to monitor the operation of safety systems, 

together with over-the-air updates and upgrades, making DevOps more relevant. 

DevOps is also a considerable trend for non-critical systems with a growing 

know-how and tools. However, DevOps, with its frequent changes, make systems’ 

maintainability – e.g., change impact analysis – a more challenging topic than it 

was earlier. 

ISO has developed a functional safety standard for the automotive 

industry, ISO 26262:2018 while there does not exist a similar standard for ships. 

In addition, ISO have developed a SOTIF specification for the automotive domain 

ISO/PAS 21448:2019. Some of the products and systems developed for ships are 

certified according to IEC 61508. As an example, IEC 61508 is mentioned in 

MSC.1/Circ.1512:2015 "Guideline on software quality assurance and human-

centred design for E-navigation". 

Satisfying IEC 26262:2018 for automotive and IEC 61508:2010 for generic 

systems and components are not sufficient when developing autonomous cars 

and ships. The reason for this is among other things that they do not include 

requirements related to important topics like machine learning and deployment 

over the air, which are technologies that have gained considerable interest over 

the past years. 

A safety case as evidence is required by ISO 26262:2018 and it is suggested 

to include requirements for a safety case in the next edition of IEC 61508:2010. A 

safety case could be the main source of evidence, issued by the manufacturer. The 

safety case includes information related to what has been done both according to 

safety standards but also have a wider scope than the safety standards as the 

current editions of the safety standards does not include all relevant 

requirements for autonomous systems. And equally important, the safety case 
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includes information regarding the intended use and operation domain together 

with the limitations of the safety case. 

The presentation will include an evaluation of the two main safety 

software standards ISO 26262-6:2018 and IEC 61508-3:2010 and their 

weaknesses and lack of guidance related to the safety of autonomous cars and 

ships. 

It has also become more important to move towards a process with more 

frequent modifications of the safety software, after the cars or ships have been 

developed, due to e.g., improved operational feedback, technology improvements 

and security issues, including safe patching. This change is enabled by the 

flexibility that software-based solutions can offer, and hence, security issues 

should also be part of the safety case. This is partly included in the railway 

standard EN 50129:2003 edition and strengthened in the EN 50129:2018 

edition. Security was also strengthened in the second edition of ISO 26262:2018 

series. 

The Agile Safety Case Approach, that are based on both an agile approach 

and EN 50129:2003, can be an enabler for future DevOps processes. 
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One of the main arguments that support the development of autonomous ship operation is the 
expected improvement of maritime safety by reducing human error and exposing less people to 
hazardous environments. However, in most likely scenarios, humans will remain in the loop even 
from a distance, which indicates that, rather than being reduced risk, will simply migrate to 
another part of the system. Such effects cannot be captured adequately by the traditional risk 

theoretical and methodological viewpoints that are based on reductionism. The position we take 
with this paper is that risk analysis needs to embrace a systemic perspective that accounts for the 
complexity of autonomous ships and related uncertainties. We support this, first by considering 
why autonomous ships should be considered as complex systems and secondly by discussing the 
application of systems-based risk perspectives and relevant methodological frameworks in the 
autonomous ship domain. Our main conclusion is that future research efforts should provide 
context-specific systemic models at various levels of abstraction to capture the wide-ranging 
effects of autonomous ship operation. 

Keywords: Maritime safety, Risk Analysis, Autonomous ships, Systemic risk, Uncertainty 

Introduction 

Several actors in the maritime industry are currently exploring the 

possibilities for operating ships with various levels of autonomy. Although these 

concepts are seen by many as too ambitious to be implemented at full scale, the 

main argument for autonomous operation is that it will improve maritime safety 

[1] by reducing human error, while exposing fewer people to hazardous 

environments [2]. The projected benefits for safety are based on the evident 

apportioning of human error as the main root cause on more than 80% of all 

marine accidents [3]. 

This argument is based on a rather simplistic and narrow perspective that 

equates the absence of people onboard with the absence of safety risk. However, 

as unmanned and unmonitored autonomous ships are not likely to become an 

imminent reality, humans will remain in the loop; e.g. relocated to a shore-based 

facility where they will monitor and intervene if necessary [4–6]. In addition, 

Wróbel et al. [7] have drawn attention to the fact that even though autonomous 

ships may reduce navigational accidents (i.e., collisions and groundings) the 

consequences of other types of accidents, such as fires, may be more extreme 

without the mitigating action of the human element onboard. Considering that 

there is currently no firm evidence to prove that autonomous ships will operate 
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at an acceptable level of safety when deployed in full scale, reliable and well 

justified risk analysis may provide the industry with the decision support it needs 

to further justify the development of autonomous ship operation. However, the 

risk analysis domain has experienced an asynchronous development between 

thinking and practice. Established thinking leans towards the systemic 

perspective, acknowledging complex component interactions, while practice has 

lagged behind with tools that depend on sequential and linear models [8]. 

The position we take with this paper is that risk analysis in the context of 

autonomous ship operation needs to consider the complex nature of these 

systems by employing systemic models and providing informative statements on 

related uncertainties. The rest of this paper is structured as follows. Section 2 

discusses the features of autonomous ships that make them complex in relation 

to formal definitions of complexity. Section 3 discusses how complexity impacts 

risk analysis by presenting selected alternative systems-based risk perspectives 

and reviewing the available frameworks for modelling risk in complex systems. 

The paper concludes with some comments on how risk analysis may be applied 

in the context of autonomous ships in a way that addresses their complexity and 

will provide useful results. 

Complexity in the context of autonomous ship 

operation 

Complex systems exhibit certain properties that include non-linearity, the 

presence of feedback loops that affect their behaviour, self-organization, 

robustness, emergence, hierarchical organisation, and numerosity of 

components [9]. In the context of Normal Accident Theory (NAT), Perrow [10] 

has defined a complex system as one that includes complex interactions and tight 

couplings. In a risk assessment context, Johansen and Rausand [11] have noted 

that the common basis among the different definitions of complexity relates to a 

limited ability to understand and predict complex system behaviour just by 

understanding the behaviour of its components. 

Autonomous ships will have at least some of these properties and 

therefore we may characterize them as complex systems. The most obvious is 

numerosity [12], as autonomous ship operation will be enabled by the 

collaboration between complicated (and potentially complex in themselves) 

shipboard systems and shore-based systems. Numerous shipboard systems will 

replace the functionalities of onboard crew, such as providing situational 

awareness (external and internal), evaluating alternatives for collision 

avoidance, communicating with the shore, and actuating commands. A shore-
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based facility will most likely be used for monitoring and control that will also 

consist of liveware (a term that refers to the human element that was originally 

used in computer science), hardware, and software. In this sense, autonomous 

ship operation might very well be distributed in space with a strong functional 

dependence between sea and shore, whose malfunctioning or disruption may 

lead to a system-level failure. 

Other properties of complex systems, such as feedback loops and self-

organization, emerge more clearly when considering autonomous ship operation 

within the Maritime Transportation System (MTS). For example, if we consider a 

possible MTS that includes conventional ships and ships with various levels of 

autonomy up to artificially intelligent ships, then the interactions between them, 

independent of central control and subject to multiple feedback loops, may 

possibly lead to the emergence of different high-level behaviours. From this 

perspective, non-linearity emerges as ensuring the safety of individual ships does 

not necessarily ensure the safety of the wider system. 

Risk analysis in a complex setting 

Complexity impacts how we perceive and analyse risk. Jensen and Aven 

[13] note that for complex systems we cannot necessarily improve our 

knowledge at the system level by understanding the individual components, 

which implies that for analysing risk in a complex system we must have some 

level of knowledge on the complex interactions. By ignoring interaction, we risk 

being surprised by accidents that involve independently non-failing components 

[14]. For example, if we analyse the risk of technical failures and human error 

separately, which is the approach that has been largely followed in the practice 

of risk analysis, then we explicitly disregard the effect of their interaction on the 

risk level of the system through risk aggregation. Furthermore, understanding 

complex interactions may help to identify how risk migrates from one part of the 

system to another, such as in the case of transferring control from the ship to a 

remote centre of operations. 

Drawing on the framework of systems engineering, Haimes [15] has 

provided a definition of risk in complex systems as a vector with the same units 

as the consequences that is a function of time, the probability of initiating events, 

the probability of the consequences conditioned upon the initiating event, the 

vector of the states of the system, and the vector of the consequences. Another 

interesting definition formulated by Andretta [16], shown in Equation 1, links 

risk (R) for targets of interest (Ti) to the probability of an anomalous state of the 

system (STa), which results in a damage of specific magnitude (Md), which in turn 

results in an adverse effect (Ea). This definition is similar to the one formulated 
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by the risk triplet of Kaplan and Garrick [17], but the risk scenario is described as 

a function of anomalous system states that may produce damages that affect 

targets of interest with specific consequences. 

𝑅{𝑇𝑖} = 𝑃{𝑇𝑖}(𝑆𝑇𝑎 , 𝑀𝑑 , 𝐸𝑎) (1) 

 

These two definitions of risk are similar in the way they condition risk 

quantification upon defining a model of the system and determining its states that 

may have an adverse impact on something of value. Although these definitions 

provide a solid conceptual framework for characterising risk in complex systems, 

they do not offer explicit instruction as to how to model the system and the 

interactions among the components. 

Frameworks that address the modelling problem from a systemic 

perspective include Rasmussen’s Risk Management Framework [18], the 

Systems-Theoretic Accident Model (STAMP) by Leveson [14], the Functional 

Resonance Analysis Method (FRAM) by Hollnagel [19], and the Event Analysis of 

Systemic Teamwork (EAST) by Stanton et al. [20]. Strictly speaking, Rasmussen 

and Leveson provide models for describing how accidents in complex systems 

occur, while Hollnagel and Stanton provide a way to structure model 

representations of how the system works. Both Rasmussen and Hollnagel adopt 

a functional (instead of a structural) decomposition of the system and 

acknowledge that performance varies. Leveson addresses safety modelling as a 

control problem and therefore uses a control structure with feedback loops to 

represent the system. Stanton et al. take a different approach by modelling the 

system as a network that consists of three sub-networks (social, task, and 

information) that represent “distributed cognition”. 

These systemic methodologies currently occupy a very small space in the 

risk assessment literature [8] and, similarly, in the maritime risk domain there 

are only a few examples of such applications. In the domain of autonomous ships, 

Wróbel et al.[21] applied the System Theoretic Process Analysis (STPA) 

methodology, which is derived from the STAMP framework, on a generic 

remotely-controlled merchant vessel. The methodology they applied involved 

modelling the system as a safety control structure, based on information from the 

available literature and from brainstorming sessions with industry experts. In 

addition, the authors conducted an uncertainty analysis for the structure of the 

model by applying the framework proposed by Flage and Aven [22]. 

Although the systemic perspective on risk is beneficial for the analysis of 

complex systems, its practical usefulness is not without limitations. This 

approach has a strong dependence on how to model the system, which has been 
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criticized by Aven [23] by supporting that the basic definition of risk should not 

be so strongly conditioned on modelling. Another implication of this dependence 

is that it may result in inconsistent risk analyses as different modelling 

approaches may include different component interactions. In addition, in cases 

of novel and innovative systems, such as autonomous ships, the limited 

knowledge of their exact structure adds epistemic uncertainties into the analysis, 

which should be explicitly identified. An important issue with the systems-based 

modelling frameworks is that they do not explicitly support the quantification of 

risk and are therefore practically limited in hazard identification, with the 

exception of EAST that includes Social Network Analysis (SNA) metrics [24]. In 

fact, they are sometimes purposefully non-quantifiable, see for example Leveson 

[14], expressing an abandonment of the probability concept in light of its 

limitations especially. In a critical view of this issue, in the cases of STAMP and 

FRAM, Bjerga et al. [25] have pointed out that these approaches do not handle 

uncertainty adequately and support that some expression of uncertainty (be it 

probabilistic or of some other form) over the future manifestation of the risk 

scenarios should be included. Risk quantification is however inevitably useful for 

supporting decisions, and if not explicitly specified it is left up to the decision 

maker to judge the likelihood of the risk scenarios. 

Conclusions 

The argument for improving maritime safety with autonomous is largely 

based on a simplistic assumption that equates the absence of people onboard 

with the absence of risk. However, this assumption may not be true considering 

the complexity of autonomous ships and the increased complexity of the MTS due 

to their operation. Complex interactions and strong dependencies among risk 

factors will most likely produce emergent behaviours that may impact safety in 

ways that are difficult to predict. Risk analysis for autonomous ships should 

therefore account for this complexity from both a risk theoretical and 

methodological viewpoint. 

The systemic risk perspectives that have been reviewed provide a strong 

link between the risk of unwanted consequences and a model of the system based 

on the description of system states. This perspective may be combined with the 

existing methodological frameworks that provide guidance on how to structure 

a system model. These frameworks provide a solid basis for modelling but need 

to be supplemented by appropriate statements of uncertainty. The application of 

such approaches in the domain of autonomous ships may prove useful, which is 

a position that has been acknowledged in the relevant literature. However, there 

is a need to create more context-specific models that capture the important 
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factors that differentiate autonomous from conventional ship operation. Finally, 

modelling attempts need to be made at various levels of abstraction (from 

individual ships to the MTS) to determine the potential wide-ranging effects on 

maritime safety from the operation of autonomous ships. 
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Autonomous vehicles (AVs) or self-driving cars have the potential to replace human-operated 
cars. AVs can sense the environment and even navigate some of the roads in conditions humans 
find challenging. This may quickly lead to people’s over reliance on AVs and overconfidence that 
no failures will occur. Therefore, AVs can impact society positively and negatively. AVs are X-ware 
systems that consist of software, hardware, humans, and their interactions. Despite the large 
number of studies on AVs, there are still a large number of unsolved problems. One major 
challenge for AVs is communication with driver as well as pedestrians. Most of the previous 
research efforts consider software failures, whereas few consider the role of humans in the 
current transition to a society in which self-driving cars predominate. This paper considers the 
interaction between the AVs and humans including: I) the driver and passenger of the AV and II) 
pedestrians. We also discuss related studies on human behavior. 

Keywords: Driver-pedestrian interaction, Human intention, Behavior analysis 

Introduction 

Technological advances, such as artificial intelligence, are being leveraged 

to build our future smart cities with the intelligent infrastructure in which 

driverless vehicles will be the key feature of the transportation network. 

Commercial cars are categorized into 5 levels [1], including: (i) Level 1 cars which 

are entirely manual; (ii) Level 2 cars in which only single operations such as anti-

lock braking, brake assist, and electronic stability are automated; (iii) In level 3 

cars, called combined function automation, two or more functions are automated; 

(iv) Level 4 cars are those which do not require attention of the driver at any time 

because they use automation to control all aspects of the driving task for 

extended periods; (v) Finally, level 5 cars are driverless and completely 

automatic. Nowadays autonomous vehicles (AVs) or self-driving cars (level 4 and 

5 cars) are in the research spotlight in academia and of great interest to giant 

companies such as Apple, Google, Tesla, Uber, and Volvo [2]. AVs can sense the 

environment and navigate the roads even in conditions that are challenging for 

humans to manage. 

There have been numerous successes, since the early attempts at 

autonomy [3] and several studies on autonomous vehicles have been published. 

Since 2004, the Defense Advanced Research Projects Agency (DARPA) has held 

three major challenges on robotic vehicles [4]. In 2007, the DARPA urban 
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challenge focused on the research and development of robot cars for urban 

environments, which had to navigate moving traffic safely while obeying 

California traffic regulations. However, they excluded pedestrians and bicyclists 

[5] in their research. Later, Nothdurft et al. [6] introduced “Leonia” in the 

Stadtpilot project, an autonomous vehicle, which demonstrated the ability to 

drive autonomously in real urban conditions. They discussed the legal issues of 

driving AVs such as the role of driver, safety, and control concepts. Mark et al. [7] 

reviewed some of the main technologies and architecture of autonomous 

vehicles, and brought some of the emerging challenges and opportunities into 

consideration, including navigation system, software integration, and algorithmic 

integration. Bagloee [8] reviewed the challenges and opportunities that 

autonomous vehicles might create and, discussed the possible advantages and 

disadvantages of the AVs. Bimbraw [9] reviewed the basic chronology of 

autonomous vehicle technology. Tian et al. [10] proposed a tool for automated 

testing of a Deep-Neural-Network-driven Autonomous Car capable of detecting 

behavior that could lead to crashes. Panichella et al. [11] proposed a technique to 

detect the feature interaction failures in the context of autonomous vehicles by 

developing new search-based test generation algorithm. 

Despite the large number of studies on AVs, the research on the interaction 

between human and AVs is scarce yet indispensable [12]. Driving in an urban 

area is challenging because there are more pedestrians in this area, which 

requires special considerations for AVs to be compatible in such an uncertain 

environment. Moreover, AVs must interact with the other users of the road and 

human-operated vehicles. Therefore, it is crucial to consider the challenges that 

driver and AV’s passengers, and pedestrians will face. This paper reviews the 

relevant literature on these areas with special focus on providing a better 

understanding of the role of human interaction with AVs 

The remainder of this paper is organized as follows: Section 2 reviews the 

literature on the impact of AVs on pedestrians. Section 3 reviews the interaction 

between AVs and driver. Section 4 provides conclusions and offers directions for 

future research.  

Interaction between AVS and pedestrians  

Evidence suggests that autonomous vehicles are more cautious around 

pedestrians. Google’s autonomous vehicles collision reports indicate that in most 

accidents the vehicles are hit from behind because Google’s cars stop to give the 

right-of-way to the pedestrians [13]. Millard-Ball [14] analyzed the interaction 

between the pedestrians and autonomous vehicles focusing on yielding at crosswalks 

using game theory. Autonomous vehicles are programmed to respect the right-of-
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way of pedestrians, which is conditional on AVs “playing nice.” Hulse et al. [15] 

surveyed almost 1,000 participants to assess their perceptions on safety and 

acceptance of AVs. The results indicate that pedestrians believe AVs are less risky 

compared to human-operated cars. Moreover, gender, age, and risk-taking 

personality play an important role in AV acceptance. For example, females were less 

comfortable with AVs than males and young adults. 

In the case of level 5 AVs, walking could become more pleasant because on-

street parking is anticipated to disappear, since driving will become a service and 

parking move to the suburbs. Moreover, crossing the street should be more 

convenient, since the AVs must stop for pedestrians and cannot claim that they did 

not see a pedestrian or drive under the influence of alcohol. Meeder et al. [16] 

discussed the impact of AVs on pedestrian activity. They identified the potential 

positive impacts of AVs on pedestrians. For examples, AVs exhibit a higher success 

rate in detecting the pedestrians compared to human-operated cars. Therefore, 

walking could be safer and more attractive for pedestrians, since they could cross the 

street with greater confidence. Furthermore, car pollution will decrease since most 

of the AVs are expected to be electric. Therefore, the quality of air will improve, the 

noise level will decrease, and the environment would become even more pleasant 

for pedestrians. Moreover, more space is available for the pedestrians since the size 

of the AVs are smaller and they can drive within narrower lanes. It is also anticipated 

that car sharing will be widespread. 

Other researchers have mentioned the negative impacts of AVs on 

pedestrians. For example, Meeder et al. [16] discussed potential abuse of AVs by 

pedestrians who could make them stop at every location, which would increase 

congestion, and the pedestrians would have to take the longer paths as they would 

likely be banned from not cutting through the AVs’ roadways at every location. More 

importantly, communication between AVs and pedestrians is different. Thus, 

pedestrians would need to learn new rules, which they may resist. If AVs are more 

convenient, their use for short trips may be preferred instead of walking, which will 

increase congestion and degrade the pedestrian experience. Cities may be more 

organized, and it is unclear how attractive the city center will be to different types of 

business. Furthermore, a driver’s license may no longer be needed and even children 

could have their own private car. As a result, the number of autonomous cars may 

increase rapidly, and walking areas may be dominated by AVs. 

In contradiction to those who believe that AVs will be more cautious and 

accurate around pedestrians, others believe that AVs are more likely to be the cause 

of a crash. Of course, the debate is ongoing. In this regard, one of the central concerns 

is that AVs are not able to distinguish between different types of objects they 
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encounter with sufficient accuracy, which may threaten the life of pedestrians and 

lead to incidents with serious consequences. Additionally, at this stage of automation 

and the current conditions of the roads and traffic signs, AVs are susceptible to be 

adversely affected by pedestrians such that some people such as a gang could simply 

stand in front of an AV or attack the car, in order to steal it. In this case, security 

cameras on the cars with the ability to communicate with a police station would be 

beneficial. Moreover, the physical design of an urban area needs to be remodeled, in 

order to control the interaction between pedestrians and AVs to some extent, which 

may increase the complexity of street design and create subsequent problems. In 

such case, individuals will have to learn the new traffic signs and rules that requires 

time and impact transportation safety. 

Interaction between AVS and driver  

One of the critical deficiencies of AVs is the driver’s susceptibility to erroneous 

or delayed decision-making following an alarm from the car, similar to those 

observed in the aviation industry. In order to avoid undesirable consequences, this 

process of decision-making and taking the appropriate action should usually take 

place in a very short time window after the alarm goes off. In addition, the frequency 

of these incidents likely to be orders of magnitude greater than the aviation industry, 

given the number of cars on the road relative to the number of planes in the sky. This 

process of recovering after AV’s inability to continue to operate can be impaired by a 

myriad of factors such as the driver being distracted (taking a nap, talking with other 

passengers, reading, etc.,) or being unconscious of type of failure such as a 

malfunction in the speed control system.  

In automated driving, the driver may be deeply engaged in other activities, 

thus bringing a distracted driver back into the control loop can become very 

challenging. In fact, transitions between the human and automated driving is a key 

design issue for autonomous vehicles. Merat et al. [17] employed a driving simulator 

to investigate the ability of drivers to handle conditions where automation reverts to 

manual control, which was based on the length of the time the driver was not looking 

at the road ahead. They considered eye movement patterns and showed that drivers 

exhibited the best performance when the control transferred after six seconds after 

a take-over request. Moreover, they discussed the importance of designing effective 

human machine interfaces in automated driving conditions, which certify the time 

and manner in which the message regarding transfer to the manual control is issued. 

Another imperative factor is how to warn the driver, for example, the necessity of 

clear language [18] to unambiguously communicate the level of urgency to the driver. 

Politis et al. [19] considered a language-based warning model to switch from 
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autonomous to manual control. They evaluated the audio, tactile, and visual 

warnings and concluded that it is critical for the driver to intuitively understand the 

level of urgency.  

From a human factors perspective, the crucial challenges are designing 

automation in a way that drivers fully understand the functionalities, capabilities and 

limitations of the vehicle, and how to keep the driver engaged to maintain situational 

awareness of what the vehicle is doing and when manual intervention is needed. 

Cunningham and Regan [20] reviewed some of the human factors challenges in this 

regard including driver inattention and distraction, skill degradation, and motion 

sickness. Petermeijer et al. [21] reviewed the literature on vibro-tactile displays as a 

possible method to alert the driver at the time of transition from automated to 

manual driving. Four dimensions were considered, including frequency, amplitude, 

location, and timing. Although vibrotactile feedback has benefits, it also has several 

limitations such as differences in the response threshold of individuals to receive 

notice and duration or intensity of vibration that may be uncomfortable. Lu et al. [22] 

proposed a theoretical framework and investigated the human factors in transition 

from automated to manual driving by defining different joint driving states of driver 

and vehicle. Kyriakidis et al. [23] interviewed 12 expert researchers in the field of 

human factors and discussed the role of human factors in AVs. They identified the 

commonalities and perspectives regarding human factors. It was recommended that 

drivers be trained to be aware of AV limitations to ensure they are capable of 

operating AVs and maintain control of the car in case of transition from autonomous 

to manual driving. 

Clark et al. [24] analyzed the impact of level of distraction with respect to the 

age of drivers when predicting the performance of taking control of a highly 

automated vehicle. They showed that younger drivers were more easily distracted 

than older drivers. Moreover, age and speed were negatively correlated with high 

speed among younger drivers. However, their study had some limitations, such as 

small sample size and the type of activities that participants were engaged in to 

achieve different level of distraction, which may have resulted in limitations to the 

generalizability of results. Vogelpohl et al. [25] studied the behavior of distracted 

drivers as they reacted to the unexpected traffic events. Their results indicated most 

participants reacted to the unexpected conditions and deactivated automation after 

seven to eight seconds. Moreover, drivers of the automated vehicles exhibited a 

delay, up to five additional seconds before the first gaze into the mirror and road in 

comparison with the drivers of the manual cars. 

Another significant factor that needs to be considered is the driver's level of 

skill. It is critical that driver be able to respond in case of automation failure. Lack of 
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driving skills can be serious and may threaten the life of pedestrians, drivers, and 

passengers of an AV, although some other factors such as gender, age, level of 

consciousness are also significant.  

As discussed, operating an AV will allow the driver to be easily distracted. 

Therefore, the time to recognize AV failure and resume manual control will increase. 

One solution is to use eye detection technology that can track the driver’s eyes and 

alert the driver when the driver is not focused enough. Since reaction time plays a 

critical role in case of automation failure, it would also be valuable if AVs could predict 

when something might go wrong and alert in advance.  

Conclusion 

This paper considers two categories of AV interactions including: I) pedestrian 

and II) drivers and passengers. The recently published papers in this area were 

reviewed and the gaps requiring additional focus were identified. Most studies 

assume AVs will play nice. Although this assumption simplifies the experiments, AVs 

experience failures, which create unforeseen problems. More studies regarding 

interaction with pedestrians are needed to develop methodologies and algorithms so 

that AVs can make robust decisions on what action or sequences of actions would 

mitigate consequences when confronted with challenging situations. Moreover, 

current transportation networks are not designed for AVs. Therefore, AV interactions 

with pedestrians have not been considered in the process of their design. Another 

category is the interaction between an AV and drivers and passengers of that AV. The 

driving skills and possible loss of situational awareness of the driver need to be 

studied systematically to increase the reliability of AVs. For example, a driver with 

low or degraded skills from lack practice, may perform an incorrect action in a 

situation that could lead to a collision. Moreover, since driving an AV may be a 

monotonous task, the driver may become easily distracted by other activities making 

them more prone to taking inappropriate actions when human intervention is 

required. 

Future work will consider the impact of AVs on pedestrians, drivers, 

infrastructure and other users of the road. More specifically, we will discuss the 

possible failures in greater detail and will offer potential solution and methods to 

objectively measure efforts to make improvements that enhance safety and 

convenience 
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Marine industry is set to experience a change of an era as the development 

of autonomous ships has already started. However, the operation of autonomous 

ships is not possible unless the new types of hazards and its associated risks due 

to the rapid technological changes are identified and controlled. Thus, it is 

necessary to identify or develop a suitable risk management model that can 

identify these new types of risks. 

This paper aims to identify and suggest a suitable risk management model 

or a category of models for managing the risks in autonomous marine 

ecosystems. Firstly, the available models and their categories in all major 

domains such as aviation, automotive, railway and marine industry are explored. 

Then, a SWOT analysis is conducted for each model category to assess the 

strengths, weaknesses, opportunities and threats. The results of the SWOT 

analysis show that the systemic models such as STAMP can be a suitable option 

than the traditional categories such as sequential and epidemiological models. 

Introduction  

Because of the continuous development of autonomous technologies, the 

marine industry currently explores feasible options for the design and operation 

of maritime autonomous systems [1]. Cross-modal technology disruption trends 

imply new risks. Hence, it becomes essential to understand gaps in existing risk 

management systems and explore the potential of novel risk assessment methods 

especially considering societal and industry expectations for sustainable life cycle 

solutions [2].  

Whereas the marine industry traditionally utilized operational data to 

understand risks, autonomous marine systems are new and their development is 

based on limited databases. A direct influence of this is that quantitative risk 

assessment (QRA) methods and passive risk management practices become less 

relevant [3]. This is the reason why there is a need to develop new dynamic risk 

assessment models that are suitable for detecting multiplicity of risks implied by 
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the impact of disruptive technologies, limited human – machine interaction and 

limited in service experience. 

At first instance, the limited availability of data and experience in the 

maritime domain suggest the opportunity to learn from other industries such as 

automotive, railway and aviation. As a first step toward this direction, this paper 

aims to explore the potential of available cross-modal risk management methods 

and frameworks and then suggest some initial thinking directions in terms of 

developing techniques and models that may be more suitable for the marine 

domain. 

Methodology 

In this paper the available hazard and accident analysis models for risk 

management used by aviation, railway, automotive and maritime domains are 

explored and models are then classified based on the taxonomy suggested by 

Underwood and Waterson [4]. A SWOT analysis is then performed for each 

category with the aim to understand their potential of implementation. The 

details of the SWOT analysis and the detailed review of other transport domains 

are presented in Manzur et al. [5].  

Literature Review – Exploring hazard and accident analysis models in 

major domains  

Over the years various systems analysis models and tools have been 

developed. Figure 1 presents the timeline of the best-known risk management 

methods [6]. From a critical review perspective, it appears that the railway 

industry has been leading the way in terms of implementation. For example, 

highly - automated systems such as the magnetic track inspection systems have 

been introduced since 1910 with the aim to supplement human inspection [7]. 

Railway regulatory bodies have recommended the usage of traditional methods 

such as Event Tree Analysis (ETA), Fault Tree Analysis (FTA), Failure Mode and 

Effect Analysis (FMEA) and Hazard and Operability study (HAZOP) for managing 

the risks of modern trains with the higher implementation of automated systems. 

Recently, Belmonte et al. [8] and Dong [9], suggested the implementation of 

modern methods such as the Functional Resonance Accident Method (FRAM) and 

System-Theoretic Accident Model and Processes (STAMP). It is believed that 

these modern methods may present a good addition to the classical approaches 

as they cover the complex interactions of modern systems. 
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Figure 1. Development of best-known hazard and accident analysis models (adapted from [6]). 

Over the past decade, the aviation industry also started using systemic 

methods. For example, [10–12] suggest that such methods are more effective in 

terms of assessing system complexity and component interactions. Yet, classic 

methods are still used primarily because of their long presence. 

The automotive industry presents an interesting domain in terms of the 

potential to link modern risk assessment methods with safety standards. For 

example, ISO 26262 was developed for ensuring the functional safety of the 

systems in the automotive domain [13]. However, it does not demand a specific 

method to be included in the risk management process [14]. Nevertheless, 

whereas in a similar fashion to aviation industry classic methods are popular, 

some studies such as [15] and [16] have suggested that a systemic method, STPA, 

can be a better option as it can be applied to a new system design from an early 

stage to determine the detailed list of functions, failures and mitigation measures, 

even without having a detailed information of the design. 

In the maritime domain, the Formal Safety Assessment introduced by the 

International Maritime Organization (IMO) has been widely used for the 

development and use of risk management practices. The IMO FSA framework 

[17] does not specify the risk methods to be used. Yet, there is a list of approaches 

(e.g. FTA, FMEA, HAZOP, HAZID) depending on the types of systems and their 

stage of design or operational implementation/management. With the rapid 

development of autonomous systems, the necessity to develop more suitable 

methods that may handle systemic risks and dysfunctional interactions between 

system components seems essential. 
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Categories of Analysis Models 

Perrow [18] developed a matrix which classifies different domains based 

on the manageability and coupling of their systems. Underwood and Waterson 

[4] has then suggested different categories of analysis models that are suitable 

for the quadrants in the afore-mentioned Perrow-matrix (see Figure 2). These 

categories are specified as sequential, epidemiological and systemic. Sequential 

models consist of methods that have a pre-described path and therefore linear 

correlation between the origin of an accident (the root cause) and the outcome 

(the effect). The methods such as Domino model, FTA, FMEA and Root Cause 

Analysis are classified in this category [4]. Epidemiological methods view 

accidents as a combination of “latent” and “active” failures within the system. 

Latent conditions link with working practices (e.g. management and 

organizational culture) that drive the dynamics between good intentions and 

actual working procedures. The most popular epidemiological models are Swiss 

Cheese Model, the Human Factor Analysis & Classification System (HFACS), and 

the ATSB accident investigation model [4]. Finally, systemic models such as 

STAMP use the application of systems theory and describe accidents as the result 

of lack of safety constraints to control the scenarios generated due to unsafe 

component interactions in a system [19]. 

 
Figure 2. Hazard and accident analysis models categories suitable for different sets of domains in 

Perrow-matrix (adapted from [4]). 
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Swot Analysis 

A SWOT analysis was then conducted for analyzing the strengths, 

weaknesses, opportunities and threats of each of the analysis models categories. 

The SWOT analysis of sequential models, epidemiological models and systemic 

models are presented in Figure 3, Figure 4 and Figure 5 respectively. 

 
Figure 3. A SWOT analysis of the sequential models. 
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Figure 4. A SWOT analysis of the epidemiological models. 
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Figure 5. A SWOT analysis of the systemic models. 

Discussion 

The literature review and the SWOT analysis presented in this paper imply 

that understanding complex interactions between technologically disruptive 

systems is an important first step in terms of estimating their potential 

implementation within the context of managing autonomy related risks and 

defining risk management systems of relevance based on risk control options. 

Across multi-modal domains, it becomes obvious that autonomous systems and 

operations are defined by components and subsystems that are interconnected. 

In this sense, manageability becomes critical in terms of understanding risks 

associated with system functionality. Another key point to consider is 

intractability especially for cases where principles of functioning are unknown, 

while a high level of detail is essential to understand the dynamic interactions of 
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sub-systems. Accordingly, the high complexity and interconnectivity of 

autonomous systems are key factors and should be considered in terms of 

defining unified approaches and risk management models in autonomous marine 

domain. 

The comparison of the strengths, weaknesses, opportunities and threats 

of all categories shows that the systemic models are the most suitable models for 

the systems with tight coupling and low manageability. Furthermore, these 

models are also effective in systems with the high involvement of different 

components such as physical, human, organizational and software. Moreover, the 

systemic models do not require empirical data as these models do not aim to 

estimate the probability of risk occurrence and consequences. In addition, these 

models have several other benefits such as providing a wider view and focus on 

safety control improvements and an assessment of dysfunctional interactions 

even in normally operating components. As all these features are required in 

autonomous marine ecosystems, this study shows that the systemic models can 

be a suitable option to analyses the autonomous systems in marine industry and 

manage risks from the earliest design phase. 

Conclusions 

The review presented in this paper suggests that modern risk assessment 

practices (e.g. FRAM, STAMP) could be a foundation or an optimal choice for the 

risk assessment of autonomous marine systems especially considering the sub-

system complexity and interconnectivity of autonomous ships and their 

components. Nevertheless, there are also some drawbacks of using such 

approaches as they require high resources and well-developed educational 

practices. Considering that the information on autonomous designs and their 

functionality is still limited, there is a need to re-consider all available methods in 

a greater detail. Various factors such as (a) the desired level of thoroughness in 

comparison to resource consumption; (b) the level of detail in the analysis and 

(c) the format ad content (risk nodes) that may be demanded by each of the 

categories for the analysis could be considered to justify any future choices. 
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