

montblanc-project.eu | @MontBlanc_EU

Power monitoring on ARM-based HPC clusters

Experiences from young and old

Filippo Mantovani

June 7th, 2017

Outline of the talk

- Overall contributions of the project
- ARM-based platforms for scientific computing / HPC
- System software to operate ARM clusters
- **→** Experiences power monitoring ARM based platforms
 - The theory we would like to have...
 - ...Fixing and patching to have it
 - Combining performance with power analysis using BSC tools
- → Student Cluster Competition: young minds in action
- → Next steps & conclusions

Mont-Blanc projects in a glance

Vision: to leverage the fast growing market of mobile technology for scientific computation, HPC and non-HPC workload.

2012 2013 2014 2015 2016 2017 2018

Mont-Blanc

Mont-Blanc 2

Mont-Blanc 3

Mont-Blanc contributions

Trondheim, June 7th, 2017

The Mont-Blanc prototype ecosystem

Prototypes are critical to accelerate software development

System software stack + applications

MONT-BLANC

Mont-Blanc prototype

2 Racks8 BullX chassis72 Compute blades1080 Compute cards

2160 CPUs 1080 GPUs 4.3 TB of DRAM

17.2 TB of Flash

Operational since May 2015 @ BSC

Fundamental limitations

SoC level

- → Low # of cores per socket
- Low amount of memory
 - 32-bit memory controller
 - Even if ARM Cortex-A15 offers 40-bit address space
- **→** Double precision FP performance / vectorization
- → Several interconnect but no classical HPC I/O interfaces
 - Do NOT provide native Ethernet or PCI Express
- → No network protocol off-load engine
 - TCP/IP, OpenMX, USB protocol stacks run on the CPU

Integration level

- → Integration process is still completely "HPC style"
 - Thermal studies are needed for a denser integration
- No ECC protection in memory

Vision

- → Most of the limitations will evolve, eventually
 - In the original market of the devices
 - When extending to the server market
 - Pushed by other markets (e.g. automotive)
- Programming model and runtime will help "overcome"
 - Asynchrony and overlap
 - Resilience
 - Variability / Load balancing
- → Tools can help understand the real problems and suggest/evaluate alternatives
 - e.g. correlating performance and power

N. Rajovic et al., "The Mont-blanc Prototype: An Alternative Approach for HPC Systems," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Piscataway, NJ, USA, 2016, p. 38:1–38:12.

Cavium Thunder cluster (from server market)

Based on Cavium ThunderX SoC

- Core: ARMv8 custom implementation
- 48 cores @ 1.8 GHz per SoC

→ 1 cluster node = dual socket board

- 1 board, 2 sockets, 96 cores
- 128 GB of DDR3 RAM
- Cache coherency protocol implemented
- One instance of Linux

→ Cluster deployed at BSC facilities

- 4x dual socket boards (+1)
- 384 cores in 2U
- ~700W peak power consumption*

Provided by:

^{*} On a reference design board + PASS1 SoC

Jetson TX1 cluster (from mobile/embedded market)

→ Same SoC of NVIDIA Shield console

- → 1x NVIDIA Tegra X1
 - 4x Cortex-A57 @ 1.73GHz
 - 1x Cortex-A53 (not usable)
- 1x NVIDIA Maxwell GPU
 - 256 CUDA cores
- → 4 GB LPDDR4
- → 1GbE Network
- → Cluster deployed at BSC facilities
 - 16x NVIDIA Jetson TX1 boards
 - Mont-Blanc software stack available

System software stack for ARM

- Based on open-source packages
- Tested on several ARM-based platform

- More than 10 prototypes
- More than 5 years
- More than 4 different ways of measuring the power...
 ...and still no standards!

Outline of the talk

→ About the Mont-Blanc project

- Overall contributions of the project
- ARM-based platforms for scientific computing / HPC
- System software to operate ARM clusters
- Experiences power monitoring ARM based platforms
 - The theory we would like to have...
 - ...Fixing and patching to have it
 - Combining performance with power analysis using BSC tools
 - → Student Cluster Competition: young minds in action
 - → Next steps & conclusions

Power monitoring approaches

→ Monitor total power consumption of nodes

- Coarse grained \rightarrow O(s)
- Including the whole node power consumption
- Out-of-band access (e.g. via IPMI, MQTT)
- Mont-Blanc prototype, Cavium ThunderX + external power meter

Monitor computational elements using on board devices

- Medium granularity \rightarrow O(ms)
- Including what the board producer decides to include
- In-band access (e.g. via I2C) or out-of-band (with smarter BMCs)
- JetsonTX

→ Accessing power monitoring registers of the SoC

- Fine grained \rightarrow O(cycles)
- Not including memory and accelerators
- Requires standard tools/interfaces (RAPL / PAPI)
- Currently not available in Mont-Blanc ARM-based platforms
 - Mostly political restrictions, i.e. SoC producers not sharing this info

Power monitor on the Mont-Blanc prototype (1)

Credits: Axel Auweter, Daniele Tafani (LRZ)

Credits: Axel Auweter, Daniele Tafani (LRZ)

Power monitor on the Mont-Blanc prototype (2)

→ Field Programmable Gate Array (FPGA)

- Collects power consumption data from all 15 power measurement
- Sampling interval: 70ms

Board Management Controller (BMC)

- Collects 1s averaged data from FPGA
- Stores measurement samples in FIFO

Mont-Blanc Pusher

- Collects measurement data from multiple BMCs using custom IPMI commands
- Forwards data using MQTT protocol through Collect Agent into key-value store

Credits: Axel Auweter, Daniele Tafani (LRZ)

What can we do with this?

What can we do with this?

→ Fine grained power monitor infrastructure...

- ...integrated with standard tools...
 - SLURM plugin for jobs energy accounting
 - Paraver for correlating performance and power consumption (we will see it later)
- ...for the development of energy aware scheduling policies at datacenter level

Experimental setup with external power monitor

Jetson TX1: "old school" hacking...

- Voltage monitor on-board component
 - Texas Instruments INA3221
 - Connected via I2C
 - No support provided by NVIDIA
 - Hand-written support...
- Measurements validated with external setup

- So we are now able to get power traces on Jetson TX1
 - ② O(0.1 sec) granularity
 - In-band measurements, potential conflicts with application execution

Meeting BSC performance analysis tools

→ Extrae: binary instrumentation

- ./trace.sh you-binary → Run you application and generate a trace
- Traces are collection of timestamped events
- In the trace are collected several events specified in a xml config file
 - Beginners like me mostly get PAPI counters

→ Paraver: graphical trace visualizer

- Post-mortem analysis
- Allow analysis applying different semantics / filters / histograms

Can we correlate performance and power?

Correlating performance and power

Credits: Enrico Calore

Leaving the system free to decide...

Histogram of cycles per us (i.e. frequency)

Outline of the talk

→ About the Mont-Blanc project

- Overall contributions of the project
- ARM-based platforms for scientific computing / HPC
- System software to operate ARM clusters

→ Experiences power monitoring ARM based platforms

- The theory we would like to have...
- ...Fixing and patching to have it
- Combining performance with power analysis using BSC tools
- Student Cluster Competition: young minds in action
 - → Next steps & conclusions

Mont-Blanc is not only research...

- → 12 teams of 6 undergraduate students
 - From all over the world
 - At the largest supercomputing conference of Europe
- → 3 kW power budget
- → 3 applications + 2 benchmarks
 - Some known in advance
 - Some "secret" application
 - Some coding challenge
- 3 awards to win
 - Highest HPL
 - 1st, 2nd, 3rd overall places
 - Fan favorite

Outline of the talk

→ About the Mont-Blanc project

- Overall contributions of the project
- ARM-based platforms for scientific computing / HPC
- System software to operate ARM clusters

→ Experiences power monitoring ARM based platforms

- The theory we would like to have...
- ...Fixing and patching to have it
- Combining performance with power analysis using BSC tools
- → Student Cluster Competition: young minds in action
- Next steps & conclusions

Next steps

→ Short term:

- Deeper understanding of governors
- Implementing easy access to Energy to Solution and Energy Delay Product
- Liaising with companies for standardize access to power data
- Profiling power of "real" production codes

Ideally targeting three levels of power optimizations:

From the application

- Access to an energy register, PAPI style
- Possibility of easily powering on-off / change the frequency of cores

→ From the runtime (within Task Based Prog. Model e.g OmpSs)

- Direct access to the power registers
- Possibility of easily powering on-off cores (without kernel support)

From the outside

- Gather power data of larger systems "a la Mont-Blanc"
- Targeting power aware job scheduling

Conclusions

- Highlight of Mont-Blanc activities have been presented
 - Even with low-end hardware components it is possible to achieve decent performance in parallel computation
 - Main-line of Mont-Blanc 3 activity is targeting high-end server market
 - Still researching in cost-efficient platforms
- → 3 ARM-based platforms for scientific computing have been introduced
 - With focus on power monitoring
 - There is still allong way for real power aware programming
 - Getting fine grained (RAPL style) + node level power measurements is key
- Young minds need to be educated to power sensibility

"The secret is to win going as slowly as possible."

Niki Lauda

