ALL PROGRAMMABLE

NTNU Norwegian University of Science and Technology

FINN: A Framework for Fast, Scalable Binarized Neural Network Inference

Yaman Umuroglu (NTNU & Xilinx Research Labs Ireland) in collaboration with N. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre and K. Vissers

Introduction

- BNNs: Framework & Architecture
- > BNNs: Experimental Evaluation
- Looking ahead: QNNs and Bit Serial
- Conclusions

© Copyright 2016 Xilinx

m

Inference with Convolutional Neural Networks (CNNs)

Some Emerging Alternatives for Energy-Efficient Inference

Synapse and neuron pruning

Sparse, irregular computation -difficult to process efficiently

(Han et al., Learning both Weights and Connections for Efficient Neural Networks)

Binarized Neural Networks (BNNs)

> The extreme case of quantization

- Permit only two values: +1 and -1
- Binary weights, binary activations
- Trained from scratch, not truncated float

> Courbariaux and Hubara et al. (NIPS 2016)

- Open source training flow
- Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...
- Competitive results on three smaller benchmarks
- > Key computation: binary matrix multiplication

	MNIST	SVHN	CIFAR-10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Binary Matrix Multiplication

Minje Kim, Bitwise Neural Networks. http://minjekim.com/demo_bnn.html

© Copyright 2016 Xilinx

Potential of BNNs on FPGAs

> Much smaller datapaths

- Multiply becomes XNOR, addition becomes popcount
- No DSPs needed, everything in LUTs
- Lower cost per op = more ops every cycle, trillions of ops per second

> Much smaller weights

- Large networks can fit entirely into on-chip memory (OCM)
- More bandwidth, less energy compared to off-chip

Xilinx UltraScale+ MPSoC ZU19EG (Vivado HLS, conservative estimates)

= potential for blazing fast inference with large BNNs on today's hardware

How do we exploit this potential?

FINN, a Framework for Fast, Scalable Binarized Neural Network Inference

© Copyright 2016 Xilinx

Introduction

- > BNNs: Framework & Architecture
- > BNNs: Experimental Evaluation
- Looking ahead: QNNs and Bit Serial
- Conclusions

© Copyright 2016 Xilinx

m

FINN at a glance

© Copyright 2016 Xilinx

FINN Design Principles

> One size does not fit all

- Generate tailored hardware for network and use-case

> Stay on-chip

- Higher energy efficiency and bandwidth

Support portability and rapid exploration

- Vivado HLS (High-Level Synthesis)

> Simplify with BNN-specific optimizations

- Exploit "compile time" optimizations to simplify the generated hardware
- -E.g. batchnorm and activation => thresholding. See details in the paper.

Heterogeneous Streaming Architecture

> One hardware layer per BNN layer, parameters built into bitstream

- Both inter- and intra-layer parallelism

> Heterogeneous: Avoid "one-size-fits-all" penalties

- Allocate compute resources according to FPS and network requirements

> Streaming: Maximize throughput, minimize latency

- Overlapping computation and communication, batch size = 1

The Matrix-Vector Threshold Unit (MVTU)

- > Core computational element of FINN, tiled matrix-vector multiply
- > Computes a (P) row x (S) column chunk of matrix every cycle, per-layer configurable tile size

Convolutional Layers

> Lower convolutions to matrix-matrix multiplication, $W \cdot I$

- W : filter matrix (generated offline)
- I: image matrix (generated on-the-fly)

> Two components:

- Introduction
- BNNs: Framework & Architecture
- BNNs: Experimental Evaluation
- Looking ahead: QNNs and Bit Serial
- Conclusions

© Copyright 2016 Xilinx

m

Scenario: 9k FPS target

Scenario: Maximum Throughput

Comparison to Prior Work

> How to compare neural network accelerators across precisions and devices?

- Accuracy, images per second, energy efficiency

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
FINN	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
	CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
r Work	MNIST, Alemdar et al.	97.8%	255.1 k	0.3 W	-	806	-	2
	CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
rio	SVHN, TrueNorth	96.7%	2.5 k	0.3 W	-	10	-	1
Max accuracy loss: ~3%			10 – 10 perfor	Ox better mance		CIFAR-10/S comparable	/HN energy efficience e to TrueNorth ASIC	су

© Copyright 2016 Xilinx

- Introduction
- BNNs: Framework & Architecture
- BNNs: Experimental Evaluation
- > Looking Ahead: QNNs and Bit Serial
- Conclusions

Quantized Neural Networks (QNNs)

> BNNs work well for *smaller* problems, but...

- Significant (~15%) accuracy loss for e.g. ImageNet-1K

> Solution: a few more bits of precision

- W-bit weights, A-bit activations
- Still only integer ops (no floating point)
- Top-5 accuracy loss down to \sim **5%** with W1A2

Network	Float	W1A2 HWGQ	Accuracy Loss
AlexNet	81.5%	76.3%	-5.2%
GoogLeNet	90.5%	84.9%	-5.6%
VGG-like	89.3%	85.6%	-3.7%

Cai et al. «Deep Learning With Low Precision by Half-wave Gaussian Quantization». CVPR'17

Few-bit Integer Matrix Multiplication

> Key operation in QNNs: multiply *few-bit* integer matrices

- Number of bits could be different in each layer
- Also the key operation for reduced-precision training!

> Could cast everything to lowest supported precision (i.e. 8-bit), but...

- Loses arithmetic efficiency (upper bits are always zeroes)
- Loses memory footprint advantages (e.g. 4x larger for 2-bit operands)

>How do we formulate *efficient* few-bit integer matrix multiplication on a *fixed* datapath?

-Fixed datapath = CPU, GPU, ASIC BNN accelerator, FPGA overlay...

QNN as Bit-Serial BNN

> *w-bit* times *a*-bit matrix multiplication = sum of weighted binary matrix multiplications

- «Primary school» way of doing multiplications - just in binary

> Performance is approximately < binary matrix mul performance > / (w * a)

96 32 x 192 this is 96 x 2 2880 this is 96 x 30 3072 this is 96 x 32 function BITSERIALGEMM(W, A, res) for $i \leftarrow 0 \dots w - 1$ do for $j \leftarrow 0 \dots a - 1$ do $\operatorname{sgnW} \leftarrow (i == w - 1 ? -1 : 1)$ $\operatorname{sgnA} \leftarrow (j == a - 1 ? -1 : 1)$ $\operatorname{BINARYGEMM}(W[i], A[j], \operatorname{res}, \operatorname{sgnW} \cdot \operatorname{sgnA} \cdot 2^{i+j})$ end for end for end for end function

QNN/BNN operations on commodity CPUs

> Binary GEMM: multiply matrices of {-1, +1} values

- Bitwise XNOR followed by popcount
- ARM NEON, x86 SSE 4.1, NVIDIA and AMD GPUs have popcount instructions

> Peak performance assuming 1 AND + 1 popcount every cycle:

- 1.8 GHz ARM Cortex-A57, 128-bit NEON: 460 binary GOPS per core (versus 22 int8 GOPS)
- 3.4 GHz Intel i7-3770K, 64-bit scalars: 435 binary GOPS per core (versus 50 int8 GOPS)

▶ If w=1 and a=2, up to 10x faster than using int8 operations for ARM

- Easier to achieve higher performance due to higher arithetic intensity
- Fewer cache misses = fewer off-chip accesses = less energy

- Introduction
- BNNs: Framework & Architecture
- BNNs: Experimental Evaluation
- Looking ahead: QNNs and Bit Serial
- Conclusions

m

Conclusions and Future Work

> FPGAs can do trillions of binary operations per second.

- How high can we go?
- > FINN can build BNN inference FPGA accelerators that classify **10Ks to Ms of images per second**,

at < 25 W, on today's hardware.

- What if the neural network doesn't fit on-chip?
- Bit-serial is a promising way to implement general few-bit integer matrix multiplication for both FPGAs and CPUs.
 - Deep neural nets on microcontrollers / IoT nodes?
 - Low-precision on-device training
 - Approximate computing by only considering higher-order bits

Open Source BNNs on Xilinx's Python Productivity Kit PYNQ

https://github.com/Xilinx/BNN-PYNQ

© Copyright 2016 Xilinx

© Copyright 2016 Xilinx

EXILINX > ALL PROGRAMMABLE.

Experimental Setup

ZC706 development platform: Z7045 All-Programmable SoC 2 ARM Cortex-A9 cores 218k LUTs, 545 BRAMs

- > 10000 test images in PS DDR
 - Streamed in-out via DMA
- > FINN-generated accelerator on PL
 - Running at 200 MHz
- > ARM core:
 - launches accelerator
 - measures time
 - verifies results
- > PMBus and wall power monitoring
 - Idle wall power ~7 W

© Copyright 2016 Xilinx

Neurons versus Accuracy – Float and Binarized

Neurons/layer	Binary Err. (%)	Float Err. (%)	# Params	Ops/frame
$128 \\ 256 \\ 512 \\ 1024 \\ 2048 \\ 4096$	$ \begin{array}{c} 6.58 \\ 4.17 \\ 2.31 \\ 1.60 \\ 1.32 \\ 1.17 \\ \end{array} $	$2.70 \\ 1.78 \\ 1.25 \\ 1.13 \\ 0.97 \\ 0.01$	$134,794\\335,114\\932,362\\2,913,290\\10,020,874\\36,818,054$	268,800 668,672 1,861,632 5,820,416 20,029,440 73,613,312

~2x binary neurons give approximately the same accuracy (for MNIST)

Test Networks & Scenarios

> BNN Topology:

- SFC: small fully-connected, 0.6 MOP per image
- LFC: large fully-connected, 5.8 MOP per image
- CNV: convolutional, 112.5 MOP per image
- SFC & LFC on MNIST, binarized inputs and outputs
- CNV on CIFAR-10 and SVHN, 8-bit inputs, 16-bit outputs

> Scenario:

- fix: assume I/O bound, achieve 9000 FPS
 - **max:** achieve as high FPS as possible

Redundancy and Quantization

> Evidence of redundancy in trained networks

- sparsification, low-rank approximations, fault tolerance...

> Reduced precision (quantization)

- Restrict weights and/or activations to *Q*-bit values
- HW benefits: Low-bitwidth datapaths, regular compute

> Sung et al: Quantization works well when...

- ... the network is "big enough"
- ...the network is aware of quantization during (re)training

"(...) the performance gap between the floating-point and the retrain-based ternary (+1, 0, -1) weight neural networks (...) almost vanishes in fully complex networks (...)" (Sung et al, Resiliency of Deep NNs Under Quantization)

© Copyright 2016 Xilinx

EXILINX > ALL PROGRAMMABLE.

XILINX > ALL PROGRAMMABLE.

FINN Synthesizer («FINNthesizer»)

> Inputs:

- BNN topology (JSON) and trained parameters (NPZ)
- Desired frames per second (FPS)

> Apply BNN-specific compute transformations

- Simplifications enabled by the value-constrained nature of BNNs
- Popcount, batchnorm-activation as threshold, maxpool as OR (details in paper)

> Compute «folding factors» to meet FPS goal

> Output:

- C++ (Vivado HLS) description of desired architecture

Top Level

MVTU

Convolution: Sliding Window Unit (SWU)

- > Buffer incoming images in a single, #IFM-wide memory
- > Read out addresses corresponding to sliding window location
- > Preserve produce-consume order to minimize buffering

Folding

> Time-multiplex (or *fold*) real neurons onto hardware neurons

- Control folding via number of PEs and SIMD lanes in each layer

> Folding computed by FINNthesizer to satisfy FPS requirements

- FPS for one layer = clock frequency / folding factor
- FPS of streaming system = minimum FPS of any layer
- FINNthesizer will balance folding factors to match FPS across layers

Input Data

Results – Other Highlights

- > Up to 58% of roofline performance estimate
 - SFC-max: DRAM bandwidth-bound
 - LFC-max: resource bound (BRAM)
 - CNV-max: architecture bound (SWU)

- Massive but slow-clock parallelism: good energy efficiency
 - Use 250 kHz clock for 12M FPS prototype:
 15 kFPS on MNIST with 0.2 W chip power
 - Observed that slowed-down SFC-max 2x more energy efficient than SFC-fix

Results – Efficiency

> Runtime utilization: Operators busy 70-90% of the time

> LUT (instead of BRAM) storage if many PEs

- Fixed amount of work divided between more workers
- Complex mapping problem, multi-dimensional tradeoff between performance/area

Accuracy of BNNs on ImageNet

Published Results for FP CNNs, BNNs and Extreme Reduced Precision NNs

© Copyright 2016 Xilinx

• BNNs are new and accuracy results are improving rapidly

🐔 XILINX ➤ ALL PROGRAMMABLE.