Paralinearization of free boundary problems in fluid dynamics

Thomas Alazard

CNRS \& Ecole normale supérieure Paris-Saclay

The Abel Symposium
Partial Differential Equations
Waves, Nonlinearities and Nonlocalities
June 13-16, 2023

Evolution of the interface air/incompressible fluid

Water wave problem, Hele-Shaw and Muskat equations

Dynamics of an incompressible, irrotational liquid flow

- moving under the force of gravitation
- in a time-dependent domain with a free boundary

Many equations, many different asymptotic regimes (NLS, KdV, BO, P.M.,...)
Full model : free boundary problem
Dispersive (Euler's equations) or parabolic (Darcy's law) equations
Related tools based on paradifferential analysis
Loosely speaking : we're looking for a method to transform the equations to conjugate them to simpler equations.

Consider a time-dependent domain

$$
\begin{aligned}
& \Omega(t)=\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R} ; y<\eta(t, x)\right\} \quad(d \geq 1) \\
& \Sigma(t)=\partial \Omega(t)=\{y=\eta(t, x)\}
\end{aligned}
$$

The free surface $\Sigma(t)$ evolves according to

$$
V_{n}=u \cdot n
$$

where $u: \Omega \rightarrow \mathbb{R}^{d+1}$ is the fluid velocity and

$$
\begin{aligned}
& n= \frac{1}{\sqrt{1+|\nabla \eta|^{2}}}\binom{-\nabla \eta}{1} \\
& V_{n}=n \cdot \frac{\mathrm{~d}}{\mathrm{~d} t}\binom{x}{\eta(t, x)}=\frac{\partial_{t} \eta}{\sqrt{1+|\nabla \eta|^{2}}} . \\
& \partial_{t} \eta=\sqrt{1+|\nabla \eta|^{2}} u \cdot n .
\end{aligned}
$$

Reduction to the boundary. Assume

$$
\operatorname{curl}_{x, y} u=0 \quad, \quad \operatorname{div}_{x, y} u=0
$$

Then $u=\nabla_{x, y} \phi$ for some ϕ s.t. $\Delta_{x, y} \phi=0$. Now, set [Zakharov]

$$
\psi(t, x)=\phi(t, x, \eta(t, x))
$$

and introduce [Craig-Sulem, Lannes] the Dirichlet-to-Neumann operator by

$$
G(\eta) \psi=\partial_{y} \phi-\left.\nabla \eta \cdot \nabla \phi\right|_{y=\eta}=\left.\sqrt{1+|\nabla \eta|^{2}} \partial_{n} \phi\right|_{y=\eta} .
$$

Then

$$
\begin{aligned}
\partial_{t} \eta & =\sqrt{1+|\nabla \eta|^{2}} u \cdot n \\
& =\sqrt{1+|\nabla \eta|^{2}} \partial_{n} \phi \\
& =G(\eta) \psi
\end{aligned}
$$

Reduction to the boundary. Assume

$$
\operatorname{curl}_{x, y} u=0 \quad, \quad \operatorname{div}_{x, y} u=0
$$

Then $u=\nabla_{x, y} \phi$ for some ϕ s.t. $\Delta_{x, y} \phi=0$. Now, set [Zakharov]

$$
\psi(t, x)=\phi(t, x, \eta(t, x))
$$

and introduce [Craig-Sulem, Lannes] the Dirichlet-to-Neumann operator by

$$
G(\eta) \psi=\partial_{y} \phi-\left.\nabla \eta \cdot \nabla \phi\right|_{y=\eta}=\left.\sqrt{1+|\nabla \eta|^{2}} \partial_{n} \phi\right|_{y=\eta}
$$

Then

$$
\partial_{t} \eta=G(\eta) \psi
$$

Need also an equation for ψ. The most simple one is

$$
\psi=-\eta
$$

which gives the Hele-Shaw equation: $\partial_{t} \eta+G(\eta) \eta=0$.
Remark: i) physical equation associated to Darcy's law $u=-\nabla_{x, y}(P+g y)$.
ii) with $\psi+K(\eta) \psi=-\eta$ we get the Muskat equation.

The most beautiful equation for ψ is given by
Theorem [Zakharov, 1966]. Consider an irrotational velocity field $u=\nabla_{x, y} \phi$ satisfying $\partial_{t} u+u \cdot \nabla_{x, y} u=-\nabla_{x, y}(P+g y)$. Then η and ψ are conjugated:

$$
\begin{array}{ll}
\frac{\partial \eta}{\partial t}=\frac{\delta \mathcal{H}}{\delta \psi} \\
\frac{\partial \psi}{\partial t}=-\frac{\delta \mathcal{H}}{\delta \eta} & \psi(t, x)=\phi(t, x, \eta(t, x)) \\
& \mathcal{H}=\frac{1}{2} \int_{\mathbb{R}^{d}} \psi G(\eta) \psi \mathrm{d} x+\frac{g}{2} \int_{\mathbb{R}^{d}} \eta^{2} \mathrm{~d} x .
\end{array}
$$

(Brenier related the Hele-Shaw and WW problems by a quadratic change of time.)

The most beautiful equation for ψ is given by
Theorem [Zakharov, 1966]. Consider an irrotational velocity field $u=\nabla_{x, y} \phi$ satisfying $\partial_{t} u+u \cdot \nabla_{x, y} u=-\nabla_{x, y}(P+g y)$. Then η and ψ are conjugated:

$$
\begin{aligned}
& \frac{\partial \eta}{\partial t}=\frac{\delta \mathcal{H}}{\delta \psi} \\
& \frac{\partial \psi}{\partial t}=-\frac{\delta \mathcal{H}}{\delta \eta} \psi(t, x)=\phi(t, x, \eta(t, x)) \\
& \mathcal{H}=\frac{1}{2} \int_{\mathbb{R}^{d}} \psi G(\eta) \psi \mathrm{d} x+\frac{g}{2} \int_{\mathbb{R}^{d}} \eta^{2} \mathrm{~d} x .
\end{aligned}
$$

(Brenier related the Hele-Shaw and WW problems by a quadratic change of time.) A popular form of the equations:

$$
\left\{\begin{array}{l}
\partial_{t} \eta-G(\eta) \psi=0 \\
\partial_{t} \psi+g \eta+\frac{1}{2}|\nabla \psi|^{2}-\frac{1}{2} \frac{(\nabla \eta \cdot \nabla \psi+G(\eta) \psi)^{2}}{1+|\nabla \eta|^{2}}=0
\end{array}\right.
$$

Prop (A-Burq-Zuily). This system is equivalent to Euler with free surface.

- not PDE ($G(\eta)$ is a nonlocal operator)
- fully nonlinear (instead of semi-linear, see [Said 2020])
- the Hamiltonian does not control the dynamics (η only in L_{x}^{2}).

One can define $G(\eta)$ for rough domains.
Arendt and ter Elst: for bounded connected open set $\Omega \subset \mathbb{R}^{n}$ whose boundary has a finite ($n-1$)-dimensional Hausdorff measure.

The Lipschitz threshold of regularity

One can define $G(\eta)$ for rough domains.
Arendt and ter Elst: for bounded connected open set $\Omega \subset \mathbb{R}^{n}$ whose boundary has a finite $(n-1)$-dimensional Hausdorff measure.

The Lipschitz threshold of regularity

Let $\eta \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$ and $\psi \in H^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)$. There is a unique variational solution

$$
\phi \in L^{2}\left(\mathrm{~d} x \mathrm{~d} y /(1+|y|)^{2}\right) \quad, \quad \nabla_{x, y} \phi \in L^{2}(\Omega)
$$

to

$$
\Delta_{x, y} \phi=0 \quad \text { in }\left\{(x, y) \in \mathbb{R}^{d} \times \mathbb{R}: y<\eta(x)\right\},\left.\quad \phi\right|_{y=\eta}=\psi
$$

Since ϕ is harmonic, one can define

$$
G(\eta) \psi=\left.\sqrt{1+|\nabla \eta|^{2}} \partial_{n} \phi\right|_{y=\eta} \in H^{-\frac{1}{2}}\left(\mathbb{R}^{d}\right) .
$$

There holds

$$
\|G(\eta)\|_{H^{\frac{1}{2}} \rightarrow H^{-\frac{1}{2}}} \leq C\left(\|\nabla \eta\|_{L^{\infty}}\right)
$$

Also [Rellich,Jerison-Kenig]

$$
\|G(\eta)\|_{H^{1} \rightarrow L^{2}} \leq C\left(\|\nabla \eta\|_{L^{\infty}}\right)
$$

Proposition (Agrawal - A)

For any $d \geq 1$,

$$
\int_{\mathbb{R}^{d}}\left(\left.\partial_{n} \phi\right|_{y=\eta}\right)^{2} \mathrm{~d} x \leq 4 \int_{\mathbb{R}^{d}}|\nabla \psi|^{2} \mathrm{~d} x .
$$

In particular

$$
\|G(\eta)\|_{H^{1} \rightarrow L^{2}} \leq 4+4\|\nabla \eta\|_{L^{\infty}}
$$

Proof. Noether's theorem (Hamiltonian problem + invariances) implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int \eta(t, x) \mathrm{d} x=0 \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t} \int \psi(t, x) \mathrm{d} x=0 .
$$

Remembering that

$$
\partial_{t} \psi+g \eta+\frac{1}{2}|\nabla \psi|^{2}-\frac{1}{2} \frac{(G(\eta) \psi+\nabla \eta \cdot \nabla \psi)^{2}}{1+|\nabla \eta|^{2}}=0
$$

we get

$$
\int \frac{(G(\eta) \psi+\nabla \eta \cdot \nabla \psi)^{2}}{1+|\nabla \eta|^{2}} \mathrm{~d} x=\int|\nabla \psi|^{2} \mathrm{~d} x
$$

Remark i) The rigorous proof uses the multiplier method.
ii) No periodic or quasi-periodic in time solutions in finite depth.

Proposition (A - Nguyen)

Let $d \geq 1, \eta \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$ and $\psi \in H^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)$. There exists c such that

$$
\int_{\mathbb{R}^{d}} \psi G(\eta) \psi \mathrm{d} x \geq \frac{c}{1+\|\nabla \eta\|_{\mathrm{BMO}}}\|\psi\|_{\dot{H}^{\frac{1}{2}}}^{2} .
$$

Remark: Let $u \in H^{1}(\Omega)$ and set $\psi=\left.u\right|_{y=\eta}$. Denote by ϕ the harmonic extension of ψ. Then

$$
\begin{aligned}
\iint_{\Omega}\left|\nabla_{x, y} u\right|^{2} \mathrm{~d} y \mathrm{~d} x \geq \iint_{\Omega}\left|\nabla_{x, y} \phi\right|^{2} \mathrm{~d} y \mathrm{~d} x & =\int_{\partial \Omega} \phi \partial_{n} \phi \mathrm{~d} \sigma \\
& =\int_{\mathbb{R}^{d}} \psi G(\eta) \psi \mathrm{d} x
\end{aligned}
$$

This gives the trace inequality

$$
\iint_{\Omega}\left|\nabla_{x, y} u\right|^{2} \mathrm{~d} y \mathrm{~d} x \geq \frac{c}{1+\|\nabla \eta\|_{\text {BMO }}}\left\|\left.u\right|_{y=\eta}\right\|_{\dot{H}^{\frac{1}{2}}}^{2}
$$

Proposition (A - Nguyen)

Let $d \geq 1, \eta \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$ and $\psi \in H^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)$. There exists c such that

$$
\int_{\mathbb{R}^{d}} \psi G(\eta) \psi \mathrm{d} x \geq \frac{c}{1+\|\nabla \eta\|_{\mathrm{BMO}}}\|\psi\|_{\dot{H}^{\frac{1}{2}}}^{2} .
$$

Remark: The dependence in $\|\nabla \eta\|_{\text {BMO }}$ is optimal:

$$
\int \psi G(\eta) \psi \mathrm{d} x \geq \frac{c}{\left(1+\|\nabla \eta\|_{\mathrm{BMO}}\right)^{m}}\|\psi\|_{\dot{H}^{\frac{1}{2}}}^{2} \quad \Rightarrow \quad m \geq 1
$$

Indeed, let θ be the harmonic extension of η :

$$
\Delta_{x, y} \theta=0 \quad \text { in }\{y<\eta(x)\} \quad, \quad \theta(x, \eta(x))=\eta(x) .
$$

Then [Haziot-Pausader, A-Zuily]

$$
0 \leq \int_{\mathbb{T}^{d}} \eta G(\eta) \eta \mathrm{d} x=\iint_{\Omega}\left|\nabla_{x, y} \theta\right|^{2} \mathrm{~d} y \mathrm{~d} x \leq\|\eta\|_{L^{\infty}}\left|\mathbb{T}^{d}\right| .
$$

Then apply the inequality with $\eta=\psi=\cos (k x)$.

Proposition (A - Nguyen)

Let $d \geq 1, \eta \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$ and $\psi \in H^{\frac{1}{2}}\left(\mathbb{R}^{d}\right)$. There exists c such that

$$
\int_{\mathbb{R}^{d}} \psi G(\eta) \psi \mathrm{d} x \geq \frac{c}{1+\|\nabla \eta\|_{\mathrm{BMO}}}\|\psi\|_{\dot{H}^{\frac{1}{2}}}^{2}
$$

Proof. Assume $d=1$. Set $v(x, z)=\phi(x, z+\eta(x))$.

$$
\begin{aligned}
& \int_{\mathbb{R}} \psi G(\eta) \psi \mathrm{d} x=\iint_{\Omega}\left|\nabla_{x, y} \phi\right|^{2} \mathrm{~d} y \mathrm{~d} x=\iint_{\mathbb{R}_{-}^{2}}\left[\left(\partial_{x} v-\partial_{z} v \partial_{x} \eta\right)^{2}+\left(\partial_{z} v\right)^{2}\right] \mathrm{d} z \mathrm{~d} x \\
& \int_{\mathbb{R}} \psi\left|D_{x}\right| \psi \mathrm{d} x=\iint_{\mathbb{R}_{-}^{2}} \partial_{z}\left(v\left|D_{x}\right| v\right) \mathrm{d} z \mathrm{~d} x=2 \iint_{\mathbb{R}_{-}^{2}}\left(\partial_{z} v\right)\left|D_{x}\right| v \mathrm{~d} z \mathrm{~d} x \\
& \quad=2 \iint_{\mathbb{R}_{-}^{2}}\left[\left(\partial_{z} v\right) \mathcal{H}\left(\partial_{x} v-\left(\partial_{z} v\right) \partial_{x} \eta\right)+\left(\partial_{z} v\right) \mathcal{H}\left(\left(\partial_{z} v\right) \partial_{x} \eta\right)\right] \mathrm{d} z \mathrm{~d} x
\end{aligned}
$$

Since $\mathcal{H}^{*}=-\mathcal{H}$, we have

$$
2 \iint_{\mathbb{R}_{-}^{2}}\left(\partial_{z} v\right) \mathcal{H}\left(\left(\partial_{z} v\right) \partial_{x} \eta\right) \mathrm{d} z \mathrm{~d} x=\iint_{\mathbb{R}_{-}^{2}}\left(\partial_{z} v\right)\left[\mathcal{H}, \partial_{x} \eta\right] \partial_{z} v \mathrm{~d} z \mathrm{~d} x .
$$

Apply [Coifman-Rochberg-Weiss] (see also [Lenzmann-Schikorra]).

ElLIPTIC ESTIMATES

We have seen

$$
\|G(\eta)\|_{H^{\frac{1}{2}} \rightarrow H^{-\frac{1}{2}}}+\|G(\eta)\|_{H^{1} \rightarrow L^{2}} \leq C\left(\|\nabla \eta\|_{L^{\infty}}\right)
$$

Many other results [Nalimov, Craig-Schanz-Sulem, Wu, Beyer-Günther, Lannes]

Proposition (A.-Burq-Zuily)

(i) For all $s>1+d / 2$ and $1 / 2 \leq \sigma \leq s$

$$
\|G(\eta) \psi\|_{H^{\sigma-1}} \leq C\left(\|\eta\|_{H^{s}}\right)\|\psi\|_{H^{\sigma}}
$$

(ii) For all $s>1+d / 2$,

$$
\left\|\left[G\left(\eta_{1}\right)-G\left(\eta_{2}\right)\right] \psi\right\|_{H^{s-\frac{3}{2}}} \leq C\left(\left\|\left(\eta_{1}, \eta_{2}\right)\right\|_{H^{s+\frac{1}{2}}}\right)\|\psi\|_{H^{s}}\left\|\eta_{1}-\eta_{2}\right\|_{H^{s-\frac{1}{2}}}
$$

Sobolev embedding: (i) η is Lipschitz, and (ii) $\eta_{1}-\eta_{2}$ is not Lipschitz. Schauder's estimates : write

$$
\operatorname{div}_{x, z}(\underbrace{A\left(x_{0}, z_{0}\right)}_{\text {constant }} \nabla_{x, z} v)=\operatorname{div}_{x, z}(\underbrace{\left(A\left(x_{0}, z_{0}\right)-A(x, z)\right)}_{\text {small }} \nabla_{x, z} v)
$$

To prove Schauder's estimates, it is convenient to paralinearize.

Paralinearization

By using the Fourier transform : $G(0)=\left|D_{x}\right|$.
If $\eta \in C^{\infty}$, it is known since Calderón that $G(\eta)$ is a Ψ DO of order 1 , whose principal symbol is

$$
\lambda(x, \xi):=\sqrt{\left(1+|\nabla \eta(x)|^{2}\right)|\xi|^{2}-(\nabla \eta(x) \cdot \xi)^{2}}
$$

More precisely,

$$
G(\eta) \psi=(2 \pi)^{-d} \int e^{i x \cdot \xi} \lambda(x, \xi) \widehat{\psi}(\xi) d \xi+R_{0}(\eta) f
$$

where the remainder is of order 0 , satisfying [Lannes]

$$
\exists K \geq 1, \forall s \geq \frac{1}{2}, \quad\left\|R_{0}(\eta) \psi\right\|_{H^{s}} \leq C\left(\|\eta\|_{H^{s+K}}\right)\|\psi\|_{H^{s}}
$$

Remarks: $i) \lambda$ well-defined for any $\eta \in W^{1, \infty}\left(\mathbb{R}^{d}\right)$.
ii) If $d=1$ or $\eta=0$ then $\lambda(x, \xi)=|\xi|$ and $\operatorname{Op}(\lambda)=\left|D_{x}\right|$.
iii) K corresponds to a loss of derivatives (Lannes, Iguchi).

Paraproducts:

$$
\begin{aligned}
a u & =\frac{1}{(2 \pi)^{2 d}} \iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} e^{i x \cdot\left(\xi_{1}+\xi_{2}\right)} \widehat{a}\left(\xi_{1}\right) \widehat{u}\left(\xi_{2}\right) d \xi_{1} d \xi_{2} \\
& =\iint_{\left|\xi_{1}+\xi_{2}\right| \sim \xi_{2} \mid}+\iint_{\left|\xi_{1}+\xi_{2}\right| \sim\left|\xi_{1}\right|}+\iint_{\left|\xi_{1}\right| \sim\left|\xi_{2}\right|} \\
& =T_{a} u+T_{u} a+R(a, u)
\end{aligned}
$$

$T_{a} u$ has the same regularity as u for $a \in L^{\infty}$, and $R(a, u)$ is twice more regular.
Theorem (Bony, paralinearization of a product).

$$
\begin{array}{lllll}
\forall \sigma \in \mathbb{R} & a \in L^{\infty}\left(\mathbb{R}^{d}\right) & u \in H^{\sigma}\left(\mathbb{R}^{d}\right) & \Rightarrow & T_{a} u \in H^{\sigma}\left(\mathbb{R}^{d}\right) \\
\forall s>0 & a \in H^{s}\left(\mathbb{R}^{d}\right) & u \in H^{s}\left(\mathbb{R}^{d}\right) & \Rightarrow & R(a, u) \in H^{2 s-\frac{d}{2}}\left(\mathbb{R}^{d}\right)
\end{array}
$$

In dimension one, this simplifies to

$$
G(\eta) \psi=\left|D_{x}\right| \psi+R(\eta) \psi,
$$

where $R(\eta)$ is a smoothing operator,
Question: compute $R(\eta)=G(\eta) \psi-\left|D_{x}\right| \psi$.

$$
* * * \text { First computation } * * *
$$

Theorem (A-Métivier). Let $3<\gamma<s$. Set $V=\left.\left(\partial_{x} \phi\right)\right|_{y=\eta}$ and $B=\left.\left(\partial_{y} \phi\right)\right|_{y=\eta}$. Then

$$
G(\eta) \psi=\left|D_{x}\right|\left(\psi-T_{B} \eta\right)-\partial_{x}\left(T_{V} \eta\right)+F
$$

where

$$
\|F\|_{H^{s+\gamma-4}} \leq C\left(\|\eta\|_{C^{\gamma}}\right)\left\{\|\psi\|_{C^{\gamma}}\|\eta\|_{H^{s}}+\|\eta\|_{C^{\gamma}}\|\psi\|_{H^{s}}\right\} .
$$

Extensions: ABZ, Thibault de Poyferré, Albert Ai, Xuecheng Wang, Fan Zheng, Chenyang Zhou...

Step 1: Paracomposition. We flatten the boundary via the diffeomorphism

$$
\chi:(x, z) \mapsto(x, z+\eta(x)) .
$$

Set $v(x, z)=\phi(x, z+\eta(x))$. Then by elliptic regularity $v \in H^{s+\frac{1}{2}}\left(\mathbb{R}^{d} \times[-1,0]\right)$.
By paralinearization, we get

$$
T_{1+|\nabla \eta|^{2}} \partial_{z}^{2} v+\Delta v-2 T_{\nabla \eta} \cdot \nabla \partial_{z} v-T_{\Delta \eta} \partial_{z} v \in C_{z}^{0}\left([-1,0] ; H_{x}^{s-2}\left(\mathbb{R}^{d}\right)\right)
$$

By using Alinhac's paracomposition operators, introduce

$$
u=\phi \circ \chi-T_{\phi^{\prime} \circ \chi} \chi=v-T_{\partial_{z}} v .
$$

Then u satisfies a paradifferential elliptic equation:

$$
T_{1+|\nabla \eta|^{2}} \partial_{z}^{2} u+\Delta u-2 T_{\nabla \eta} \cdot \nabla \partial_{z} u-T_{\Delta \eta} \partial_{z} u \in C_{z}^{0}\left([-1,0] ; H_{x}^{2 s-\frac{5+d}{2}}\left(\mathbb{R}^{d}\right)\right)
$$

We call u the good unknown of Alinhac.

Step 2 : elliptic factorization. There exist two symbols a, A such that

$$
\left(\partial_{z}-T_{a}\right)\left(\partial_{z}-T_{A}\right) u \in C_{z}^{0}\left([-1,0] ; H_{x}^{2 s-K(d)}\left(\mathbb{R}^{d}\right)\right) .
$$

Step 3: elliptic regularity. Introduce $w:=\left(\partial_{z}-T_{A}\right) u$, then

$$
\partial_{z} w-T_{a} w \sim 0 .
$$

and hence

$$
\left.\left(\partial_{z} u-T_{A} u\right)\right|_{z=0}=w(0) \sim 0 .
$$

This gives $\partial_{z} u$ on the boundary $\{z=0\}$ in terms of tangential derivatives + a smooth remainder.

Many applications to the water-wave problem

- The Cauchy problem (cf lectures by Tataru and Wu)
- Balanced energy estimates: Ai-Ifrim-Tataru
- Enhanced existence :

Shatah, Delort-Szeftel, Hunther-Ifrim, Wu, Germain-Masmoudi-Shatah, A-Delort, lonescu-Pusateri, Hunther-Ifrim-Tataru, Wang, Berti-FeolaFranzoi, Deng-lonescu-Pusateri, Ehrnström-Wang

- Qualitative properties of the flow map : de Poyferré, Said
- Dispersive estimates : see later
- Small divisors : looss-Plotnikov-Toland, A-Baldi, Berti-Montalto
- Control theory : A-Baldi-Han Kwan, Zhu

Theorem (Matioc ; A-Meunier-Smets ; Nguyen-Pausader). The Cauchy problem for the Hele-Shaw equation $\partial_{t} \eta+G(\eta) \eta=0$ is LWP on $H^{s}\left(\mathbb{T}^{d}\right)$ for $s>1+d / 2$.

Proof. One quasilinearizes (HS) as follows.
Lemma 1. Let $\phi=\phi(t, x, y)$ harmonic extension of η in $\{y<\eta(t, x)\}$ and

$$
a=1-\left.\left(\partial_{y} \phi\right)\right|_{y=\eta} \quad, \quad V=-\left.\left(\nabla_{x} \phi\right)\right|_{y=\eta}
$$

Then

$$
\begin{aligned}
& \partial_{t} V+V \cdot \nabla V+a G(\eta) V+\frac{\gamma}{a} V=0 \quad \text { where } \\
& \gamma=\frac{1}{1+|\nabla \eta|^{2}}\left(G(\eta)\left(a^{2}+V^{2}\right)-2 a G(\eta) a-2 V \cdot G(\eta) V\right) .
\end{aligned}
$$

Proof: shape derivative formula [Zakharov, Lannes]

$$
\begin{aligned}
& \partial G(\eta) \psi=-G(\eta)(\partial \psi-\mathfrak{B} \partial \eta)-\operatorname{div}(\mathfrak{V} \partial \eta) \\
& \mathfrak{B}=\frac{\nabla \eta \cdot \nabla \psi+G(\eta) \psi}{1+|\nabla \eta|^{2}}, \quad \mathfrak{V}=\nabla \psi-\mathfrak{B} \nabla \eta .
\end{aligned}
$$

Theorem (Matioc ; A-Meunier-Smets ; Nguyen-Pausader). The Cauchy problem for the Hele-Shaw equation $\partial_{t} \eta+G(\eta) \eta=0$ is LWP on $H^{s}\left(\mathbb{T}^{d}\right)$ for $s>1+d / 2$.

Proof. One quasilinearizes (HS) as follows.
Lemma 1. Let $\phi=\phi(t, x, y)$ harmonic extension of η in $\{y<\eta(t, x)\}$ and

$$
a=1-\left.\left(\partial_{y} \phi\right)\right|_{y=\eta} \quad, \quad V=-\left.\left(\nabla_{x} \phi\right)\right|_{y=\eta}
$$

Then

$$
\begin{aligned}
& \partial_{t} V+V \cdot \nabla V+a G(\eta) V+\frac{\gamma}{a} V=0 \quad \text { where } \\
& \gamma=\frac{1}{1+|\nabla \eta|^{2}}\left(G(\eta)\left(a^{2}+V^{2}\right)-2 a G(\eta) a-2 V \cdot G(\eta) V\right) .
\end{aligned}
$$

Lemma 2. $a>0$
[Wu for WW]
Proof: the function $y-\phi$ is harmonic and vanishes on the boundary. The HopfZaremba principle gives $\partial_{n}(y-\phi)>0$.

Recall that

$$
\partial_{t} V+V \cdot \nabla V+a G(\eta) V+\frac{\gamma}{a} V=0
$$

Notice that $A=V \cdot \nabla$ is of order 1 but

$$
\left(A+A^{*}\right) f=-(\operatorname{div} V) f \text { is of order } 0 .
$$

Bounded from L^{2} to L^{2} if V is $W_{x}^{1, \infty}$. Loosely speaking, $A+A^{*}$ is of order $1-\varepsilon$ provided that V is $L_{t}^{\infty}\left(C^{0, \varepsilon}\right)$.

Recall that

$$
\partial_{t} V+V \cdot \nabla V+a G(\eta) V+\frac{\gamma}{a} V=0
$$

Notice that $A=V \cdot \nabla$ is of order 1 but

$$
\left(A+A^{*}\right) f=-(\operatorname{div} V) f \text { is of order } 0
$$

Bounded from L^{2} to L^{2} if V is $W_{x}^{1, \infty}$. Loosely speaking, $A+A^{*}$ is of order $1-\varepsilon$ provided that V is $L_{t}^{\infty}\left(C^{0, \varepsilon}\right)$.

Last step : paradifferential analysis of $G(\eta)$
[A.-Burq-Zuily]
Lemma 3. Assume that $\eta \in H^{s}\left(\mathbb{R}^{d}\right)$ with $s=1+\frac{d}{2}+\varepsilon, \varepsilon>0$.
If $d=1$ then $G(\eta)=\left|D_{x}\right|+R(\eta)$ where $\left|D_{x}\right|=\sqrt{-\partial_{x x}}$ and

$$
\|R(\eta)\|_{H^{\mu} \rightarrow H^{\mu-1+\varepsilon}} \leq C\left(\|\eta\|_{H^{s}}\right) \quad \text { for } \quad \frac{1}{2} \leq \mu \leq s-\frac{1}{2} .
$$

If $d \geq 2$ same result with paradifferential operators.
Then energy estimates and interpolation arguments.

Application : the Cauchy problem in a channel

Figure: 2D section of the channel

Application : the Cauchy problem in a channel

Figure: 2D section of the channel

Application : the Cauchy problem in a channel

Figure: 2D section of the channel

Application : the Cauchy problem in a Channel

Figure: 2D section of the channel

Application : the Cauchy problem in a channel

Figure: 2D section of the channel

For $s<3$, if $\partial_{x_{1}} \eta\left(0, x_{2}\right)=0=\partial_{x_{1}} \eta\left(1, x_{2}\right)$ then

$$
\eta \in H^{s+\frac{1}{2}}\left((0,1)_{x_{1}} \times \mathbb{R}_{x_{2}}\right) \Rightarrow \underline{\eta} \in H^{s+\frac{1}{2}}\left(\mathbb{T} \times \mathbb{R}_{x_{2}}\right)
$$

- ABZ: LWP for $s>3$ with surface tension and $3 D$ fluids.
- Semi-classical Strichartz estimates (Lebeau, Smith, Tataru, Bahouri-Chemin, Staffilani-Tataru, Burq-Gérard-Tzvetkov):

Christianson-Hur-Staffilani, ABZ, de Poyferré, Ai

Application : Reduction to constant coefficients in $1 D$
(Oversymplifying) One can rewrite the WW system as [A-Burq-Zuily]

$$
P u=\frac{\partial u}{\partial t}+V(u) \partial_{x} u+i\left|D_{x}\right|^{\frac{3}{4}}\left(c(u)\left|D_{x}\right|^{\frac{3}{4}} u\right)=0
$$

where $x \in \mathbb{T}$ and

$$
V(u)=\operatorname{Re}\left(\left\langle D_{x}\right\rangle^{-N} u\right)
$$

with N as large as we want (for smooth enough initial data).
Using a change of variables (preserving the L^{2}-norm in x)

$$
h(t, x) \mapsto\left(1+\partial_{x} \kappa(t, x)\right)^{\frac{1}{2}} h(t, x+\kappa(t, x))
$$

we replace P by

$$
Q=\partial_{t}+W \partial_{x}+i\left|D_{x}\right|^{\frac{3}{2}}+R, \quad R \text { is of order zero }
$$

where one can further assume that $\int_{\mathbb{T}} W(t, x) d x=0$.

To study $\partial_{t}+W \partial_{x}+i\left|D_{x}\right|^{\frac{3}{2}}+R^{\prime}$, we seek an operator A such that

$$
\left[A, i\left|D_{x}\right|^{\frac{3}{2}}\right]+W \partial_{x} A \text { is a zero order operator }
$$

We find [A.-Baldi]

$$
A=\mathrm{Op}\left(q(t, x, \xi) e^{i \beta(t, x)|\xi|^{\frac{1}{2}}}\right)
$$

with

$$
\beta=\beta_{0}(t)+\frac{2}{3} \partial_{x}^{-1} W .
$$

Then

$$
\left(\partial_{t}+W \partial_{x}+i\left|D_{x}\right|^{\frac{3}{2}}\right) A=A\left(\partial_{t}+i\left|D_{x}\right|^{\frac{3}{2}}+R^{\prime \prime}\right)
$$

with $R^{\prime \prime}$ of order 0 .
Notice that $A \in \operatorname{Op} S_{\rho, \rho}^{0}$ with $\rho=1 / 2$ ([Said 2020], quasi-linear).
For Benjamin-Ono, similar conjugation with $A \in \mathrm{Op} S_{1,0}^{0}$ (semi-linear).

The Muskat problem

Dynamics of the curve $\Sigma(t)$ separating two fluids:

$$
\begin{aligned}
\Omega_{1}(t) & =\{(x, y) \in \mathbb{R} \times \mathbb{R} ; y>f(t, x)\} \\
\Omega_{2}(t) & =\{(x, y) \in \mathbb{R} \times \mathbb{R} ; y<f(t, x)\} \\
\Sigma(t) & =\{y=f(t, x)\}
\end{aligned}
$$

Each Ω_{i} is occupied by an incompressible fluid with constant density ρ_{i}, velocity u_{i} and pressure P_{i}. Muskat equations read:

$$
\begin{array}{lcr}
u_{i}=-\nabla_{x, y}\left(P_{i}+\rho_{i} g y\right) & \text { in } \Omega_{i} & \text { (Darcy) } \tag{i}\\
\operatorname{div}_{x, y} u_{i}=0 & \text { in } \Omega_{i} & \text { (incompressibility) } \\
P_{1}=P_{2} & \text { on } \Sigma & \text { (continuity of } \mathrm{P} \text {) } \\
u_{1} \cdot n=u_{2} \cdot n=\frac{\partial_{t} f}{\sqrt{1+\left(\partial_{x} f\right)^{2}}} & \text { on } \Sigma & \text { (transport of } \Sigma \text {) }
\end{array}
$$

One can reduce the Muskat problem to a parabolic evolution equation for f : Caflisch-Orellana-Siegel, Escher-Simonett, Ambrose
Córdoba and Gancedo obtained a beautiful compact formulation:

$$
\partial_{t} f=\frac{\rho}{2 \pi} \partial_{x} \int_{\mathbb{R}} \arctan \left(\Delta_{\alpha} f\right) \mathrm{d} \alpha \quad \Delta_{\alpha} f(t, x)=\frac{f(t, x)-f(t, x-\alpha)}{\alpha}
$$

where $\rho=\rho_{2}-\rho_{1}$. We assume $\rho>0$ and set $\rho=2$.
Scaling $f(t, x) \mapsto \frac{1}{\lambda} f(\lambda t, \lambda x) \longrightarrow$ Critical spaces $\dot{H}^{\frac{3}{2}}(\mathbb{R}), \dot{W}^{1, \infty}(\mathbb{R})$.

- Many proofs of well-posed on sub-critical spaces

Yi, Caflisch-Howison-Siegel, Ambrose, Córdoba-Gancedo, Córdoba-Córdoba-Gancedo, Cheng- Granero-Belinchón- Shkoller, Constantin-Gancedo-Shvydkoy-Vicol, Matioc, Deng-Lei-Lin, A-Lazar, NguyenPausader
Cameron first studied well-posedness for interfaces in $\dot{W}^{1, \infty} \cap L^{2}(\mathbb{R})$ for initial data whose slope is bounded by 1 .

Since $\left|D_{x}\right|=\partial_{x} \mathcal{H}$ with

$$
\mathcal{H} f(x)=\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \frac{f(y)}{x-y} \mathrm{~d} y
$$

we have

$$
\left|D_{x}\right| f=-\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \partial_{x} \Delta_{\alpha} f \mathrm{~d} \alpha
$$

Then write

$$
\partial_{x} \arctan \left(\Delta_{\alpha} f\right)=\frac{\partial_{x} \Delta_{\alpha} f}{1+\left(\Delta_{\alpha} f\right)^{2}}=\partial_{x} \Delta_{\alpha} f-\left(\partial_{x} \Delta_{\alpha} f\right) \frac{\left(\Delta_{\alpha} f\right)^{2}}{1+\left(\Delta_{\alpha} f\right)^{2}}
$$

to get

$$
\partial_{t} f+\left|D_{x}\right| f=\mathcal{T}(f) f \quad \text { where } \quad \mathcal{T}(f) f=-\frac{1}{\pi} \int_{\mathbb{R}}\left(\partial_{x} \Delta_{\alpha} f\right) \frac{\left(\Delta_{\alpha} f\right)^{2}}{1+\left(\Delta_{\alpha} f\right)^{2}} \mathrm{~d} \alpha
$$

This gives a rigorous meaning to the Musket equation (A.-Lazar).
Prop. The map $f \mapsto \mathcal{T}(f) f$ is locally Lipschitz from $H^{\frac{3}{2}}(\mathbb{R})$ to $L^{2}(\mathbb{R})$.

$$
\|u v\|_{L^{2}} \leq\|u\|_{L^{4}}\|u\|_{L^{4}}, \quad H^{\frac{1}{2}} \subset L^{4}, \quad\|u\|_{\dot{H}^{\frac{1}{2}}}^{2} \sim \iint_{\mathbb{R} \times \mathbb{R}} \frac{|u(x)-u(y)|^{2}}{|x-y|} \frac{\mathrm{d} x \mathrm{~d} y}{|x-y|}
$$

The Córdoba-Lazar inequality
Theorem (Córdoba and Lazar). GWP for $f_{0} \in H^{\frac{5}{2}}(\mathbb{R})$ such that

$$
\left(1+\left\|\partial_{x} f_{0}\right\|_{L^{\infty}}^{4}\right)\left\|f_{0}\right\|_{\dot{H}^{\frac{3}{2}}} \ll 1 .
$$

i) Main estimate:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+\int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x \lesssim\left(\|f\|_{\dot{H}^{\frac{3}{2}}}+\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}\right)\|f\|_{\dot{H}^{2}}^{2}
$$

Very delicate estimate since $H^{\frac{1}{2}}(\mathbb{R})$ is not a Banach algebra.
Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.
See also Gancedo-Lazar, Granero-Bellinchón \& Scrobogna, Scrobogna.

The Córdoba-Lazar inequality
Theorem (Córdoba and Lazar). GWP for $f_{0} \in H^{\frac{5}{2}}(\mathbb{R})$ such that

$$
\left(1+\left\|\partial_{x} f_{0}\right\|_{L^{\infty}}^{4}\right)\left\|f_{0}\right\|_{\dot{H}^{\frac{3}{2}}} \ll 1 .
$$

i) Main estimate:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+\int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x \lesssim\left(\|f\|_{\dot{H}^{\frac{3}{2}}}+\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}\right)\|f\|_{\dot{H}^{2}}^{2}
$$

Very delicate estimate since $H^{\frac{1}{2}}(\mathbb{R})$ is not a Banach algebra.
Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.
See also Gancedo-Lazar, Granero-Bellinchón \& Scrobogna, Scrobogna.

Theorem (Córdoba and Lazar). GWP for $f_{0} \in H^{\frac{5}{2}}(\mathbb{R})$ such that

$$
\left(1+\left\|\partial_{x} f_{0}\right\|_{L^{\infty}}^{4}\right)\left\|f_{0}\right\|_{\dot{H}^{\frac{3}{2}}} \ll 1 .
$$

i) Main estimate:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+\int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x \lesssim\left(\|f\|_{\dot{H}^{\frac{3}{2}}}+\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}\right)\|f\|_{\dot{H}^{2}}^{2}
$$

Very delicate estimate since $H^{\frac{1}{2}}(\mathbb{R})$ is not a Banach algebra.
Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.
See also Gancedo-Lazar, Granero-Bellinchón \& Scrobogna, Scrobogna.
ii) Bound for the slope: to control the denominator $1+\left(\partial_{x} f\right)^{2}$. By an integration by parts argument (C.G., Cameron, G.L.):

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\partial_{x} f\right\|_{L^{\infty}} \lesssim\|f\|_{H^{2}}^{2}
$$

Then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+c_{0} \int_{\mathbb{R}}\left(\partial_{x x} f\right)^{2} \mathrm{~d} x \leq 0
$$

Theorem (A \& Q.-H Nguyen). GWP for $f_{0} \in H^{\frac{3}{2}}(\mathbb{R})$ such that $\left\|f_{0}\right\|_{\dot{H}^{\frac{3}{2}}} \ll 1$. A null-type property.

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+\int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x \lesssim\left(1+\|f\|_{\dot{H}^{\frac{3}{2}}}^{7}\right)\|f\|_{\dot{H}^{\frac{3}{2}}} \int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x
$$

Theorem (A \& Q.-H Nguyen). GWP for $f_{0} \in H^{\frac{3}{2}}(\mathbb{R})$ such that $\left\|f_{0}\right\|_{\dot{H}^{\frac{3}{2}}} \ll 1$. A null-type property.

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+\int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x \lesssim\left(1+\|f\|_{\dot{H}^{\frac{3}{2}}}^{7}\right)\|f\|_{\dot{H}^{\frac{3}{2}}} \int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x
$$

Imply at once GWP for small data: if $\|f\|_{\dot{H}^{\frac{3}{2}}}$ is small enough then

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|f\|_{\dot{H}^{\frac{3}{2}}}^{2}+c_{0} \int_{\mathbb{R}} \frac{\left(\partial_{x x} f\right)^{2}}{1+\left(\partial_{x} f\right)^{2}} \mathrm{~d} x \leq 0 .
$$

Theorem (A \& Q.-H Nguyen). LWP in the critical space $H^{\frac{3}{2}}(\mathbb{R})$.
A norm depending on the initial data: for $f_{0} \in H^{\frac{3}{2}}(\mathbb{R})$ there is a weight κ_{0} s.t.
$\left\|f_{0}\right\|_{\mathcal{H}^{\frac{3}{2}, \kappa_{0}}}^{2}:=\int_{\mathbb{R}}(1+|\xi|)^{3} \kappa_{0}(|\xi|)^{2}\left|\hat{f}_{0}(\xi)\right|^{2} \mathrm{~d} \xi<+\infty \quad$ and $\quad \lim _{|\xi| \rightarrow+\infty} \kappa_{0}(|\xi|)=+\infty$.
We estimate the $L_{t}^{\infty}\left(\mathcal{H}^{\frac{3}{2}}, \kappa_{0}\right)$-norm of f.

Muskat equation reads

$$
\partial_{t} f=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\partial_{x} \Delta_{\alpha} f}{1+\left(\Delta_{\alpha} f\right)^{2}} \mathrm{~d} \alpha
$$

One expects to extract a formulation of the form

$$
\partial_{t} f+V \partial_{x} f+\gamma\left|D_{x}\right| f=R(f)
$$

for some coefficients V and γ depending on $\partial_{x} f$.
\longrightarrow paradifferential type analysis ; A.-Lazar and Nguyen-Pausader.
The approach in [Nguyen-Pausader] applies for many physical equations.
The approach in [A.-Lazar] is adapted to study critical problem.
Following Shnirelman, we consider a simpler version of paraproducts:

$$
\tilde{T}_{a} g=\Lambda^{-(1+\varepsilon)}\left(a \Lambda^{1+\varepsilon} g\right) \quad, \quad \Lambda=\left(I-\partial_{x x}\right)^{1 / 2}
$$

and we decompose

$$
\begin{aligned}
\mathcal{O}(\alpha, \cdot) & =\frac{1}{2}\left(\frac{1}{1+\left(\Delta_{\alpha} f\right)^{2}}-\frac{1}{1+\left(\Delta_{-\alpha} f\right)^{2}}\right) \\
\mathcal{E}(\alpha, \cdot) & =\frac{1}{2}\left(\frac{1}{1+\left(\Delta_{\alpha} f\right)^{2}}+\frac{1}{1+\left(\Delta_{-\alpha} f\right)^{2}}\right)
\end{aligned}
$$

Since $\Delta_{\alpha} f(x) \rightarrow f_{x}(x)$ when $\alpha \rightarrow 0$, decompose

$$
\mathcal{E}(\alpha, \cdot)=\frac{1}{1+\left(\partial_{x} f\right)^{2}}+\left(\mathcal{E}(\alpha, \cdot)-\frac{1}{1+\left(\partial_{x} f\right)^{2}}\right) .
$$

By considering that $\quad\left|D_{x}\right| f=-\frac{1}{\pi} \int_{\mathbb{R}} \partial_{x} \Delta_{\alpha} f \mathrm{~d} \alpha \quad$ we obtain

$$
\partial_{t} f+\frac{1}{1+\left(\partial_{x} f\right)^{2}}\left|D_{x}\right| f+V(f) \partial_{x} f+R=0
$$

with
$V=-\frac{1}{\pi} \int_{\mathbb{R}} \frac{\mathcal{O}(\alpha, .)}{\alpha} \mathrm{d} \alpha, \quad R=-\frac{1}{\pi} \int_{\mathbb{R}} \frac{f_{x}(\cdot-\alpha)}{\alpha}\left(\frac{1}{1+\left(\Delta_{\alpha} f\right)^{2}}-\frac{1}{1+f_{x}^{2}}\right) \mathrm{d} \alpha$.
Then, we estimate the $L_{t}^{\infty}\left(\mathcal{H}^{\frac{3}{2}}, \kappa(\mathbb{R})\right)$-norm of f by

- commuting $\left|D_{x}\right| \kappa\left(D_{x}\right)$ with the equation ($\star \star$)
- taking the L_{x}^{2} scalar product with $\left|D_{x}\right|^{2} \kappa\left(D_{x}\right) f$ and integrating in time.

Thank you!

