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Evolution of the interface air/incompressible fluid

Water wave problem, Hele-Shaw and Muskat equations

Consider a time-dependent domain

Ω(t) = {(x, y) ∈ Rd × R ; y < η(t, x)} (d ≥ 1)

Σ(t) = ∂Ω(t) = {y = η(t, x)}
The free surface Σ(t) evolves according to

Vn = u · n

where u : Ω→ Rd+1 is the fluid velocity and

n =
1√

1 + |∇η|2

(
−∇η

1

)

Vn = n · d

dt

(
x

η(t, x)

)
=

∂tη√
1 + |∇η|2

.

n

Σ(t)

Ω(t)

∂tη =
√

1 + |∇η|2 u · n.
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Dynamics of an incompressible, irrotational liquid flow

• moving under the force of gravitation
• in a time-dependent domain with a free boundary

time t

time t+ 1

g

Many equations, many different asymptotic regimes (NLS, KdV, BO, P.M.,...)

Full model : free boundary problem

Dispersive (Euler’s equations) or parabolic (Darcy’s law) equations

Related tools based on paradifferential analysis

Loosely speaking : we’re looking for a method to transform the equations to
conjugate them to simpler equations.
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Reduction to the boundary. Assume

curlx,y u = 0 , divx,y u = 0.

Then u = ∇x,yφ for some φ s.t. ∆x,yφ = 0 . Now, set [Zakharov]

ψ(t, x) = φ(t, x, η(t, x))

and introduce [Craig-Sulem, Lannes] the Dirichlet-to-Neumann operator by

G(η)ψ = ∂yφ−∇η · ∇φ

y=η

=
√

1 + |∇η|2 ∂nφ

y=η

.

Then

∂tη =
√

1 + |∇η|2 u · n

=
√

1 + |∇η|2 ∂nφ
= G(η)ψ
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and introduce [Craig-Sulem, Lannes] the Dirichlet-to-Neumann operator by

G(η)ψ = ∂yφ−∇η · ∇φ

y=η

=
√

1 + |∇η|2 ∂nφ

y=η

.

Then

∂tη = G(η)ψ

Need also an equation for ψ . The most simple one is

ψ = −η

which gives the Hele-Shaw equation: ∂tη +G(η)η = 0 .

Remark: i) physical equation associated to Darcy’s law u = −∇x,y(P + gy) .

ii) with ψ +K(η)ψ = −η we get the Muskat equation.
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The most beautiful equation for ψ is given by

Theorem [Zakharov, 1966]. Consider an irrotational velocity field u = ∇x,yφ
satisfying ∂tu+ u · ∇x,yu = −∇x,y(P + gy) . Then η and ψ are conjugated:

∂η

∂t
=

δH
δψ

∂ψ

∂t
= −δH

δη

ψ(t, x) = φ(t, x, η(t, x))

H =
1

2

∫
Rd
ψG(η)ψ dx+

g

2

∫
Rd
η2 dx.

(Brenier related the Hele-Shaw and WW problems by a quadratic change of time.)

A popular form of the equations:
∂tη −G(η)ψ = 0

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(
∇η · ∇ψ +G(η)ψ

)2
1 + |∇η|2

= 0

Prop (A-Burq-Zuily). This system is equivalent to Euler with free surface.

• not PDE (G(η) is a nonlocal operator)
• fully nonlinear (instead of semi-linear, see [Said 2020])
• the Hamiltonian does not control the dynamics ( η only in L2

x ).
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One can define G(η) for rough domains.

Arendt and ter Elst : for bounded connected open set Ω ⊂ Rn whose boundary
has a finite (n− 1) -dimensional Hausdorff measure.

The Lipschitz threshold of regularity

Let η ∈W 1,∞(Rd) and ψ ∈ H 1
2 (Rd) . There is a unique variational solution

φ ∈ L2
(

dxdy/(1 + |y|)2
)

, ∇x,yφ ∈ L2(Ω)

to
∆x,yφ = 0 in {(x, y) ∈ Rd × R : y < η(x)}, φ


y=η

= ψ.

Since φ is harmonic, one can define

G(η)ψ =
√

1 + |∇η|2 ∂nφ

y=η
∈ H− 1

2 (Rd).

There holds
‖G(η)‖

H
1
2→H−

1
2
≤ C

(
‖∇η‖L∞

)
.

Also [Rellich,Jerison-Kenig]

‖G(η)‖H1→L2 ≤ C
(
‖∇η‖L∞

)
.
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Noether’s theorem implies Rellich inequality

Proposition (Agrawal - A)
For any d ≥ 1 , ∫

Rd
(∂nφ|y=η)2 dx ≤ 4

∫
Rd
|∇ψ|2 dx.

In particular
‖G(η)‖H1→L2 ≤ 4 + 4 ‖∇η‖L∞ .

Proof. Noether’s theorem (Hamiltonian problem + invariances) implies

d

dt

∫
η(t, x) dx = 0 and

d

dt

∫
ψ(t, x) dx = 0.

Remembering that

∂tψ + gη +
1

2
|∇ψ|2 − 1

2

(
G(η)ψ +∇η · ∇ψ

)2
1 + |∇η|2

= 0

we get ∫ (
G(η)ψ +∇η · ∇ψ

)2
1 + |∇η|2

dx =

∫
|∇ψ|2 dx.

Remark i) The rigorous proof uses the multiplier method.
ii) No periodic or quasi-periodic in time solutions in finite depth.
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Proposition (A - Nguyen)

Let d ≥ 1 , η ∈W 1,∞(Rd) and ψ ∈ H 1
2 (Rd) . There exists c such that∫

Rd
ψG(η)ψ dx ≥ c

1 + ‖∇η‖BMO

‖ψ‖2
Ḣ

1
2
.

Remark: Let u ∈ H1(Ω) and set ψ = u|y=η . Denote by φ the harmonic
extension of ψ . Then∫∫

Ω

|∇x,yu|2 dy dx ≥
∫∫

Ω

|∇x,yφ|2 dy dx =

∫
∂Ω

φ∂nφ dσ

=

∫
Rd
ψG(η)ψ dx.

This gives the trace inequality∫∫
Ω

|∇x,yu|2 dy dx ≥ c

1 + ‖∇η‖BMO

‖u|y=η‖2
Ḣ

1
2
.



Proposition (A - Nguyen)

Let d ≥ 1 , η ∈W 1,∞(Rd) and ψ ∈ H 1
2 (Rd) . There exists c such that∫

Rd
ψG(η)ψ dx ≥ c

1 + ‖∇η‖BMO

‖ψ‖2
Ḣ

1
2
.

Remark: The dependence in ‖∇η‖BMO is optimal:∫
ψG(η)ψ dx ≥ c

(1 + ‖∇η‖BMO)m
‖ψ‖2

Ḣ
1
2
⇒ m ≥ 1.

Indeed, let θ be the harmonic extension of η :

∆x,yθ = 0 in {y < η(x)} , θ(x, η(x)) = η(x).

Then [Haziot-Pausader, A-Zuily]

0 ≤
∫
Td
ηG(η)η dx =

∫∫
Ω

|∇x,yθ|2 dy dx ≤ ‖η‖L∞
∣∣Td∣∣.

Then apply the inequality with η = ψ = cos(kx) .



Proposition (A - Nguyen)

Let d ≥ 1 , η ∈W 1,∞(Rd) and ψ ∈ H 1
2 (Rd) . There exists c such that∫

Rd
ψG(η)ψ dx ≥ c

1 + ‖∇η‖BMO

‖ψ‖2
Ḣ

1
2
.

Proof. Assume d = 1 . Set v(x, z) = φ(x, z + η(x)) .∫
R
ψG(η)ψ dx =

∫∫
Ω

|∇x,yφ|2 dy dx =

∫∫
R2
−

[
(∂xv − ∂zv∂xη)2 + (∂zv)2

]
dz dx∫

R
ψ |Dx|ψ dx =

∫∫
R2
−

∂z(v |Dx| v) dz dx = 2

∫∫
R2
−

(∂zv) |Dx| v dz dx

= 2

∫∫
R2
−

[
(∂zv)H

(
∂xv − (∂zv)∂xη

)
+ (∂zv)H

(
(∂zv)∂xη

)]
dz dx.

Since H∗ = −H , we have

2

∫∫
R2
−

(∂zv)H
(
(∂zv)∂xη

)
dz dx =

∫∫
R2
−

(∂zv)
[
H, ∂xη

]
∂zv dz dx.

Apply [Coifman-Rochberg-Weiss] (see also [Lenzmann-Schikorra]). �



Elliptic estimates

We have seen

‖G(η)‖
H

1
2→H−

1
2

+ ‖G(η)‖H1→L2 ≤ C
(
‖∇η‖L∞

)
Many other results [Nalimov, Craig-Schanz-Sulem, Wu, Beyer-Günther, Lannes]

Proposition (A.-Burq-Zuily)
(i) For all s > 1 + d/2 and 1/2 ≤ σ ≤ s

‖G(η)ψ‖Hσ−1 ≤ C (‖η‖Hs) ‖ψ‖Hσ .

(ii) For all s > 1 + d/2 ,

‖[G(η1)−G(η2)]ψ‖
Hs−

3
2
≤ C

(
‖(η1, η2)‖

Hs+
1
2

)
‖ψ‖Hs ‖η1 − η2‖

Hs−
1
2
.

Sobolev embedding: (i) η is Lipschitz, and (ii) η1 − η2 is not Lipschitz.

Schauder’s estimates : write

divx,z(A(x0, z0)︸ ︷︷ ︸
constant

∇x,zv) = divx,z((A(x0, z0)−A(x, z))︸ ︷︷ ︸
small

∇x,zv).

To prove Schauder’s estimates, it is convenient to paralinearize.



Paralinearization

By using the Fourier transform : G(0) = |Dx| .
If η ∈ C∞ , it is known since Calderón that G(η) is a ΨDO of order 1 , whose
principal symbol is

λ(x, ξ) :=

√
(1 + |∇η(x)|2) |ξ|2 − (∇η(x) · ξ)2.

More precisely,

G(η)ψ = (2π)−d
∫
eix·ξλ(x, ξ)ψ̂(ξ) dξ + R0(η)f,

where the remainder is of order 0 , satisfying [Lannes]

∃K ≥ 1,∀s ≥ 1

2
, ‖R0(η)ψ‖Hs ≤ C (‖η‖Hs+K ) ‖ψ‖Hs .

Remarks: i) λ well-defined for any η ∈W 1,∞(Rd) .

ii) If d = 1 or η = 0 then λ(x, ξ) = |ξ| and Op(λ) = |Dx| .

iii) K corresponds to a loss of derivatives (Lannes, Iguchi).
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Paraproducts:

au =
1

(2π)2d

∫∫
Rd×Rd

eix·(ξ1+ξ2) â(ξ1) û(ξ2) dξ1dξ2

=

∫∫
|ξ1+ξ2|∼|ξ2|

+

∫∫
|ξ1+ξ2|∼|ξ1|

+

∫∫
|ξ1|∼|ξ2|

= Tau+ Tua+R(a, u)

Tau has the same regularity as u for a ∈ L∞ , and R(a, u) is twice more regular.

Theorem (Bony, paralinearization of a product).

∀σ ∈ R a ∈ L∞(Rd) u ∈ Hσ(Rd) ⇒ Tau ∈ Hσ(Rd)

∀s > 0 a ∈ Hs(Rd) u ∈ Hs(Rd) ⇒ R(a, u) ∈ H2s− d2 (Rd)



In dimension one, this simplifies to

G(η)ψ = |Dx|ψ + R(η)ψ,

where R(η) is a smoothing operator,

Question: compute R(η) = G(η)ψ − |Dx|ψ .

∗ ∗ ∗ First computation ∗ ∗ ∗

Theorem (A-Métivier). Let 3 < γ < s . Set V = (∂xφ)|y=η and
B = (∂yφ)|y=η . Then

G(η)ψ = |Dx| (ψ − TBη)− ∂x
(
TV η

)
+ F

where
‖F‖Hs+γ−4 ≤ C (‖η‖Cγ )

{
‖ψ‖Cγ ‖η‖Hs + ‖η‖Cγ

∥∥ψ∥∥
Hs

}
.

Extensions: ABZ, Thibault de Poyferré, Albert Ai, Xuecheng Wang, Fan Zheng,
Chenyang Zhou...



Step 1 : Paracomposition. We flatten the boundary via the diffeomorphism

χ : (x, z) 7→ (x, z + η(x)).

Set v(x, z) = φ(x, z+ η(x)) . Then by elliptic regularity v ∈ Hs+ 1
2

(
Rd× [−1, 0]

)
.

By paralinearization, we get

T1+|∇η|2∂
2
zv + ∆v − 2T∇η · ∇∂zv − T∆η∂zv ∈ C0

z

(
[−1, 0];Hs−2

x (Rd)
)

By using Alinhac’s paracomposition operators, introduce

u = φ ◦ χ− Tφ′◦χχ = v − T∂zvη.

Then u satisfies a paradifferential elliptic equation:

T1+|∇η|2∂
2
zu+ ∆u− 2T∇η · ∇∂zu− T∆η∂zu ∈ C0

z

(
[−1, 0];H

2s− 5+d
2

x (Rd)
)

We call u the good unknown of Alinhac.
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Step 2 : elliptic factorization. There exist two symbols a,A such that

(∂z − Ta)(∂z − TA)u ∈ C0
z

(
[−1, 0];H2s−K(d)

x (Rd)
)
.

Step 3: elliptic regularity. Introduce w := (∂z − TA)u , then

∂zw − Taw ∼ 0.

and hence
(∂zu− TAu)|z=0 = w(0) ∼ 0.

This gives ∂zu on the boundary {z = 0} in terms of tangential derivatives
+ a smooth remainder. �
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Many applications to the water-wave problem

• The Cauchy problem (cf lectures by Tataru and Wu)

• Balanced energy estimates: Ai-Ifrim-Tataru

• Enhanced existence :

Shatah, Delort-Szeftel, Hunther-Ifrim, Wu, Germain-Masmoudi-Shatah,
A-Delort, Ionescu-Pusateri, Hunther-Ifrim-Tataru, Wang, Berti-Feola-
Franzoi, Deng-Ionescu-Pusateri, Ehrnström-Wang

• Qualitative properties of the flow map : de Poyferré, Said

• Dispersive estimates : see later

• Small divisors : Iooss-Plotnikov-Toland, A-Baldi, Berti-Montalto

• Control theory : A-Baldi-Han Kwan, Zhu
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Application to energy estimates

Theorem (Matioc ; A-Meunier-Smets ; Nguyen-Pausader). The Cauchy problem
for the Hele-Shaw equation ∂tη+G(η)η = 0 is LWP on Hs(Td) for s > 1 +d/2 .

Proof. One quasilinearizes (HS) as follows.
Lemma 1. Let φ = φ(t, x, y) harmonic extension of η in {y < η(t, x)} and

a = 1− (∂yφ)|y=η , V = −(∇xφ)|y=η.

Then

∂tV + V · ∇V + aG(η)V +
γ

a
V = 0 where

γ =
1

1 + |∇η|2
(
G(η)(a2 + V 2)− 2aG(η)a− 2V ·G(η)V

)
.

Proof: shape derivative formula [Zakharov, Lannes]

∂G(η)ψ = −G(η)(∂ψ −B∂η)− div(V∂η)

B =
∇η · ∇ψ +G(η)ψ

1 + |∇η|2
, V = ∇ψ −B∇η.



Application to energy estimates

Theorem (Matioc ; A-Meunier-Smets ; Nguyen-Pausader). The Cauchy problem
for the Hele-Shaw equation ∂tη+G(η)η = 0 is LWP on Hs(Td) for s > 1 +d/2 .

Proof. One quasilinearizes (HS) as follows.
Lemma 1. Let φ = φ(t, x, y) harmonic extension of η in {y < η(t, x)} and

a = 1− (∂yφ)|y=η , V = −(∇xφ)|y=η.

Then

∂tV + V · ∇V + aG(η)V +
γ

a
V = 0 where

γ =
1

1 + |∇η|2
(
G(η)(a2 + V 2)− 2aG(η)a− 2V ·G(η)V

)
.

Lemma 2. a > 0 [Wu for WW]

Proof: the function y − φ is harmonic and vanishes on the boundary. The Hopf-
Zaremba principle gives ∂n(y − φ) > 0 . �



Recall that
∂tV + V · ∇V + aG(η)V +

γ

a
V = 0

Notice that A = V · ∇ is of order 1 but

(A+A∗)f = −(div V )f is of order 0 .

Bounded from L2 to L2 if V is W 1,∞
x .

Loosely speaking, A+A∗ is of order 1− ε provided that V is L∞t (C0,ε) .

Last step : paradifferential analysis of G(η) [A.-Burq-Zuily]

Lemma 3. Assume that η ∈ Hs(Rd) with s = 1 +
d

2
+ ε , ε > 0 .

If d = 1 then G(η) = |Dx|+R(η) where |Dx| =
√
−∂xx and

‖R(η)‖Hµ→Hµ−1+ε ≤ C(‖η‖Hs) for
1

2
≤ µ ≤ s− 1

2
.

If d ≥ 2 same result with paradifferential operators.

Then energy estimates and interpolation arguments. �
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Application : the Cauchy problem in a channel

Figure: 2D section of the channel
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Application : the Cauchy problem in a channel

Figure: 2D section of the channel

For s < 3 , if ∂x1η(0, x2) = 0 = ∂x1η(1, x2) then

η ∈ Hs+ 1
2

(
(0, 1)x1

× Rx2

)
⇒ η ∈ Hs+ 1

2

(
T× Rx2

)
.

• ABZ: LWP for s > 3 with surface tension and 3D fluids.
• Semi-classical Strichartz estimates (Lebeau, Smith, Tataru, Bahouri-Chemin,
Staffilani-Tataru, Burq-Gérard-Tzvetkov):

Christianson-Hur-Staffilani, ABZ, de Poyferré, Ai



Application : reduction to constant coefficients in 1D

(Oversymplifying) One can rewrite the WW system as [A-Burq-Zuily]

Pu =
∂u

∂t
+ V (u)∂xu+ i |Dx|

3
4
(
c(u) |Dx|

3
4 u
)

= 0

where x ∈ T and
V (u) = Re

(
〈Dx〉−Nu

)
with N as large as we want (for smooth enough initial data).

Using a change of variables (preserving the L2 -norm in x )

h(t, x) 7→ (1 + ∂xκ(t, x))
1
2 h(t, x+ κ(t, x))

we replace P by

Q = ∂t +W∂x + i |Dx|
3
2 +R, R is of order zero

where one can further assume that
∫
TW (t, x) dx = 0 .



To study ∂t +W∂x + i |Dx|
3
2 +R′ , we seek an operator A such that[

A, i |Dx|
3
2
]

+W∂xA is a zero order operator

We find [A.-Baldi]

A = Op
(
q(t, x, ξ)eiβ(t,x)|ξ|

1
2
)

with
β = β0(t) +

2

3
∂−1
x W.

Then (
∂t +W∂x + i |Dx|

3
2
)
A = A

(
∂t + i |Dx|

3
2 +R′′

)
with R′′ of order 0 .

Notice that A ∈ OpS0
ρ,ρ with ρ = 1/2 ([Said 2020], quasi-linear).

For Benjamin-Ono, similar conjugation with A ∈ OpS0
1,0 (semi-linear).



The Muskat problem

Dynamics of the curve Σ(t) separating two fluids:

Ω1(t) = {(x, y) ∈ R× R ; y > f(t, x)}

Ω2(t) = {(x, y) ∈ R× R ; y < f(t, x)}

Σ(t)= {y = f(t, x)}.

Each Ωi is occupied by an incompressible fluid with constant density ρi , velocity
ui and pressure Pi . Muskat equations read:

ui = −∇x,y(Pi + ρigy) in Ωi (Darcy)
divx,y ui = 0 in Ωi (incompressibility)
P1 = P2 on Σ (continuity of P)

u1 · n = u2 · n =
∂tf√

1 + (∂xf)2
on Σ (transport of Σ)
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One can reduce the Muskat problem to a parabolic evolution equation for f :
Caflisch-Orellana-Siegel, Escher-Simonett, Ambrose

Córdoba and Gancedo obtained a beautiful compact formulation:

∂tf =
ρ

2π
∂x

∫
R

arctan(∆αf) dα ∆αf(t, x) =
f(t, x)− f(t, x− α)

α

where ρ = ρ2 − ρ1 . We assume ρ > 0 and set ρ = 2 .

Scaling f(t, x) 7→ 1

λ
f (λt, λx) −→ Critical spaces Ḣ

3
2 (R), Ẇ 1,∞(R) .

• Many proofs of well-posed on sub-critical spaces

Yi, Caflisch-Howison-Siegel, Ambrose, Córdoba-Gancedo, Córdoba-
Córdoba-Gancedo, Cheng- Granero-Belinchón- Shkoller, Constantin-
Gancedo-Shvydkoy-Vicol, Matioc, Deng-Lei-Lin, A-Lazar, Nguyen-
Pausader

Cameron first studied well-posedness for interfaces in Ẇ 1,∞ ∩ L2(R) for initial
data whose slope is bounded by 1 .



Since |Dx| = ∂xH with

Hf(x) =
1

π
pv

∫
R

f(y)

x− y
dy

we have
|Dx| f = − 1

π
pv

∫
R
∂x∆αf dα

Then write

∂x arctan(∆αf) =
∂x∆αf

1 + (∆αf)
2 = ∂x∆αf − (∂x∆αf)

(∆αf)2

1 + (∆αf)
2

to get

∂tf + |Dx| f = T (f)f where T (f)f = − 1

π

∫
R

(∂x∆αf)
(∆αf)2

1 + (∆αf)
2 dα.

This gives a rigorous meaning to the Muskat equation (A.-Lazar).

Prop.The map f 7→ T (f)f is locally Lipschitz from H
3
2 (R) to L2(R) .

‖uv‖L2 ≤ ‖u‖L4 ‖u‖L4 , H
1
2 ⊂ L4, ‖u‖2

Ḣ
1
2
∼
∫∫
R×R

|u(x)− u(y)|2

|x− y|
dxdy

|x− y|
·



The Córdoba-Lazar inequality

Theorem (Córdoba and Lazar). GWP for f0 ∈ H
5
2 (R) such that

(1 + ‖∂xf0‖4L∞) ‖f0‖
Ḣ

3
2
� 1.

i) Main estimate:

d

dt
‖f‖2

Ḣ
3
2

+

∫
R

(∂xxf)2

1 + (∂xf)2
dx .

(
‖f‖

Ḣ
3
2

+ ‖f‖2
Ḣ

3
2

)
‖f‖2Ḣ2

Very delicate estimate since H
1
2 (R) is not a Banach algebra.

Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.

See also Gancedo-Lazar, Granero-Bellinchón & Scrobogna, Scrobogna.

ii) Bound for the slope: to control the denominator 1 + (∂xf)2 . By an
integration by parts argument (C.G., Cameron, G.L.):

d

dt
‖∂xf‖L∞ . ‖f‖

2
H2

Then
d

dt
‖f‖2

Ḣ
3
2

+ c0

∫
R

(∂xxf)2 dx ≤ 0.
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Very delicate estimate since H
1
2 (R) is not a Banach algebra.

Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.

See also Gancedo-Lazar, Granero-Bellinchón & Scrobogna, Scrobogna.

ii) Bound for the slope: to control the denominator 1 + (∂xf)2 . By an
integration by parts argument (C.G., Cameron, G.L.):

d

dt
‖∂xf‖L∞ . ‖f‖

2
H2

Then
d

dt
‖f‖2

Ḣ
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Very delicate estimate since H
1
2 (R) is not a Banach algebra.

Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.

See also Gancedo-Lazar, Granero-Bellinchón & Scrobogna, Scrobogna.

ii) Bound for the slope: to control the denominator 1 + (∂xf)2 . By an
integration by parts argument (C.G., Cameron, G.L.):

d

dt
‖∂xf‖L∞ . ‖f‖

2
H2

Then
d

dt
‖f‖2

Ḣ
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Theorem (A & Q.-H Nguyen). GWP for f0 ∈ H
3
2 (R) such that ‖f0‖

Ḣ
3
2
� 1.

A null-type property.

d

dt
‖f‖2

Ḣ
3
2

+

∫
R

(∂xxf)2

1 + (∂xf)2
dx .

(
1 + ‖f‖7

Ḣ
3
2

)
‖f‖

Ḣ
3
2

∫
R

(∂xxf)2

1 + (∂xf)2
dx

Imply at once GWP for small data: if ‖f‖
Ḣ

3
2

is small enough then

d

dt
‖f‖2

Ḣ
3
2

+ c0

∫
R

(∂xxf)2

1 + (∂xf)2
dx ≤ 0.

Theorem (A & Q.-H Nguyen). LWP in the critical space H
3
2 (R) .

A norm depending on the initial data: for f0 ∈ H
3
2 (R) there is a weight κ0 s.t.

‖f0‖2H 3
2
,κ0

:=

∫
R
(1 + |ξ|)3κ0(|ξ|)2

∣∣f̂0(ξ)
∣∣2 dξ < +∞ and lim

|ξ|→+∞
κ0(|ξ|) = +∞.

We estimate the L∞t (H 3
2 ,κ0) -norm of f .
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Muskat equation reads

∂tf =
1

π

∫
R

∂x∆αf

1 + (∆αf)
2 dα

One expects to extract a formulation of the form

∂tf + V ∂xf + γ |Dx| f = R(f)

for some coefficients V and γ depending on ∂xf .

−→ paradifferential type analysis ; A.-Lazar and Nguyen-Pausader.

The approach in [Nguyen-Pausader] applies for many physical equations.

The approach in [A.-Lazar] is adapted to study critical problem.

Following Shnirelman, we consider a simpler version of paraproducts:

T̃ag = Λ−(1+ε)(aΛ1+εg) , Λ = (I − ∂xx)1/2

and we decompose

O (α, ·) =
1

2

(
1

1 + (∆αf)
2 −

1

1 + (∆−αf)
2

)
E (α, ·) =

1

2

(
1

1 + (∆αf)
2 +

1

1 + (∆−αf)
2

)



Since ∆αf(x)→ fx(x) when α→ 0 , decompose

E (α, ·) =
1

1 + (∂xf)2
+

(
E (α, ·)− 1

1 + (∂xf)2

)
.

By considering that |Dx| f = − 1

π

∫
R
∂x∆αf dα we obtain

∂tf +
1

1 + (∂xf)2
|Dx| f + V (f)∂xf +R = 0 (??)

with

V = − 1

π

∫
R

O (α, .)

α
dα, R = − 1

π

∫
R

fx(· − α)

α

(
1

1 + (∆αf)2
− 1

1 + f2
x

)
dα.

Then, we estimate the L∞t (H 3
2 ,κ(R)) -norm of f by

• commuting |Dx|κ(Dx) with the equation (??)
• taking the L2

x scalar product with |Dx|2 κ(Dx)f and integrating in time.



Thank you!


