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Evolution of the interface air/incompressible fluid

Water wave problem, Hele-Shaw and Muskat equations
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Dynamics of an incompressible, irrotational liquid flow

® moving under the force of gravitation
® in a time-dependent domain with a free boundary

Many equations, many different asymptotic regimes (NLS, KdV, BO, P.M.,...)

Full model : free boundary problem

, time t

time t+ 1

Dispersive (Euler's equations) or parabolic (Darcy's law) equations

Related tools based on paradifferential analysis

Loosely speaking : we're looking for a method to transform the equations to

conjugate them to simpler equations.
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Consider a time-dependent domain
Q) ={(z,y) eR!xR; y <nlt,z)}  (d>1)
%(t) = 0Ut) = {y = n(t, 2)}

The free surface 3(t) evolves according to

where u: Q — R4 s the fluid velocity and

1 <—V77>
n= ———
VI+[ g\ 1

dt \n(t,z)) — /T + Vg2

Om =1+ |Vn2u-n.
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Reduction to the boundary. Assume
curl, yu=0 , divg,u=0.
Then u =V, ,¢ for some ¢ s.t. Ay, ¢ =0. Now, set [Zakharov]
U(t, ) = o(t, x,n(t, )
and introduce [Craig-Sulem, Lannes] the Dirichlet-to-Neumann operator by
Gy = 40—V Vo| = ITViPouo| .

Then

o =+14+|Vn2u-n
=1+ |Vn[20.¢
= G(n)y
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Reduction to the boundary. Assume
curl, yu=0 , divg,u=0.
Then u =V, ,¢ for some ¢ s.t. Ay, ¢ =0. Now, set [Zakharov]
U(t, ) = o(t, x,n(t, )
and introduce [Craig-Sulem, Lannes] the Dirichlet-to-Neumann operator by
Gy = 40—V Vo| = ITViPouo| .
Then
O =G(n)y

Need also an equation for ). The most simple one is

which gives the Hele-Shaw equation: d;n+ G(n)n=0.

Remark: ¢) physical equation associated to Darcy's law v = —V, (P + gy).

1) with ¢ + K(n)1) = —n we get the Muskat equation.
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The most beautiful equation for v is given by

Theorem [Zakharov, 1966]. Consider an irrotational velocity field u =V, ,¢

satisfying dyu+u -V, yu ==V, (P +gy). Then n and ¢ are conjugated:

@ _ 577-[ dj(t»x) = gzb(t,x,n(t,m))

ot o

oY  oH 1 g 2
Frinar H—2 Rde(n)wdx—&-Z/Rdn dx.

(Brenier related the Hele-Shaw and WW problems by a quadratic change of time.)



The most beautiful equation for v is given by

Theorem [Zakharov, 1966]. Consider an irrotational velocity field u =V, ,¢

satisfying dyu+u -V, yu ==V, (P +gy). Then n and ¢ are conjugated:

@ _ 577-[ dj(t»x) = gzb(t,x,n(t,m))

ot o

oY  oH 1 g 2
Frinar H—2 Rde(n)wdx—&-Z/Rdn dx.

(Brenier related the Hele-Shaw and WW problems by a quadratic change of time.)

A popular form of the equations:
on—Gmy =0
2
1o 2 L(Vn-Vo+Gny)”

Prop (A-Burg-Zuily). This system is equivalent to Euler with free surface.

® not PDE (G(n) is a nonlocal operator)
¢ fully nonlinear (instead of semi-linear, see [Said 2020])
® the Hamiltonian does not control the dynamics (7 only in L2).



One can define G(n) for rough domains.

Arendt and ter Elst : for bounded connected open set 2 C R™ whose boundary
has a finite (n — 1)-dimensional Hausdorff measure.

THE LIPSCHITZ THRESHOLD OF REGULARITY
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One can define G(n) for rough domains.

Arendt and ter Elst : for bounded connected open set 2 C R™ whose boundary
has a finite (n — 1)-dimensional Hausdorff measure.

THE LIPSCHITZ THRESHOLD OF REGULARITY
Let n € WL°(R%) and ¢ € H2(R%). There is a unique variational solution
¢ L*(dedy/(1+y)?*) , Vayuo e L*(9Q)

to
Npyd=0 in{(z,y) eR'xR:y<n@)}, of,_ =

Since ¢ is harmonic, one can define

=1+ |V7]|28nd>\ ~3(RY).

There holds
IG5 s < CUIVall- )-
Also [Rellich,Jerison-Kenig]

G g1z < COIVA L )-
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NOETHER'S THEOREM IMPLIES RELLICH INEQUALITY



NOETHER'S THEOREM IMPLIES RELLICH INEQUALITY

Proposition (Agrawal -
For any d > 1,

[ @tttz <a [ [vuias
R4 R4

In particular
G g2 <4+ 4Vl o

Proof. Noether's theorem (Hamiltonian problem + invariances) implies

d

X n(t,z)de =0 and dt/¢tm = 0.
Remembering that
( (MY + V- Vy)*

we get
Gy + V- Vy)* /
| = Vol

Remark i) The rigorous proof uses the multiplier method.
1) No periodic or quasi-periodic in time solutions in finite depth.



Proposition (A - Nguyen)

Let d>1, ne€ W-°(R?) and ¢ € H=(R%). There exists ¢ such that

C

d - -
vemwde 2 g

2
11, -

Remark: Let u € H*(Q) and set ¢ = u|y—,. Denote by ¢ the harmonic
extension of 1. Then

/ / Vo yul? dy da > / / Vgl dy dz = / 606 do
Q Q o0

= [ PG(n)yda.
]Rd

This gives the trace inequality

c

Vayul” dydo > = [luly=y 3
/ ! L+ [Vllpyo 7"



Proposition (A - Nguyen)

Let d>1, ne€ W-°(R?) and ¢ € H=(R%). There exists ¢ such that

C

YG)ypde > ————
Rd L+ [IVllgmo

2
11, -

Remark: The dependence in ||[V7|5\o is optimal:

/ $G ) d >

C 2
— ¥l = m>1
(I +IVnllgymo)™ H2

Indeed, let 6 be the harmonic extension of 7:
Apyd =0 in{y<n(x)} , 0O n()=n=).
Then [Haziot-Pausader, A-Zuily]

0< [ aGmds= [[ 19,07 dydo <l (1)

Then apply the inequality with n = ¢ = cos(kz) .



Proposition (A - Nguyen)
Let d>1, ne€ W-°(R?) and ¢ € H=(R%). There exists ¢ such that

YG(n)y de > 1117, 3

1+ ||V IBMoO

Proof. Assume d =1. Set v(z,z2) = ¢(x,z + n(x)).

/R VG () da = / /Q V2,62 dy dz = / /R 2_ (020 — 0.00.0)? + (0.0)?] dz da
/}R¢|Dz\1/1dx: // 0,(v|Dy|v)dzdx = 2//1&3(821)) |D;|vdzdx

_ 2// (0:0)H (D0 — (D)D) + (D) H((0.0)01)] d2 dr.
RZ’
Since H* = —H, we have

2/R2 (0:0)H((8:v)0,1m) dzdx = /R2 (0.v) [H,0,m]0.vdz dz.

Apply [Coifman-Rochberg-Weiss] (see also [Lenzmann-Schikorral). O



ELLIPTIC ESTIMATES

We have seen
IGO,s + IE@ize < C(IVAll )

Many other results [Nalimov, Craig-Schanz-Sulem, Wu, Beyer-Giinther, Lannes]

Proposition (A.-Burg-Zuily)
(¢) Forall s>1+d/2 and 1/2 <o <s

IGY N o1 < C (nll o) 191l o

(i7) Forall s>1+d/2,

[Gm) ~ Gl ey < C (Nmom)lery ) 1l o el oy

Sobolev embedding: (i) 7 is Lipschitz, and (i7) 11 — 12 is not Lipschitz.
Schauder's estimates : write
divy »(A(z0, 20) Vi 2v) = divg (Ao, 20) — Az, 2)) Vi ,v).
————

constant small

To prove Schauder’s estimates, it is convenient to paralinearize.



Paralinearization

By using the Fourier transform : G(0) = |D,|.

If n € C>, it is known since Calderén that G(n) is a W DO of order 1, whose
principal symbol is

A, €) =/ (L+ [Vn(@)P) Ie* — (Tn(z) - €)2.
More precisely,

Gln) = (2m)~" / TNz, E)D(E) dE + Roln)f,

where the remainder is of order 0, satisfying [Lannes]

o) Y]

5K 21,5 > o | Romlly. < C (I e
Remarks: i) A well-defined for any 1 € W1 (R%).
i) If d=1 or n =0 then A(z,&) = |¢| and Op(X\) = |D,|.
i1i) K corresponds to a loss of derivatives (Lannes, Iguchi).
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Paraproducts:

1 .
o — W//Rd . e (1+8) G(g 1) (&) dedés

/R | R
[€1+E2]~[€2] [€1+&2|~[&1] [€1]~]€&2]

== Tau + Tual + }%(CL7 u)
T,u has the same regularity as u for a € L*°, and R(a,u) is twice more regular.

Theorem (Bony, paralinearization of a product).

VoeR ae€Ll®RY) weH'RY = T,uecH(RY
Vs >0 a € H*(RY) u € H*(RY) =  R(a,u) € H2s*%(Rd)



In dimension one, this simplifies to

Gy =Dz ¢ + R(n)¢,

where R(n) is a smoothing operator,

Question: compute R(n) = G(n)y — |Dy| 9.

* % % First computation * % %

Theorem (A-Métivier). Let 3 <y <s. Set V = (0,¢)|y—, and
B = (0y9)|y=y - Then

G(WW = |Da:| ('(/) - TB??) - 8w (Tvn) + F

where
IF N ot < C (Inlles) {1l Il s + Il [|9]] 4 } -

Extensions: ABZ, Thibault de Poyferré, Albert Ai, Xuecheng Wang, Fan Zheng,
Chenyang Zhou...



Step 1 : Paracomposition. We flatten the boundary via the diffeomorphism
x: (2, 2) = (2,2 +n(x)).

Set v(z,2) = ¢z, z+n(x)). Then by elliptic regularity v € H**3 (R% x [~1,0]).

By paralinearization, we get

Ty 4 2030 + Av — 2Ty - VO v — Tayd.v € C2([—1,0]; Hy 7> (RY))

By using Alinhac’s paracomposition operators, introduce
u=¢ox-— Td)’oxX =v—= Tazvn'

Then wu satisfies a paradifferential elliptic equation:

5+d

Ty o202+ Au — 2T, - VOu — Tagdou € CO([~1,0 Hy'™ * (RY))

We call u the good unknown of Alinhac.
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Step 2 : elliptic factorization. There exist two symbols a, A such that
(0: = Tu)(9: — Ta)u € C2([-1,0); H* K O(RY)).
Step 3: elliptic regularity. Introduce w := (0, — Ta)u, then
O, w—T,w ~ 0.

and hence
(Osu — Tau)| =0 = w(0) ~ 0.

This gives d,u on the boundary {z =0} in terms of tangential derivatives
+ a smooth remainder. O

T. Alazard Free boundary June 13-16, 2023 13 /26



Many applications to the water-wave problem

e The Cauchy problem (cf lectures by Tataru and Wu)

e Balanced energy estimates: Ai-Ifrim-Tataru

e Enhanced existence :
Shatah, Delort-Szeftel, Hunther-Ifrim, Wu, Germain-Masmoudi-Shatah,
A-Delort, lonescu-Pusateri, Hunther-Ifrim-Tataru, Wang, Berti-Feola-
Franzoi, Deng-lonescu-Pusateri, Ehrnstrém-Wang

e Qualitative properties of the flow map : de Poyferré, Said

e Dispersive estimates : see later

e Small divisors : looss-Plotnikov-Toland, A-Baldi, Berti-Montalto

e Control theory : A-Baldi-Han Kwan, Zhu
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APPLICATION TO ENERGY ESTIMATES

Theorem (Matioc ; A-Meunier-Smets ; Nguyen-Pausader). The Cauchy problem
for the Hele-Shaw equation 0;n+ G(n)n = 0 is LWP on H*(T%) for s > 1+d/2.

Proof. One quasilinearizes (HS) as follows.
Lemma 1. Let ¢ = ¢(¢,z,y) harmonic extension of 7 in {y < n(t,z)} and

a=1- (ay¢)|y:n , V= _(V7;¢)|y:77'
Then

OV +V - -VV +aG(n)V + %V =0 where
1

R e

(G0 (e® +V?) = 20G(m)a—2v - GV ).
Proof: shape derivative formula [Zakharov, Lannes]

G ()Y = —G(n)(9¢ — Bon) — div(VIn)

B — V-V + G(n)yp
- 2
1+ [V

, L =Vy-—-BVn.



APPLICATION TO ENERGY ESTIMATES

Theorem (Matioc ; A-Meunier-Smets ; Nguyen-Pausader). The Cauchy problem
for the Hele-Shaw equation 0;n+ G(n)n = 0 is LWP on H*(T%) for s > 1+d/2.

Proof. One quasilinearizes (HS) as follows.
Lemma 1. Let ¢ = ¢(¢,z,y) harmonic extension of 7 in {y < n(t,z)} and

a=1=00yd)ly=n , V ==(Vad)ly=n-

Then
6tV—|—V-VV+aG(r])V+%V:0 where
__ 1 2y _ oy,
T=17 W2 (G(n)(a +V?) —2aG(n)a — 2V G(n)V).
Lemma 2. a >0 [Wu for WW]

Proof: the function y — ¢ is harmonic and vanishes on the boundary. The Hopf-
Zaremba principle gives 9, (y — ¢) > 0. O



Recall that ~
6tV+V~VV—|—aG(77)V+EV:O

Notice that A =V -V is of order 1 but
(A+A")f =—(divV)f s of order 0.

Bounded from L? to L? if V is Wl
Loosely speaking, A + A* is of order 1 — ¢ provided that V is L(C%#).



Recall that
6tV+V~VV—|-aG(77)V+gV:O

Notice that A =V -V is of order 1 but
(A+A")f =—(divV)f s of order 0.

Bounded from L? to L? if V is Wl
Loosely speaking, A + A* is of order 1 — ¢ provided that V is L(C%#).

Last step : paradifferential analysis of G(7) [A.-Burg-Zuily]

d
Lemma 3. Assume that € H*(R?) with s=1+5+e >0

If d=1 then G(n) =|D;|+ R(n) where |D,| =+/—0,; and

N =

1
1RO sy pru-sve < Cllmllgg) for 5 <p<s—

If d > 2 same result with paradifferential operators.

Then energy estimates and interpolation arguments. |



APPLICATION : THE CAUCHY PROBLEM IN A CHANNEL

Figure: 2D section of the channel
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APPLICATION : THE CAUCHY PROBLEM IN A CHANNEL

b A A A

Figure: 2D section of the channel

For s <3, if 0,,m(0,22) = 0= 0,,n(1,z2) then
neHV2((0,1),, xRy,) = ne H5(T x Ry,).

e ABZ: LWP for s > 3 with surface tension and 3D fluids.
e Semi-classical Strichartz estimates (Lebeau, Smith, Tataru, Bahouri-Chemin,
Staffilani-Tataru, Burg-Gérard-Tzvetkov):

Christianson-Hur-Staffilani, ABZ, de Poyferré, Ai



APPLICATION : REDUCTION TO CONSTANT COEFFICIENTS IN 1D
(Oversymplifying) One can rewrite the WW system as [A-Burg-Zuily]

Pu=2 4 V(@0 + 1041} (clw) D1 ) = 0

where z € T and

V(u) = Re ((Dy) Nu)

with N as large as we want (for smooth enough initial data).
Using a change of variables (preserving the L2-norm in z)
h(t,z) = (14 0yk(t,2))? h(t, z + K(t, 7))
we replace P by
Q=0 +W0o,+1 |Dm\% + R, R is of order zero

where one can further assume that [, W(t,z)dz =0.



To study 0y + WO, + i |Dx|% + R', we seek an operator A such that

[A,i |DL|% | + W, A s a zero order operator
We find [A.-Baldi]
A= 0p (gt @, ) BI1IT)
with 5
B = PBo(t) + g@?lw-

Then ., .
(3,5 + W, +1i|D,|? )A = A(@t +1i|D.|? +R”)

with R of order 0.

Notice that A € Op S9 | with p =1/2 ([Said 2020], quasi-linear).

For Benjamin-Ono, similar conjugation with A € Op 57, (semi-linear).



The Muskat problem

Dynamics of the curve X(t) separating two fluids:

Each €; is occupied by an incompressible fluid with constant density p;, velocity
u; and pressure P;. Muskat equations read:

i = —Vay (P + pigy) in €; (Darcy)
divgyu; =0 in Q; (incompressibility)
P =P on ¥ (continuity of P)
0
Up M =1Ug N = T on ¥ (transport of X)
1+ (0./)?
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One can reduce the Muskat problem to a parabolic evolution equation for f:
Caflisch-Orellana-Siegel, Escher-Simonett, Ambrose

Cérdoba and Gancedo obtained a beautiful compact formulation:

f(t,z:)—f(t,z—oz)

o

O f = ﬁax /arctan(Aaf) da Ao f(t,z) =
2 R

where p = ps — p1. We assume p >0 and set p = 2.

Scaling f(t,z) — %f()\t,/\x) — Critical spaces H2(R), W (R).

e Many proofs of well-posed on sub-critical spaces

Yi, Caflisch-Howison-Siegel, Ambrose, Cérdoba-Gancedo, Cérdoba-
Cérdoba-Gancedo, Cheng- Granero-Belinchén- Shkoller, Constantin-
Gancedo-Shvydkoy-Vicol, Matioc, Deng-Lei-Lin, A-Lazar, Nguyen-
Pausader
Cameron first studied well-posedness for interfaces in W1 N L2(R) for initial
data whose slope is bounded by 1.



Since |Dy| = 9, H with

Hite) = 2o [ L0 g

we have 1
|D.| f = —;pv/R@mAafda
Then write
_%Baf _ _(Aaf)?

9, arctan(A, f) = TN = 0:Aunf — (0:Auf) L1 (Do f)

to get
B 1 (Aaf)?
O +1D:1f=T(N)f where T(7 =~ [ OBaf) 5 e

This gives a rigorous meaning to the Muskat equation (A.-Lazar).

Prop.The map f+— T(f)f is locally Lipschitz from H?(R) to L2(R).

u(y)l® dedy

1 2 lu(z) —
< Hz c I* :
luvl| g < flullpa llullga ; HMH%N// Y R P
RxR



THE CORDOBA-LAZAR INEQUALITY
Theorem (Cérdoba and Lazar). GWP for f, € H3(R) such that

(1 +110x follz) 1 foll ;3 < 1.

i) Main estimate:

d 2 (8sz)2 2 2
S + / Tr o o S (1153 + 1712 ) 1130

Very delicate estimate since H 2 (R) is not a Banach algebra.

Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.

See also Gancedo-Lazar, Granero-Bellinchén & Scrobogna, Scrobogna.
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THE CORDOBA-LAZAR INEQUALITY

Theorem (Cérdoba and Lazar). GWP for f, € H2(R) such that
(1 +110x follz) 1 foll ;3 < 1.

i) Main estimate:

d 2 (Ouaf)® 2 2
&nmgg541+@Mydisofmﬁ+an9nﬂH2

Very delicate estimate since H 2 (R) is not a Banach algebra.

Proof based on a reformulation in terms of oscillatory integrals, Besov spaces.

See also Gancedo-Lazar, Granero-Bellinchén & Scrobogna, Scrobogna.

ii) Bound for the slope: to control the denominator 1+ (9, f)?. By an
integration by parts argument (C.G., Cameron, G.L.):

d
37 192l < 1 £ 1

Then 1
2 2



Theorem (A & Q.-H Nguyen). GWP for f, € H?(R) such that “fOHH% < 1.

A null-type property.

d oo (D )° _(Ouef)®
T+ [ Tl o < (Lo 1AL ) 11 [ T do
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Theorem (A & Q.-H Nguyen). GWP for f, € H?(R) such that “fOHH% < 1.

A null-type property.

d 2 ' (a:carf)2 . 7 ' ( :crf) )
G+ [ 12l e < (1113 1y [ 15 do

Imply at once GWP for small data: if ||f||Hg is small enough then

i 2 (3.m:f)2
FAE “O/R T+ @2 ="

Theorem (A & Q.-H Nguyen). LWP in the critical space H2(R).

A norm depending on the initial data: for fy € H%(R) there is a weight kg s.t.

ol g0 1= [ (116D RV o) d < o0 and - tim (€)= +.

|€] =400

We estimate the L2°(#2%°)-norm of f.
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Muskat equation reads

1 0L
atf_ﬂ/RH(Aaf)2 o

One expects to extract a formulation of the form
Of +Vouf+7[Ds| f =R(f)

for some coefficients V' and ~ depending on 9, f .
— paradifferential type analysis ; A.-Lazar and Nguyen-Pausader.
The approach in [Nguyen-Pausader] applies for many physical equations.
The approach in [A.-Lazar] is adapted to study critical problem.
Following Shnirelman, we consider a simpler version of paraproducts:

T.g = A" (aAtTeg) | A= (I— Dy ) /?

and we decompose




Since A, f(z) — fz(x) when o — 0, decompose
1 1
Elo) =g (5 (@) =13 (&f)?)'
By considering that  |D,| f = . / 0:Aqfda we obtain
TJR

0+ T 1o T+ V0L + R=0 (4

with

1 O (o)) _ 1 fo(t — ) 1 1t
v—‘%/RTda’ fi= W/R a (1+<Aaf>2 1+f3)da’

Then, we estimate the L°(H2%(R))-norm of f by

® commuting |D.|k(D,) with the equation (xx)
e taking the L2 scalar product with |D,|* (D,)f and integrating in time.



Thank you!



