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Constantin Stratospheric planetary flows



The stratospheric dynamics on the giant planets of our solar system is dominated by zonal flows

that feature a banded structure, with superimposed non-zonal patterns, in the form of long-lived

vortices (“eddies”) – typically small but sometimes large (like Jupiter’s Great Red Spot and

Saturn’s Polar Hexagon). Since the stratosphere is thermally stably stratified and viscous effects

are not relevant, two-dimensional inviscid flows on a rotating sphere are pertinent models.

Figure: Variation of the mean zonal winds with latitude on the giant planets of our
solar system, measured relative to the planet’s rotation speed about its polar axis
(Credit: OpenStax CNX). The traces of methane (which absorbs red light) in their
upper atmosphere gives Uranus and Neptune a blue hue, obscuring the visibility of
specific flow patterns. These pictures show the high altitude clouds just beneath the
stratosphere (at the top of the troposphere) – the only planetary atmosphere in our
solar system transparent enough to see through from space being that of the Earth.

Constantin Stratospheric planetary flows



Differential geometry of the sphere

Figure: The rotating spherical coordinate system (r ′, ϕ, θ): θ ∈ [−π
2
, π

2
] is the angle

of latitude, ϕ ∈ [−π, π] is the angle of longitude, and r ′ = |OP| is the distance from
the origin at planet’s center. The North Pole is at θ = π

2
, the Equator is on θ = 0 and

the South Pole is at θ = −π
2

. The double-valued ambiguity along the international
date line ϕ = π can be resolved by assuming a periodic dependence on the azimuthal
angle ϕ but the unit vectors eϕ and eθ are not well-defined at the poles, where the
latitude circles degenerate into a single point. Note that, by the “hairy ball theorem”,
the 2-sphere S2 does not possess a continuously differentiable field of unit tangent
vectors – it is not possible to cover S2 with one chart.
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Figure: The longitude-latitude spherical coordinates (ϕ, θ) ∈ (−π, π)× (−π
2
, π

2
)

provides a chart (ϕ, θ) ∈ (−π, π)×
(
− π

2
, π

2

)
7→ (cosϕ cos θ, sinϕ cos θ, sin θ) ∈ S2

covering S2 with the half-circle ϕ = π (the international date line, including the poles)
excised. A smooth atlas for S2 is obtained by coupling this with the chart
(ϕ̃, θ̃) ∈ (−π, π)×

(
− π

2
, π

2

)
7→ (− cos ϕ̃ cos θ̃, sin θ̃, sin ϕ̃ cos θ̃) ∈ S2 covering S2 with

the equatorial half-circle parametrized in spherical coordinates by {θ = 0 , ϕ ∈ [0, π]}
excised: the bijective transformation (x , y , z) 7→ (−x , z, y) between the above
parametrizations is equivalent to first rotating the Euclidean coordinate system by π

2
about the x-axis and then by π about the z-axis.
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The 4-dimensional tangent bundle TS2 of the 2-sphere S2 is not parallelizable
as a consequence of the hairy ball theorem. However, at every point X of
S2 \ {N, S}, having spherical coordinates (ϕ, θ) ∈ [−π, π]× (−π

2
, π

2
), the

tangent vectors

eϕ =
1

cos θ
∂ϕ, eθ = ∂θ ,

provide us with a basis of the tangent space TXS2 at X ∈ S2. In these
coordinates, the Riemannian volume element is

dσ = cos θ dϕdθ ,

and the classical differential operators (gradient and Laplace-Beltrami for scalar
functions ψ : S2 → R, divergence for vector fields F : S2 → TS2) are given by

gradψ = ∂θψ eθ +
∂ϕψ

cos θ
eϕ ,

div(Fϕ eϕ + Fθ eθ) =
1

cos θ
[∂ϕFϕ + ∂θ(cos θ Fθ)] ,

∆ψ = div gradψ = ∂2
θψ − tan θ ∂θψ +

1

(cos θ)2
∂2
ϕψ .

Constantin Stratospheric planetary flows



The Laplace-Beltrami operator ∆ on S2, operating in the Hilbert space L2(S2)
obtained as the completion of the smooth functions f : S2 → C of zero mean
(i.e., with

∫∫
S2 f dσ = 0) with respect to the inner product

〈f1, f2〉 =

∫∫
S2

f1 f2 dσ ,

(where the overbar denotes complex conjugation) is negative, self-adjoint and
its spectrum is the discrete set of eigenvalues

⋃
j≥1{−j(j + 1)}, the spherical

harmonics {Y m
j }j≥1, |m|≤j being an orthonormal basis of eigenfunctions in

L2(S2), with

∆Y m
j = −j(j + 1)Y m

j , j ≥ 1 , m ∈ {−j , . . . , j} .

A basis of the j-th eigenspace Ej , of dimension 2j + 1, associated to the
eigenvalue −j(j + 1), is provided by the (2j + 1) spherical harmonics Y m

j (ϕ, θ)
of degree j and zonal number m (−j ≤ m ≤ j).
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The relevance of 2D Euler flows for stratospheric dynamics

Stratospheric flow is inviscid, being governed by the system†

∂u0

∂t
+

u0

cos θ

∂u0

∂ϕ
+ v0

∂u0

∂θ
− u0v0 tan θ − 2ω v0 sin θ = − 1

ρ0 cos θ

∂p0

∂ϕ
,

∂v0

∂t
+

u0

cos θ

∂v0

∂ϕ
+ v0

∂v0

∂θ
+ u2

0 tan θ + 2ω u0 sin θ + ω2 sin θ cos θ = − 1

ρ0

∂p0

∂θ
,

0 =
1

ρ0

∂p0

∂z
+ g ,

∂u0

∂ϕ
+

∂

∂θ
(v0 cos θ) = 0 .

Using the third equation we introduce the stream function, ψ(ϕ, θ, z , t), with

u0 = −∂ψ
∂θ

and v0 =
1

cos θ

∂ψ

∂ϕ
, (2)

while the elimination of the dynamic pressure p0 between the first two
equations gives the vorticity equation

∂

∂t
∆ψ +

1

cos θ

[
∂ψ

∂ϕ

∂

∂θ
− ∂ψ

∂θ

∂

∂ϕ

](
∇2

Σψ + 2ω sin θ
)

= 0 . (3)

†For ρ0 constant the system (1) particularizes to that describing inviscid flow on the surface of
a rotating sphere. This 2D character is related to the fact that, due to an ascending temperature
with height (the equation of state being p = ρT ), the stratosphere is stably stratified and vertical
motion is suppressed.
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Stationary solutions of (3) lead to travelling-wave solutions describing
stratospheric flows, with an associated decrease of density and increase of
temperature with height. Indeed, given the vertical density stratification of the
stratosphere ρ0(z), if ψ0(ϕ, θ) solves

∆ψ0 = F (ψ0)

for some F ∈ C 1(R,R), then

ψ(ϕ, θ, z , t) = ω sin θ +
1√
ρ0(z)

ψ0(ϕ+ ω t, θ)

with the associated pressure

p0(ϕ, θ, z , t) = F(ψ0(ϕ+ ω t, θ))− 1

2

(∂ψ0

∂θ
(ϕ+ ω t, θ)

)2

− 1

2 cos2 θ

(∂ψ0

∂ϕ
(ϕ+ ω t, θ)

)2

− g

∫ z

0

ρ0(s) ds ,

where F is a primitive of F , is a solution of the system, describing
height-dependent stratospheric planetary flows that propagate zonally
westwards.
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The Euler equation for inviscid flow on a rotating sphere

The Euler equation on a sphere rotating at speed ω about the polar axis can be
written for either the stream function ψ, the velocity field

U = (u, v) with

{
u = −∂θψ ,
v = 1

cos θ
∂ϕψ .

or the vorticity Ω = ∆ψ. The use of spherical coordinates (more precisely, the
fact that longitude is not well-defined and latitude circles degenerate into a
single point at the poles) introduces artificial singularities at the poles that can
be ruled out either by switching to the chart that covers the sphere with the
equatorial half-circle removed or by taking smoothness into account. For
example, regarding the apparent singularity of the meridional velocity
component v at the poles (where cos θ = 0), note that for any C 1-function
ψ : S2 → R the continuity of the gradient with respect to the spherical
coordinates (ϕ, θ) implies

lim
θ→±π

2

∂ϕψ(ϕ, θ) = 0

since on any genuine circle of latitude θ ∈
(
− π

2
, π

2

)
the periodicity of ψ in the

longitudinal direction ensures the existence of a point where ∂ϕψ vanishes.
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The Euler equation set on the sphere S2, in a frame rotating at speed ω ∈ R
about the polar axis, can be written in terms of the stream function ψ as

∂t ∆ψ +
1

cos θ
[−∂θψ ∂ϕ + ∂ϕψ ∂θ] (∆ψ + 2ω sin θ) = 0 . (Eω)

To express the Euler equation in terms of the velocity field we have to add the
divergence-free condition to the evolution equation (Eω), together with an
auxiliary scalar pressure field p (that arises as a Lagrange multiplier for the
divergence-free constraint){

DtU + 2ω sin θ JU = − grad p ,
divU = 0 ,

(4)

where Dt is the material derivative, describing the transport by the velocity
field U, given by

Dt = ∂t +∇U = ∂t + u∇eϕ + v∇eθ ,

in terms of the covariant derivatives

∇eθeθ = ∇eθeϕ = 0 , ∇eϕeθ = − tan θ eϕ , ∇eϕeϕ = tan θ eθ ,

and where the complex structure J (corresponding to a rotation in the tangent
space) is defined by

Jeϕ = eθ, Jeθ = −eϕ .
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At the level of the vorticity, the Euler equation becomes‡

Dt(Ω + 2ω sin θ) = 0 , (5)

and has to be complemented with the Biot-Savart law, which recovers at every
instant t the stream function (and thus the velocity field) from the vorticity:

ψ(ξ0) =

∫∫
S2

G(ξ, ξ0)Ω(ξ) dσ(ξ) ,

where G(ξ, ξ0) = 1
2π

ln
( |ξ−ξ0|

2

)
, with |ξ − ξ0| the distance in R3 between

ξ 6= ξ0 on S2, is the Green function, satisfying

∆G(ξ, ξ0) = δ(ξ − ξ0)− 1
4π
, (6)

with δ the Dirac delta distribution corresponding to a point vortex located at
ξ0 ∈ S2. Note that since the velocity field is divergence-free, an immediate
consequence of the divergence theorem is the validity of the Gauss constraint∫∫

S2

Ω dσ = 0 , (7)

so that the factor − 1
4π

in (6) plays the role of a compensating uniform vorticity
distribution on S2 to guarantee the validity of (7).
‡Sometimes termed the two-dimensional baroclinic Ertel equation for the material conservation

of potential vorticity.
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Generally, insight in the flow dynamics is more readily available working with
the stream function ψ, rather than with the vorticity Ω = ∆ψ. Equation (Eω)
is the barotropic vorticity equation, describing the motion of an inviscid,
unforced, incompressible, homogeneous fluid on a rotating sphere.

I With respect to the symplectic structure on S2, whose Poisson bracket is
given in spherical coordinates by

{f , h} =
1

cos θ

(
∂θh ∂ϕf − ∂θf ∂ϕh

)
,

the vorticity equation (Eω) can be expressed as the Hamiltonian flow

∂t(∆ψ + 2ω sin θ) = {∆ψ + 2ω sin θ, ψ} .

I Conservation laws and energy estimates for equation (Eω) are very similar
to the more classical framework of the (two-dimensional) Euclidean space,
or of the torus. In particular, one can use energy methods to prove local
well-posedness in Hs , s > 2, and an analogue of the Beale-Kato-Majda
theorem ensures global well-posedness in Hs , s > 2.
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Symmetries The Euler equations (Eω) with different rotation speeds ω are
related through the change-of-frame

ψ0(ϕ, θ, t)←→ ψω(ϕ, θ, t) = ψ0(ϕ+ ωt, θ, t) + ω sin θ

(i.e., ψω solves (Eω) ⇔ ψ0 solves the Euler equation on a fixed sphere).

I (Scaling with λ > 0): ψ(ϕ, θ, t) solves (Eω), ⇔ λψ(ϕ, θ, λt) solves (Eλω).
I Another invariance is related to the symmetries of the 2-sphere, given by

the orthogonal group O(3), a compact Lie group of dimension 3,
consisting of the isometries of R3 which fix the origin: one can think of
O(3) as the group of orthogonal real 3× 3 matrices or as a group of
transformations of R3. The action of O(3) is defined by

Gf (X ) = f (GX ) , X ∈ S2 , G ∈ O(3) ,

for a scalar function f : S2 → R and the following transformations leave
the set of solutions of (Eω) invariant§:

ψ(X , t) 7→ ψ(GX , t) ,

U(X , t) 7→ GU(GX , t) ,

Ω(X , t) 7→ Ω(GX , t) ,

X ∈ S2 .

§The non-abelian subgroup of O(3) of all orthogonal 3× 3 real matrices R with det(R) = 1,
itself a compact Lie group of dimension 3, is called the rotation group SO(3) since each
transformation X 7→ RX with R ∈ SO(3) can be obtained by first choosing a fixed direction
through the origin and subsequently rotating the coordinate system through a suitable angle about
this direction as an axis.
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Integrals of motion The following quantities are constant in time for smooth
solutions of (Eω):

(i) (kinetic energy)
1

2

∫∫
S2

|U|2 dσ,

(ii) (Casimir invariants)

∫∫
S2

F (Ω + 2ω sin θ) dσ for any differentiable function

F : R→ R,

(iii) (first eigenspace of the Laplace-Beltrami operator) eimωtcm1 (t) for the
coefficients

cm1 =

∫∫
S2

ΩY j
1 dσ , m ∈ {−1, 0, 1} ,

of the L2(S2)-expansion of the vorticity Ω in terms of the spherical
harmonics {Y m

j }j≥1, |m|≤j . In particular, the real number c0
1 (t) and the

absolute values of the complex numbers c±1
1 (t) are flow-invariants. For a

non-rotating sphere (ω = 0), the vorticity components in the direction of
each of the three spherical harmonics of degree 1 are invariant.
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Stationary solutions Stationary solutions of (Eω) satisfy

[−∂θψ ∂ϕ + ∂ϕψ ∂θ] (∆ψ + 2ω sin θ) = 0 . (8)

Geometrically, (8) means that the gradients of the stream function ψ and of
the potential vorticity ∆ψ + 2ω sin θ are parallel. Since the gradient is
orthogonal to the level set, in regions of S2 where gradψ 6= (0, 0) the rank
theorem ensures that (8) is locally equivalent to the elliptic problem

∆ψ + 2ω sin θ = F (ψ) (9)

for some C 1-function F . It is easy to check that any solution of the elliptic
problem (9) on S2 will also solve (8), but the converse is not true in general¶.

Two classes of explicit solutions of (8) are known:

I zonal solutions ψ(θ);

I for F (s) = −j(j + 1)s, Rossby-Haurwitz waves of the form

ψ(ϕ, θ) = 2ω
2−j(j+1)

sin θ+β Y (ϕ, θ) , j ≥ 2 , β ∈ R , Y ∈ Ej , (10)

where Ej is the (2j + 1)-dimensional eigenspace of the Laplace-Beltrami
operator associated to the eigenvalue −j(j + 1).

¶For example, any zonal function ψ solves (8) but does not have to be a solution of (9), as
shown by the case of constant functions.
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Using the invariance properties, from the stationary Rossby-Haurwitz waves
(10) one obtains explicit non-trivial travelling-wave solutions of (Eω) of the
form

ψ(ϕ− ct, θ) = α sin θ + β Y (ϕ− ct, θ) (11)

with

Y ∈ Ej (j ≥ 1) , α ∈ R , β ∈ R \ {0} , c =
2ω

j(j + 1)
+ α

j(j + 1)− 2

j(j + 1)
,

solving
∆ψ + 2ω sin θ = F (ψ)

for F (ψ) = −j(j + 1). Two particular cases are of great interest:

I for α = 2ω
2−j(j+1)

with j ≥ 2 we obtain the stationary waves (10), which
propagate with wave speed c = 0;

I for α = ω we obtain geostationary waves that propagate azimuthally with
wave speed c = ω, which can be subsumed into 3D stratospheric flows (as
already pointed out).
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Rigidity results

Theorem Let ψ be a classical solution of

∆ψ + 2ω sin θ = F (ψ)

for some ω ∈ R. If F ′ > 0, then ψ is constant. If F ′ > −6, then ψ is a zonal
flow, modulo a rotation in O(3).

I Note that the −6 is the second eigenvalue of the Laplace-Beltrami
operator. Results of this type are available for general Riemannian
surfaces, under the condition that F ′ is larger than the smallest eigenvalue
of the Laplace-Beltrami operator (F ′ > −2 for the sphere). The
symmetric structure of the sphere explains the improvement.

I The result is optimal since the Rossby-Haurwitz wave

ψ(ϕ, θ) = −ω
2

sin θ + β Y (ϕ, θ) , β ∈ R \ {0} ,

with Y a non-trivial linear combination of all spherical harmonics
{Y m

2 }|m|≤2 satisfies ∆ψ + 2ω sin θ = −6ψ.
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Using the invariance properties, this rigidity result permits us to find
nonlinearities F for which the equation

∆ψ + 2ω sin θ = F (ψ) (13)

admits classical non-zonal solutions, starting from a non-trivial zonal solution
and applying a rotation that transforms rotations about the polar axis into
rotations about a fixed horizontal axis.

Example 1 One can check that for every ε > 0 the function

ψ0(θ) = ln
(1 + ε sin θ

1− ε sin θ

)
, −π

2
≤ θ ≤ π

2
,

is a zonal solution of (9) with ω = 0, for

F (ψ) = −1− ε2

2
[2 sinh(ψ) + sinh(2ψ)] .

Consequently,
ψ(ϕ, θ) = ln[1 + ε cos2(θ) sin2(ϕ− ϕ0)]

is a non-zonal solution for every fixed ϕ0 ∈ [0, 2π).
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Example 2 The zonal solution

ψ0(θ) = eε sin θ − 1 , −π
2
≤ θ ≤ π

2
,

for F (ψ) = ε2(1 + ψ)− (1 + ψ) ln2(1 + ψ)− 2(1 + ψ) ln(1 + ψ) and ω = 0
leads to the non-zonal solution

ψ(ϕ, θ) = eε cos θ sin(ϕ−ϕ0) − 1 with ϕ0 ∈ [0, 2π) fixed.

Figure: The streamlines of the solution in Example 2 are circles with collinear centres
along a segment lying in the equatorial plane and passing through the centre of the
sphere, since by passing to spherical coordinates in R3 we see that the level sets
[cos θ sin(ϕ− ϕ0) = d ] are precisely the points on the sphere at distance |d | from the
line obtained rotating the x-axis by ϕ0-degrees in the equatorial plane.
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Stability of zonal flows

Consider a smooth zonal flow ψ0 = f (θ), with associated azimuthal velocity
and vorticity given by

U0 = −f ′(θ)eϕ , Ω0 = f ′′(θ)− tan θ f ′(θ) = g(θ) .

Theorem If there exist parameters ε, A ∈ R such that∣∣∣∣ f ′(θ)− A cos θ

g ′(θ)

∣∣∣∣ > ε > 0 on
(
−π

2
,
π

2

)
,

then the zonal flow is stable in H2(S2): if ψ̂(t) is the solution of the vorticity

equation with initial data ψ(0) = ψ̂0, then ‖ψ̂(t)− ψ0‖H2 . ‖ψ̂0 − ψ0‖H2 .

Proof. We implement Arnold’s method by considering the functional

E(ψ) =

∫∫
S2

[
1

2
|U|2 + K(Ω) + A sin θΩ

]
dσ ,

which is a sum of conserved quantities for the flow. Choosing K such that
−f ′(θ) + K ′′(g(θ))g ′(θ) = −A cos θ, the second variation of E is then

d2Eψ0 (δψ) =

∫∫
S2

[
|δU|2 +

f ′(θ)− A cos θ

g ′(θ)
(δΩ)2

]
dσ .
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Leu us discuss the zonal wind profiles of Uranus and Neptune, consisting of one
broad retrograde equatorial jet flanked by two prograde jets at higher latitudes.
The zonal flow is symmetric about the Equator for both planets, but there are
noticeable differences of the latitudinal flow profiles:

I on Uranus the equatorial jet is located within the latitude band between
30◦N and 30◦S, while on Neptune it extends over 50◦;

I the prograde/retrograde (eastward/westward) zonal flows on Uranus,
measured relative to the planet’s rotation speed about its polar axis, peak
at about 200 m/s, respectively at 80 m/s, the corresponding values for
Neptune being about 200 m/s and 400 m/s, respectively.

If the latitudinal profile of the zonal flow with respect to the rotation about the
planet’s polar axis (with zonal velocity θ 7→ ω cos θ) is given by the function

U0(θ) = α cos5 θ + β cos3 θ + γ cos θ , θ ∈
(
− π

2
,
π

2

)
,

for some real constants α 6= 0, β and γ, we can now compute

−f ′(θ) + A cos θ

g ′(θ)
=

cos4 θ + β
α

cos2 θ + γ−ω+A
α

30
(

cos4 θ + 2(β−2α)
5α

cos2 θ + γ−ω−8β
15α

) , θ ∈
(
−π

2
,
π

2

)
.

so that the stability criterion applies if the quadratic polynomials (in x = cos2 θ)

x2 +
β

α
x +

γ − ω + A

α
and x2 +

2(β − 2α)

5α
x +

γ − ω − 8β

15α

have the same roots in the interval (0, 1).
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I For Uranus the second quadratic polynomial is

x 7→ x2 − 5
2
x + 155

96
,

with no real roots. Choosing A ∈ R so that the first quadratic polynomial
has no roots, we conclude that the zonal flow pattern of Uranus is stable.

I For Neptune the second quadratic polynomial is

x 7→ x2 − 211
160

x + 20731
30720

,

with no real roots. Consequently, choosing A ∈ R so that the first
quadratic polynomial has no roots, we conclude that the zonal flow
pattern of Neptune is also stable.

Remark: The zonal jet patterns on Jupiter and Saturn are not far off from
entering the framework of this stability result. However, the profiles of
terrestrial stratospheric jets are well beyond the condition that we require, as is
to be expected since the Earth’s polar jet stream is known to be unstable.
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Stability of stationary solutions

Consider a stationary solution ψ0. We implement Arnold’s method by defining

E(ψ) =

∫∫
S2

[
1

2
|U0 + U|2 + K(Ω0 + Ω + 2ω sin θ) + A sin θΩ + B(P1ψ)2

]
dσ

as a sum of conserved quantities for the flow (Pk being the projection on Ek).
Choosing

K ′′(F (x))F ′(x) = 1 and A = ω ,

we ensure that the first variation is zero. The second variation d2E0(δψ) is∫∫
S2

(2 +
4

F ′(ψ0)
+ 2B

)
(P1δψ)2 +

∑
k≥2

(
k(k + 1) +

k2(k + 1)2

F ′(ψ0)

)
(Pkδψ)2

dσ .

The question of the coercivity of d2E0 reduces to determining eigenvalues of
the Schrödinger operator − ∆

F ′(ψ)
+ 1 on the orthogonal complement of E1. We

distinguish several cases, according to the the range of F ′(ψ0):
I If F ′ > 0, the quadratic form is positive-definite if one chooses B = 0. By

the rigidity result, F ′ > 0 forces constant solutions.
I If −6 < F ′(ψ0) < 0, then the quadratic form is negative-definite: indeed,

k(k + 1) + k2(k+1)2

F ′(ψ0)
> 0 for all k ≥ 2, and the mode k = 1 can be handled

by choosing B = −10. By the rigidity result, the solutions are zonal up to
a rotation.
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The above considerations yield the following result.

Theorem For 0 > F ′ > −6, the stationary solutions are stable in H2(S2).

This result applies to the explicit stationary solutions discussed in Example 1
and in Example 2. Indeed, since

1

F ′(ψ)
= − 1

2(1− ε2)

[1− ε2 cos2(θ) sin2(ϕ− ϕ0)]2

1 + 3 ε2 cos2(θ) sin2(ϕ− ϕ0)
,

and

1

F ′(ψ0)
= − 1

2− ε2 + 4ε cos(θ) sin(ϕ− ϕ0) + ε2 cos2(θ) sin2(ϕ− ϕ0)
,

respectively, we see that for ε > 0 small enough these solutions are stable.

Note that with the exception of the equatorial regions containing a broad
eastward zonal jet, vortices are generally found on Jupiter and Saturn at all
latitudes, preferentially in regions of westward zonal flow.
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Stability results for Rossby-Haurwitz waves of degree 2

The limiting case in the above stability theorem is given by F ′ = −6, which
corresponds to Rossby-Haurwitz solutions in E1 + E2. These solutions, with a
more intricate latitude variation, are of considerable interest in meteorology.
For example, the wave obtained by setting Y proportional to the spherical
harmonics Y 1

2 is commonly observed in the terrestrial atmosphere, being known
as the 5-day wave since it travels westwards with a period of about 5 days.
These waves are also preponderant in the atmospheres of the outer planets of
our solar system (Jupiter, Saturn, Uranus, Neptune). The instability of the
Rossby-Haurwitz waves is a key factor in the lack of predictability of the
weather in long-term forecasts and earlier attempts to study the stability of the
degree 2 waves by numerical means are somewhat inconclusive, the results
being partly contradictory‖.

‖See the discussion in P. Bénard, Stability of Rossby-Haurwitz waves, Quart. J. Roy. Met. Soc.
146 (2020), 613–628.
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Theorem (i) Non-zonal Rossby-Haurwitz waves of the form

ψ0(t) = α sin θ + β Y (ϕ− ct, θ)

with Y ∈ Ej (j ≥ 1), α ∈ R, β ∈ R \ {0}, c = 2ω
j(j+1)

+ α j(j+1)−2
j(j+1)

, are unstable:

there exists ε > 0 and a sequence ψ̂n
0 → ψ0 in H2(S2), so that for the solutions

ψ̂n(t) of (Eω) with initial data ψ̂n(0) = ψ̂n
0 we have

sup
t>0
‖ψn(t)− ψ0(t)‖L2(S2) > ε > 0 .

(ii) The zonal Rossby-Haurwitz flows

ψ0(θ) = α sin θ + β Y 0
2 (θ) , α ∈ R , β ∈ R \ {0} ,

of degree n ≤ 2 are stable in H2(S2).

Proof. For (i), we estimate supt>0 ‖ψ̂n(t)− ψ(t)‖2
L2(S2,dσ) from below, for

ψ̂n(t) =
(
α + 1

n

)
sin θ + β Y (ϕ− ĉ t, θ) , ψ0(t) = α sin θ + β Y (ϕ− ct, θ) ,

with c = 2ω
j(j+1)

+ α j(j+1)−2
j(j+1)

and ĉ = 2ω
j(j+1)

+
(
α + 1

n

) j(j+1)−2
j(j+1)

.
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To prove (ii), note that, using the scaling and change-of-frame symmetries, it
suffices to consider the case ω = 0, β = 1. Consider a smooth perturbation

ψ(ϕ, θ, t) =
∞∑
l=1

{ l∑
m=−l

cml (t)Y m
l (ϕ, θ)

}
of the zonal flow, expressed in terms of the spherical harmonics Y m

l by means
of the time-dependent coefficients cml (t) ∈ C. Since ψ is real-valued, we have

c−m
l (t) =

∫
S2

ψ Y−m
l dσ = (−1)m

∫
S2

ψ Y m
l dσ = (−1)m

∫
S2

ψ Y m
l dσ = (−1)m cml (t) , |m| ≤ l .

Furthermore, we know that c0
1 (t) = c0

1 (0) and |c±1
1 (t) = |c±1

1 (0)| for t ≥ 0.
The conservation of energy and the time-invariance of

∫
S2 |∆ψ|2 dσ give

∞∑
l=3

[l2(l + 1)2 − 6l(l + 1)]
{ l∑

m=−l

|cml (t)|2
}
< ε2 , t ≥ 0 .

if ‖∆[ψ0 − ψ(·, 0)]‖L2 < ε. Thus the instability can only be caused by a
substantial energy transfer between the spherical harmonic components of
mode l = 2. To rule this out, we rely on the time-invariance of the integrals

Ik(ψ(·, t)) =

∫
S2

(
∆ψ(·, t)

)k
dσ , k ∈ {2, 3, 5} .
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