Nonlinear forward-backward problems

Anne-Laure Dalibard (Sorbonne Université & ENS Paris) with Frédéric Marbach et Jean Rax

> Abel Symposium June 13th - 16h, 2023

Outline

Introduction

The linear (and linearized) case

The nonlinear scheme

Presentation of the problem

Goal: construct solutions of

(FB) $uu_x - u_{yy} = f \text{ in } (x_0, x_1) \times (-1, 1) =: \Omega,$ $u_{|y=\pm 1} = \pm 1, \quad u_{|\Sigma_i} = y + \delta_i,$

for $||f||, ||\delta_i|| \ll 1$, i.e. $||u - y|| \ll 1$: Changing-sign solution.

Zone $\{u > 0\}$: forward parabolic equation.

Zone $\{u < 0\}$: backward parabolic equation.

 \rightarrow Boundary data on blue part of boundary.

 \bigwedge Line {u = 0} is a free boundary!

Presentation of the problem

Goal: construct solutions of

(FB)
$$uu_x - u_{yy} = f \text{ in } (x_0, x_1) \times (-1, 1) =: \Omega,$$

 $u_{|y=\pm 1} = \pm 1, \quad u_{|\Sigma_i} = y + \delta_i,$

for $||f||, ||\delta_i|| \ll 1$, i.e. $||u - y|| \ll 1$: Changing-sign solution.

Zone $\{u > 0\}$: forward parabolic equation. Zone $\{u < 0\}$: backward parabolic equation. \rightarrow Boundary data on blue part of boundary.

ALine $\{u = 0\}$ is a free boundary!

Motivation: boundary layer separation

Original motivation: recirculation in Prandtl system

$$uu_x + vu_y - u_{yy} = f(x),$$

$$u_x + v_y = 0.$$

• Case u > 0: equation is forward parabolic (Oleinik, 1962);

Changing sign solutions occur after boundary layer separation.

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)

Reversed flow within Prandtl system

Difficulties:

- Nonlocality of the Prandtl equation: even the linearized equation is difficult to solve.
- Potential loss of derivatives and need for high regularity estimates to construct a strong solution.

First result of [lyer & Masmoudi, '22]: *a priori* estimates for the Prandtl system with reversal flow. However, this is **not sufficient to construct a solution**! → Second result by same authors using results & methodology of present talk to obtain existence of solutions.

Reversed flow within Prandtl system

Difficulties:

- Nonlocality of the Prandtl equation: even the linearized equation is difficult to solve.
- Potential loss of derivatives and need for high regularity estimates to construct a strong solution.

First result of [Iyer & Masmoudi, '22]: *a priori* estimates for the Prandtl system with reversal flow.

However, this is not sufficient to construct a solution!

 \rightarrow Second result by same authors using results & methodology of present talk to obtain existence of solutions.

 $uu_x - u_{yy} = f$ in Ω , $u_{|y=\pm 1} = \pm 1$, $u_{|\Sigma_i} = y + \delta_i$. **First observation:** importance of the geometry of $\{u = 0\}$. **Idea:** define $u = y + \lim_{n \to \infty} u_n$, where

$$(y + u_n)\partial_x u_{n+1} - \partial_{yy} u_{n+1} = f,$$

$$u_{n+1|\Sigma_i} = \delta_i, \quad u_{n+1|y=\pm 1} = 0.$$

Strong a priori estimate:

(1) $||u_n||_X \lesssim ||f|| + ||\delta_0|| + ||\delta_1|| =: \eta \ll 1,$

where X is a "strong" space, controlling $W^{1,\infty}$. Weak geometric bound: in a weaker space Y, say $Y = L_x^2 H_y^1$,

$$||u_{n+1} - u_n||_Y \lesssim \eta ||u_n - u_{n-1}||_Y.$$

 $uu_x - u_{yy} = f$ in Ω , $u_{|y=\pm 1} = \pm 1$, $u_{|\Sigma_i} = y + \delta_i$. **First observation:** importance of the geometry of $\{u = 0\}$. **Idea:** define $u = y + \lim_{n \to \infty} u_n$, where

> $(y + u_n)\partial_x u_{n+1} - \partial_{yy} u_{n+1} = f,$ $u_{n+1|\Sigma_i} = \delta_i, \quad u_{n+1|y=\pm 1} = 0.$

Strong a priori estimate:

(1) $||u_n||_X \lesssim ||f|| + ||\delta_0|| + ||\delta_1|| =: \eta \ll 1,$

where X is a "strong" space, controlling $W^{1,\infty}$. Weak geometric bound: in a weaker space Y, say $Y = L_x^2 H_v^1$,

 $||u_{n+1} - u_n||_Y \lesssim \eta ||u_n - u_{n-1}||_Y.$

 $uu_x - u_{yy} = f$ in Ω , $u_{|y=\pm 1} = \pm 1$, $u_{|\Sigma_i} = y + \delta_i$. **First observation:** importance of the geometry of $\{u = 0\}$. **Idea:** define $u = y + \lim_{n \to \infty} u_n$, where

> $(y + u_n)\partial_x u_{n+1} - \partial_{yy} u_{n+1} = f,$ $u_{n+1|\Sigma_i} = \delta_i, \quad u_{n+1|y=\pm 1} = 0.$

Strong a priori estimate:

(1) $||u_n||_X \lesssim ||f|| + ||\delta_0|| + ||\delta_1|| =: \eta \ll 1,$

where X is a "strong" space, controlling $W^{1,\infty}$. Weak geometric bound: in a weaker space Y, say $Y = L_x^2 H_y^1$,

$$\|u_{n+1}-u_n\|_{\mathbf{Y}} \lesssim \eta \|u_n-u_{n-1}\|_{\mathbf{Y}}.$$

 $uu_x - u_{yy} = f$ in Ω , $u_{|y=\pm 1} = \pm 1$, $u_{|\Sigma_i} = y + \delta_i$. **First observation:** importance of the geometry of $\{u = 0\}$. **Idea:** define $u = y + \lim_{n \to \infty} u_n$, where

> $(y + u_n)\partial_x u_{n+1} - \partial_{yy} u_{n+1} = f,$ $u_{n+1|\Sigma_i} = \delta_i, \quad u_{n+1|y=\pm 1} = 0.$

Strong a priori estimate:

(1) $||u_n||_X \lesssim ||f|| + ||\delta_0|| + ||\delta_1|| =: \eta \ll 1,$

where X is a "strong" space, controlling $W^{1,\infty}$. Weak geometric bound: in a weaker space Y, say $Y = L_x^2 H_y^1$,

$$\|u_{n+1}-u_n\|_{\mathbf{Y}} \lesssim \eta \|u_n-u_{n-1}\|_{\mathbf{Y}}.$$

Why does the previous attempt fail?

Consider the linear equation

(2)
$$y \partial_x v - \partial_{yy} v = f \text{ in } \Omega,$$
$$v_{|y=\pm 1} = 0, \quad v_{|\Sigma_i} = \delta_i$$

with $f \in C_c^{\infty}(\Omega)$, $\delta_i \in C_c^{\infty}(\Sigma_i)$. Fact #1: (2) has a unique weak solution $v \in H_x^{2/3} L_y^2 \cap L_x^2 H_y^2$. Fact #2: This solution is not smooth in general! Fact #3: $v \in H_x^{5/3} L_y^2 \cap L_x^2 H_y^5$ if and only if

 (f, δ_0, δ_1) satisfy two orthogonality conditions.

Remark: similar to elliptic equations in domains with corners...

Main result

Theorem: [D., Marbach, Rax, 2022] Assume that $\|\delta_i\|, \|f\|$ are small. There exists a manifold \mathcal{M} of codimension 2 s.t.

$$u\partial_{x}u - \partial_{yy}u = f \quad \text{in } (x_{0}, x_{1}) \times (-1, 1),$$
$$u_{|\Sigma_{i}} = y + \delta_{i}, \quad u_{|y=\pm 1} = \pm 1,$$

has a solution in $H_x^{5/3}L_y^2 \cap L_x^2H_y^5$ iff $(f, \delta_0, \delta_1) \in \mathcal{M}$. Remarks:

- Nonlinear orthogonality conditions. Depend on solution itself;
- Difficulty is NOT the derivation of a priori estimates;
- Extended to Prandtl by [lyer&Masmoudi, 2022];
- Control of k derivatives in x ⇒ 2k orthogonality conditions ⇒ Manifold of codimension 2k.

Scheme of proof

1. Linearized equation: for \bar{u} smooth s.t. $\|\bar{u} - y\| \ll 1$,

$$\bar{u}\partial_x u - \partial_{yy} u = f, \quad u_{|\pm 1} = 0, \ u_{|\Sigma_i} = \delta_i.$$

Existence/uniqueness of weak solutions;

• Orthogonality conditions for strong solutions (depend on \overline{u} !)

2. Modified iterative scheme:

$$(y + u_n)\partial_x u_{n+1} - \partial_{yy} u_{n+1} = f^{n+1},$$

 $u_{n+1|\Sigma_i} = \delta_i^{n+1}, \quad u_{n+1|y=\pm 1} = 0.$

where $(f^{n+1}, \delta_0^{n+1}, \delta_1^{n+1})$ ensure that orthogonality conditions are satisfied.

- 3. **Uniform estimate** on u_n in strong space X (easy).
- 4. Dependency of orthogonality conditions on \bar{u} in order to have a **Cauchy sequence** in weak space Y (difficult).

Outline

Introduction

The linear (and linearized) case

The nonlinear scheme

(LSF)

Review of results on the linear shear flow model

$y \partial_x v - \partial_{yy} v = f \quad \text{in } \Omega,$ $v_{|y=\pm 1} = 0, \quad v_{|\Sigma_i} = \delta_i.$

Weak solutions:

► If $f \in L^2_x(H^{-1}_y)$, $|y|^{1/2}\delta_i \in L^2$: existence [Fichera,60] and uniqueness [Baouendi-Grisvard,68] of solutions $v \in L^2_x H^1_z$.

► If
$$f \in L^2$$
, $|y|^{1/2}\delta_i \in H^1_0(\Sigma_i)$: $v \in H^{2/3}_x L^2_y \cap L^2_x H^2_y$ [Pagani,75].

Observation: (LSF) is stable by differentiation w.r.t. $x \in$ **Natural guess:** if $f \in H_x^1 L_y^2$ (+ conditions on δ_i), then $v \in H_x^{5/3} L_y^2 \cap H_x^1 H_y^2$.

 \rightarrow FALSE without additional orthogonality conditions.

(LSF)

Review of results on the linear shear flow model

$y \partial_x v - \partial_{yy} v = f \quad \text{in } \Omega,$ $v_{|y=\pm 1} = 0, \quad v_{|\Sigma_i} = \delta_i.$

Weak solutions:

► If $f \in L^2_x(H^{-1}_y)$, $|y|^{1/2}\delta_i \in L^2$: existence [Fichera,60] and uniqueness [Baouendi-Grisvard,68] of solutions $v \in L^2_x H^1_z$.

• If
$$f \in L^2$$
, $|y|^{1/2} \delta_i \in H^1_0(\Sigma_i)$: $v \in H^{2/3}_x L^2_y \cap L^2_x H^2_y$ [Pagani,75].

Observation: (LSF) is stable by differentiation w.r.t. x ! **Natural guess:** if $f \in H_x^1 L_y^2$ (+ conditions on δ_i), then $v \in H_x^{5/3} L_y^2 \cap H_x^1 H_y^2$.

 \rightarrow FALSE without additional orthogonality conditions.

Orthogonality conditions for higher regularity solutions

(3)
If
$$f \in H^1_x L^2_y$$
 with $f_{|x=x_i|} = \delta_i = 0$, then v_x solves
 $y \partial_x v_x - \partial_{yy} v_x = f_x \quad \text{in } \Omega,$
 $v_{x|y=\pm 1} = 0, \quad v_{x|\Sigma_i} = 0.$

(Tentative) reconstruction: $\exists ! w \in H_x^{2/3} L_y^2 \cap L_x^2 H_y^2$ sol. of (3); Let

$$\tilde{v}(x,y) = \begin{cases} \int_{x_0}^x w(x',y) \, dx' & \text{if } y > 0, \\ -\int_x^{x_1} w(x',y) \, dx' & \text{if } y < 0. \end{cases}$$

Then...

∂_x ṽ = w;
ṽ solves (LSF) in Ω \ {y = 0}.
BUT in general ṽ and ∂_y ṽ have a jump across y = 0.

$$[\tilde{v}]_{|y=0} = [\partial_y \tilde{v}]_{|y=0} = 0 \iff \underbrace{\int_{x_0}^{x_1} w(x,0) dx}_{\text{linear forms of } (f,\delta_0,\delta_1)} = 0.$$

Decomposition of the solution into singular profiles

Polar-like variables near $(x_i, 0)$: let

$$r_i = \left(|x - x_i|^{2/3} + y^2\right)^{1/2}, \quad t_i = \frac{y}{|x - x_i|^{1/3}}$$

Lemma: for any $k \in \mathbf{Z}$, there exists $G_k \in C_b^{\infty}(\mathbf{R})$ such that

$$U_{k,i} = r_i^{\frac{1}{2}+3k} G_k(t_i)$$

is a solution of $y \partial_x U - \partial_{yy} U = 0$ in \mathbb{R}^2_{\pm} . Consequence: if (f, δ_0, δ_1) are smooth, there exist $(c_0, c_1) \in \mathbb{R}^2$ such that

 $v = c_0 U_{0,0} + c_1 U_{0,1} + v_{\text{reg}}, \text{ with } v_{\text{reg}} \in H_x^{5/3} L_y^2 \cap H_x^1 H_y^2.$

Remarks:

- Orthogonality conditions \iff cancellation of c_0, c_1 ;
- Decomposition up to any order of regularity is possible.

(4)

Extension to non-constant coefficients

Consider now, for $\bar{u} \in H_x^{5/3} L_y^2 \cap L_x^2 H_y^5$,

$$\begin{split} \bar{u}\partial_{x}v - \partial_{yy}v &= f \quad \text{in } \Omega, \\ v_{\mid \pm 1} &= 0, \quad v_{\mid \Sigma_{i}} = \delta_{i}. \end{split}$$

All previous results can be extended when $\|\bar{u} - y\| \ll 1$:

- Existence/uniqueness of weak solutions when $f \in L^2$, $\delta_i \in H_0^1(\Sigma_i)$.
- Orthogonality conditions for higher regularity (2 conditions for each x derivative);
- Decomposition into sum of singular profiles + smooth remainder.

Remark: the orthogonality conditions depend on \bar{u} ! Write as

$$\ell^1_{\bar{u}}(f,\delta_0,\delta_1) = \ell^2_{\bar{u}}(f,\delta_0,\delta_1) = 0$$

with $\ell^1_{\overline{u}}, \ell^2_{\overline{u}}$ two independent linear forms.

Introduction

The linear (and linearized) case

The nonlinear scheme

Iterative scheme (easy step)

Remember that

$$(y + u_n)\partial_x u_{n+1} - \partial_{yy} u_{n+1} = f^{n+1},$$

 $u_{n+1|\Sigma_i} = \delta_i^{n+1}, \quad u_{n+1|y=\pm 1} = 0.$

Goal: choose
$$(f^{n+1}, \delta_0^{n+1}, \delta_1^{n+1})$$
 s.t.
 $\ell_{y+u_n}^j(f^{n+1}, \delta_0^{n+1}, \delta_1^{n+1}) = 0, \quad j = 1, 2$

Idea: take

$$(f^{n+1},\delta_0^{n+1},\delta_1^{n+1}) = (f,\delta_0,\delta_1) + \nu_1^{n+1}T_1 + \nu_2^{n+1}T_2,$$

where T_1, T_2 are fixed triplets such that

$$\ell_y^j(T_i) = \delta_{i,j}.$$

 \rightarrow Invert 2 \times 2 matrix (close to identity).

Conclusion: uniform strong bound on u_n (in $X = H_x^{5/3} L_y^2 \cap L_x^2 H_y^5$).

Geometric bound in a "weak" space (difficult step)

The difference $w_n := u_{n+1} - u_n$ solves

 $(y+u_n)\partial_x w_n - \partial_{yy} w_n = -w_{n-1}\partial_x u_n + (\nu_1^{n+1} - \nu_1^n)f_1 + (\nu_2^{n+1} - \nu_2^n)f_2.$

Question: $||w_n||_Y \lesssim \eta ||w_{n-1}||_Y$?

ightarrow Need to **find a space** Y such that:

- Nice product law: $||w_n||_Y \leq ||u_n||_X ||w_{n-1}||_Y + |\nu^{n+1} \nu^n|$
- Lipschitz continuity of $\ell_{\bar{u}}^{j}$ in *Y*:

$$|\nu^{n+1}-\nu^n|\lesssim \eta \left\|\ell_{y+u_n}^j-\ell_{y+u_{n-1}}^j\right\|\lesssim \eta \|w_{n-1}\|_{\mathsf{Y}}.$$

Difficult!

- Analyze properties of $\bar{u} \mapsto \ell^j_{\bar{u}}$;
- Y = fractional space. Need to interpolate between closed subspaces of Sobolev spaces...

Remark: both difficulties are addressed by having an "explicit" representation of $\ell_{\overline{u}}^{j}$.

Geometric bound in a "weak" space (difficult step)

The difference $w_n := u_{n+1} - u_n$ solves

 $(y+u_n)\partial_x w_n - \partial_{yy} w_n = -w_{n-1}\partial_x u_n + (\nu_1^{n+1} - \nu_1^n)f_1 + (\nu_2^{n+1} - \nu_2^n)f_2.$

Question: $||w_n||_Y \leq \eta ||w_{n-1}||_Y$?

- \rightarrow Need to find a space Y such that:
 - ► Nice product law: $||w_n||_Y \leq ||u_n||_X ||w_{n-1}||_Y + |\nu^{n+1} \nu^n|$ ► Lipschitz continuity of ℓ_{π}^j in Y:

$$|\nu^{n+1}-\nu^n| \lesssim \eta \left\| \ell_{y+u_n}^j - \ell_{y+u_{n-1}}^j \right\| \lesssim \eta \|w_{n-1}\|_{\mathbf{Y}}.$$

Difficult!

- Analyze properties of $\bar{u} \mapsto \ell^j_{\bar{u}}$;
- Y = fractional space. Need to interpolate between closed subspaces of Sobolev spaces...

Remark: both difficulties are addressed by having an "explicit" representation of $\ell_{\overline{u}}^{j}$.

Geometric bound in a "weak" space (difficult step)

The difference $w_n := u_{n+1} - u_n$ solves

 $(y+u_n)\partial_x w_n - \partial_{yy} w_n = -w_{n-1}\partial_x u_n + (\nu_1^{n+1} - \nu_1^n)f_1 + (\nu_2^{n+1} - \nu_2^n)f_2.$

Question: $||w_n||_Y \lesssim \eta ||w_{n-1}||_Y$?

- \rightarrow Need to find a space Y such that:
 - Nice product law: $||w_n||_Y \lesssim ||u_n||_X ||w_{n-1}||_Y + |\nu^{n+1} \nu^n|$ Lipschitz continuity of ℓ_{σ}^j in Y:

$$|\nu^{n+1}-\nu^n| \lesssim \eta \left\| \ell_{y+u_n}^j - \ell_{y+u_{n-1}}^j \right\| \lesssim \eta \|w_{n-1}\|_{\mathbf{Y}}.$$

Difficult!

- Analyze properties of $\bar{u} \mapsto \ell^j_{\bar{u}}$;
- Y = fractional space. Need to interpolate between closed subspaces of Sobolev spaces...

Remark: both difficulties are addressed by having an "explicit" representation of $\ell_{\overline{u}}^{j}$.

The manifold \mathcal{M}

As $n \to \infty$, for any (f, δ_0, δ_1) , one obtains a solution of

 $\begin{aligned} u\partial_{x}u - \partial_{yy}u &= f + \nu_{1}f_{1} + \nu_{2}f_{2} \\ u_{|y=\pm 1} &= 0, \quad u_{|\Sigma_{i}} = \delta_{i} + \nu_{1}\delta_{i,1} + \nu_{2}\delta_{i,2}, \end{aligned}$

for $\nu_1, \nu_2 \in \mathbf{R}$ ensuring orthogonality conditions. \rightarrow Not a solution of the original problem!

... Unless $\nu_1 = \nu_2 = 0$: cancellation of two scalar quantities, close to linear forms.

 \rightarrow Manifold of co-dimension two.

Summary

- Existence and uniqueness for quasilinear forward-backward parabolic equation, under orthogonality conditions;
- Rare case where a priori estimates don't provide a solution!
- Difficulty linked to quasilinear nature of the problem: orthogonality conditions depend on solution itself.
- Methodology could be adapted to other settings (e.g. nonlinear elliptic equations in domains with corners, traveling fronts in reaction-diffusion equations...)

THANK YOU FOR YOUR ATTENTION! VI TAKKER FOR OPPMERKSOMHETEN!