Nonlinear forward-backward problems

Anne-Laure Dalibard (Sorbonne Université \& ENS Paris) with Frédéric Marbach et Jean Rax

Abel Symposium
June 13th - 16h, 2023

Outline

Introduction

The linear (and linearized) case

The nonlinear scheme

Presentation of the problem

Goal: construct solutions of
(FB)

$$
\begin{array}{ll}
u u_{x}-u_{y y}=f & \text { in }\left(x_{0}, x_{1}\right) \times(-1,1)=: \Omega \\
u_{\mid y= \pm 1}= \pm 1, & u_{\mid \Sigma_{i}}=y+\delta_{i}
\end{array}
$$

for $\|f\|,\left\|\delta_{i}\right\| \ll 1$, i.e. $\|u-y\| \ll 1$: Changing-sign solution.

forward parabolic equation. Zone parabolic equation. \rightarrow Boundary data on blue part
\triangle Line $\{u=0\}$ is a free boundary!

Presentation of the problem

Goal: construct solutions of

$$
\begin{array}{ll}
u u_{x}-u_{y y}=f & \text { in }\left(x_{0}, x_{1}\right) \times(-1,1)=: \Omega \tag{FB}\\
u_{\mid y= \pm 1}= \pm 1, & u_{\mid \Sigma_{i}}=y+\delta_{i}
\end{array}
$$

for $\|f\|,\left\|\delta_{i}\right\| \ll 1$, i.e. $\|u-y\| \ll 1$: Changing-sign solution.

Zone $\{u>0\}$: forward parabolic equation.
Zone $\{u<0\}$: backward parabolic equation.
\rightarrow Boundary data on blue part of boundary.
\triangle Line $\{u=0\}$ is a free boundary!

Motivation: boundary layer separation

Original motivation: recirculation in Prandtl system

$$
\begin{array}{r}
u u_{x}+v u_{y}-u_{y y}=f(x), \\
u_{x}+v_{y}=0 .
\end{array}
$$

- Case $u>0$: equation is forward parabolic (Oleinik, 1962);
- Changing sign solutions occur after boundary layer separation.

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)

Reversed flow within Prandtl system

Difficulties:

- Nonlocality of the Prandtl equation: even the linearized equation is difficult to solve.
- Potential loss of derivatives and need for high regularity estimates to construct a strong solution.
First result of [lyer \& Masmoudi, '22]: a priori estimates for the
Prandtl system with reversal flow.
However, this is not sufficient to construct a solution!
\rightarrow Second result by same authors using results \& methodology of
present talk to obtain existence of solutions.

Reversed flow within Prandtl system

Difficulties:

- Nonlocality of the Prandtl equation: even the linearized equation is difficult to solve.
- Potential loss of derivatives and need for high regularity estimates to construct a strong solution.
First result of [lyer \& Masmoudi, '22]: a priori estimates for the
Prandtl system with reversal flow.
However, this is not sufficient to construct a solution!
\rightarrow Second result by same authors using results \& methodology of present talk to obtain existence of solutions.

A first naïve attempt

$$
u u_{x}-u_{y y}=f \quad \text { in } \Omega, \quad u_{\mid y= \pm 1}= \pm 1, \quad u_{\mid \Sigma_{i}}=y+\delta_{i}
$$

First observation: importance of the geometry of $\{u=0\}$. Idea: define $u=y+\lim _{n \rightarrow \infty} u_{n}$, where

$$
\begin{gathered}
\left(y+u_{n}\right) \partial_{x} u_{n+1}-\partial_{y y} u_{n+1}=f \\
u_{n+1 \mid \Sigma_{i}}=\delta_{i}, \quad u_{n+1 \mid y= \pm 1}=0
\end{gathered}
$$

Strong a priori estimate:
where X is a "strong" space, controlling $W^{1, \infty}$ Weak geometric bound: in a weaker space Y, say $Y=L_{x}^{2} H_{y}^{1}$,

$$
\left\|u_{n+1}-u_{n}\right\| y \lesssim \eta\left\|u_{n}-u_{n-1}\right\| y
$$

Conclusion: $\left(u_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in Y for $\eta \ll 1$.
But (1) does not hold in general!

A first naïve attempt

$$
u u_{x}-u_{y y}=f \quad \text { in } \Omega, \quad u_{\mid y= \pm 1}= \pm 1, \quad u_{\mid \Sigma_{i}}=y+\delta_{i}
$$

First observation: importance of the geometry of $\{u=0\}$. Idea: define $u=y+\lim _{n \rightarrow \infty} u_{n}$, where

$$
\begin{array}{r}
\left(y+u_{n}\right) \partial_{x} u_{n+1}-\partial_{y y} u_{n+1}=f \\
u_{n+1 \mid \Sigma_{i}}=\delta_{i}, \quad u_{n+1 \mid y= \pm 1}=0
\end{array}
$$

Strong a priori estimate:

$$
\begin{equation*}
\left\|u_{n}\right\|_{x} \lesssim\|f\|+\left\|\delta_{0}\right\|+\left\|\delta_{1}\right\|=: \eta \ll 1 \tag{1}
\end{equation*}
$$

where X is a "strong" space, controlling $W^{1, \infty}$.

$$
\left\|u_{n+1}-u_{n}\right\| Y \lesssim \eta\left\|u_{n}-u_{n-1}\right\| Y
$$

Conclusion: $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in Y for $\eta \ll 1$.
But (1) does not hold in general!

A first naïve attempt

$$
u u_{x}-u_{y y}=f \quad \text { in } \Omega, \quad u_{\mid y= \pm 1}= \pm 1, \quad u_{\mid \Sigma_{i}}=y+\delta_{i}
$$

First observation: importance of the geometry of $\{u=0\}$. Idea: define $u=y+\lim _{n \rightarrow \infty} u_{n}$, where

$$
\begin{gathered}
\left(y+u_{n}\right) \partial_{x} u_{n+1}-\partial_{y y} u_{n+1}=f \\
u_{n+1 \mid \Sigma_{i}}=\delta_{i}, \quad u_{n+1 \mid y= \pm 1}=0
\end{gathered}
$$

Strong a priori estimate:

$$
\begin{equation*}
\left\|u_{n}\right\|_{x} \lesssim\|f\|+\left\|\delta_{0}\right\|+\left\|\delta_{1}\right\|=: \eta \ll 1 \tag{1}
\end{equation*}
$$

where X is a "strong" space, controlling $W^{1, \infty}$.
Weak geometric bound: in a weaker space Y, say $Y=L_{x}^{2} H_{y}^{1}$,

$$
\left\|u_{n+1}-u_{n}\right\| Y \lesssim \eta\left\|u_{n}-u_{n-1}\right\| Y
$$

Conclusion: $\left(u_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in Y for $\eta \ll 1$.

A first naïve attempt

$$
u u_{x}-u_{y y}=f \quad \text { in } \Omega, \quad u_{\mid y= \pm 1}= \pm 1, \quad u_{\mid \Sigma_{i}}=y+\delta_{i}
$$

First observation: importance of the geometry of $\{u=0\}$. Idea: define $u=y+\lim _{n \rightarrow \infty} u_{n}$, where

$$
\begin{gathered}
\left(y+u_{n}\right) \partial_{x} u_{n+1}-\partial_{y y} u_{n+1}=f \\
u_{n+1 \mid \Sigma_{i}}=\delta_{i}, \quad u_{n+1 \mid y= \pm 1}=0
\end{gathered}
$$

Strong a priori estimate:

$$
\begin{equation*}
\left\|u_{n}\right\| x \lesssim\|f\|+\left\|\delta_{0}\right\|+\left\|\delta_{1}\right\|=: \eta \ll 1 \tag{1}
\end{equation*}
$$

where X is a "strong" space, controlling $W^{1, \infty}$.
Weak geometric bound: in a weaker space Y, say $Y=L_{x}^{2} H_{y}^{1}$,

$$
\left\|u_{n+1}-u_{n}\right\| Y \lesssim \eta\left\|u_{n}-u_{n-1}\right\| Y
$$

Conclusion: $\left(u_{n}\right)_{n \in \mathbf{N}}$ is a Cauchy sequence in Y for $\eta \ll 1$.
But (1) does not hold in general!

Why does the previous attempt fail?

Consider the linear equation

$$
\begin{gather*}
y \partial_{x} v-\partial_{y y} v=f \quad \text { in } \Omega, \tag{2}\\
v_{\mid y= \pm 1}=0, \quad v_{\mid \Sigma_{i}}=\delta_{i}
\end{gather*}
$$

with $f \in C_{c}^{\infty}(\Omega), \delta_{i} \in C_{c}^{\infty}\left(\Sigma_{i}\right)$.
Fact \#1: (2) has a unique weak solution $v \in H_{x}^{2 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{2}$.
Fact \#2: This solution is not smooth in general!
Fact \#3: $v \in H_{x}^{5 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{5}$ if and only if
($f, \delta_{0}, \delta_{1}$) satisfy two orthogonality conditions.
Remark: similar to elliptic equations in domains with corners...

Main result

Theorem: [D., Marbach, Rax, 2022]
Assume that $\left\|\delta_{i}\right\|,\|f\|$ are small.
There exists a manifold \mathcal{M} of codimension 2 s.t.

$$
\begin{array}{r}
u \partial_{x} u-\partial_{y y} u=f \quad \text { in }\left(x_{0}, x_{1}\right) \times(-1,1), \\
u_{\mid \Sigma_{i}}=y+\delta_{i}, \quad u_{\mid y= \pm 1}= \pm 1,
\end{array}
$$

has a solution in $H_{x}^{5 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{5}$ iff $\left(f, \delta_{0}, \delta_{1}\right) \in \mathcal{M}$.
Remarks:

- Nonlinear orthogonality conditions. Depend on solution itself;
- Difficulty is NOT the derivation of a priori estimates;
- Extended to Prandtl by [lyer\&Masmoudi, 2022];
- Control of k derivatives in $x \Rightarrow 2 k$ orthogonality conditions \Rightarrow Manifold of codimension $2 k$.

Scheme of proof

1. Linearized equation: for \bar{u} smooth s.t. $\|\bar{u}-y\| \ll 1$,

$$
\bar{u} \partial_{x} u-\partial_{y y} u=f, \quad u_{\mid \pm 1}=0, \quad u_{\mid \Sigma_{i}}=\delta_{i}
$$

- Existence/uniqueness of weak solutions;
- Orthogonality conditions for strong solutions (depend on \bar{u} !)

2. Modified iterative scheme:

$$
\begin{gathered}
\left(y+u_{n}\right) \partial_{x} u_{n+1}-\partial_{y y} u_{n+1}=f^{n+1} \\
u_{n+1 \mid \Sigma_{i}}=\delta_{i}^{n+1}, \quad u_{n+1 \mid y= \pm 1}=0
\end{gathered}
$$

where $\left(f^{n+1}, \delta_{0}^{n+1}, \delta_{1}^{n+1}\right)$ ensure that orthogonality conditions are satisfied.
3. Uniform estimate on u_{n} in strong space X (easy).
4. Dependency of orthogonality conditions on \bar{u} in order to have a Cauchy sequence in weak space Y (difficult).

Outline

Introduction

The linear (and linearized) case

The nonlinear scheme

Review of results on the linear shear flow model

(LSF)

$$
\begin{gathered}
y \partial_{x} v-\partial_{y y} v=f \quad \text { in } \Omega, \\
v_{l y= \pm 1}=0, \quad v_{\mid \Sigma_{i}}=\delta_{i} .
\end{gathered}
$$

Weak solutions:

- If $f \in L_{x}^{2}\left(H_{y}^{-1}\right),|y|^{1 / 2} \delta_{i} \in L^{2}$: existence [Fichera,60] and uniqueness [Baouendi-Grisvard,68] of solutions $v \in L_{x}^{2} H_{z}^{1}$.
- If $f \in L^{2},|y|^{1 / 2} \delta_{i} \in H_{0}^{1}\left(\Sigma_{i}\right): v \in H_{x}^{2 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{2}$ [Pagani,75].

Natural guess: if $f \in H_{x}^{1} L_{y}^{2}\left(+\right.$ conditions on $\left.\delta_{i}\right)$, then
\rightarrow FALSE without additional orthogonality conditions.

Review of results on the linear shear flow model

$$
\begin{gathered}
y \partial_{x} v-\partial_{y y} v=f \quad \text { in } \Omega, \\
v_{l y= \pm 1}=0, \quad v_{\Sigma_{i}}=\delta_{i} .
\end{gathered}
$$

Weak solutions:

- If $f \in L_{x}^{2}\left(H_{y}^{-1}\right),|y|^{1 / 2} \delta_{i} \in L^{2}$: existence [Fichera,60] and uniqueness [Baouendi-Grisvard,68] of solutions $v \in L_{x}^{2} H_{z}^{1}$.
- If $f \in L^{2},|y|^{1 / 2} \delta_{i} \in H_{0}^{1}\left(\Sigma_{i}\right): v \in H_{x}^{2 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{2}$ [Pagani,75].

Observation: (LSF) is stable by differentiation w.r.t. x ! Natural guess: if $f \in H_{x}^{1} L_{y}^{2}\left(+\right.$ conditions on $\left.\delta_{i}\right)$, then $v \in H_{x}^{5 / 3} L_{y}^{2} \cap H_{x}^{1} H_{y}^{2}$.
\rightarrow FALSE without additional orthogonality conditions.

Orthogonality conditions for higher regularity solutions

If $f \in H_{x}^{1} L_{y}^{2}$ with $f_{\mid x=x_{i}}=\delta_{i}=0$, then v_{x} solves

$$
\begin{gather*}
y \partial_{x} v_{x}-\partial_{y y} v_{x}=f_{x} \quad \text { in } \Omega, \tag{3}\\
v_{x \mid y= \pm 1}=0, \quad v_{x \mid \Sigma_{i}}=0 .
\end{gather*}
$$

(Tentative) reconstruction: $\exists!w \in H_{x}^{2 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{2}$ sol. of (3); Let

$$
\tilde{v}(x, y)= \begin{cases}\int_{x_{0}}^{x} w\left(x^{\prime}, y\right) d x^{\prime} & \text { if } y>0 \\ -\int_{x}^{x_{1}} w\left(x^{\prime}, y\right) d x^{\prime} & \text { if } y<0\end{cases}
$$

Then...

- $\partial_{x} \tilde{v}=w$;
- \tilde{v} solves (LSF) in $\Omega \backslash\{y=0\}$.

BUT in general \tilde{v} and $\partial_{y} \tilde{v}$ have a jump across $y=0$.
$[\tilde{v}]_{\mid y=0}=\left[\partial_{y} \tilde{v}\right]_{\mid y=0}=0 \Longleftrightarrow \underbrace{\int_{x_{0}}^{x_{1}} w(x, 0) d x=\int_{x_{0}}^{x_{1}} \partial_{y} w(x, 0) d x}_{\text {linear forms of }\left(f, \delta_{0}, \delta_{1}\right)}=0$.

Decomposition of the solution into singular profiles

Polar-like variables near $\left(x_{i}, 0\right)$: let

$$
r_{i}=\left(\left|x-x_{i}\right|^{2 / 3}+y^{2}\right)^{1 / 2}, \quad t_{i}=\frac{y}{\left|x-x_{i}\right|^{1 / 3}}
$$

Lemma: for any $k \in \mathbf{Z}$, there exists $G_{k} \in C_{b}^{\infty}(\mathbf{R})$ such that

$$
U_{k, i}=r_{i}^{\frac{1}{2}+3 k} G_{k}\left(t_{i}\right)
$$

is a solution of $y \partial_{x} U-\partial_{y y} U=0$ in $\mathbf{R}_{ \pm}^{2}$.
Consequence: if $\left(f, \delta_{0}, \delta_{1}\right)$ are smooth, there exist $\left(c_{0}, c_{1}\right) \in \mathbf{R}^{2}$ such that

$$
v=c_{0} U_{0,0}+c_{1} U_{0,1}+v_{\mathrm{reg}}, \quad \text { with } v_{\mathrm{reg}} \in H_{x}^{5 / 3} L_{y}^{2} \cap H_{x}^{1} H_{y}^{2}
$$

Remarks:

- Orthogonality conditions \Longleftrightarrow cancellation of c_{0}, c_{1};
- Decomposition up to any order of regularity is possible.

Extension to non-constant coefficients

Consider now, for $\bar{u} \in H_{x}^{5 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{5}$,

$$
\begin{array}{r}
\bar{u} \partial_{x} v-\partial_{y y} v=f \quad \text { in } \Omega, \tag{4}\\
v_{\mid \pm 1}=0, \quad v_{\mid \Sigma_{i}}=\delta_{i} .
\end{array}
$$

All previous results can be extended when $\|\bar{u}-y\| \ll 1$:

- Existence/uniqueness of weak solutions when $f \in L^{2}$, $\delta_{i} \in H_{0}^{1}\left(\Sigma_{i}\right)$.
- Orthogonality conditions for higher regularity (2 conditions for each x derivative);
- Decomposition into sum of singular profiles + smooth remainder.
Remark: the orthogonality conditions depend on \bar{u} ! Write as

$$
\ell_{\bar{u}}^{1}\left(f, \delta_{0}, \delta_{1}\right)=\ell_{\bar{u}}^{2}\left(f, \delta_{0}, \delta_{1}\right)=0
$$

with $\ell_{\bar{U}}^{1}, \ell_{\bar{U}}^{2}$ two independent linear forms.

Outline

Introduction

The linear (and linearized) case

The nonlinear scheme

Iterative scheme (easy step)

Remember that

$$
\begin{gathered}
\left(y+u_{n}\right) \partial_{x} u_{n+1}-\partial_{y y} u_{n+1}=f^{n+1} \\
u_{n+1 \mid \Sigma_{i}}=\delta_{i}^{n+1}, \quad u_{n+1 \mid y= \pm 1}=0 .
\end{gathered}
$$

Goal: choose $\left(f^{n+1}, \delta_{0}^{n+1}, \delta_{1}^{n+1}\right)$ s.t.

$$
\ell_{y+u_{n}}^{j}\left(f^{n+1}, \delta_{0}^{n+1}, \delta_{1}^{n+1}\right)=0, \quad j=1,2 .
$$

Idea: take

$$
\left(f^{n+1}, \delta_{0}^{n+1}, \delta_{1}^{n+1}\right)=\left(f, \delta_{0}, \delta_{1}\right)+\nu_{1}^{n+1} T_{1}+\nu_{2}^{n+1} T_{2},
$$

where T_{1}, T_{2} are fixed triplets such that

$$
\ell_{y}^{j}\left(T_{i}\right)=\delta_{i, j} .
$$

\rightarrow Invert 2×2 matrix (close to identity).
Conclusion: uniform strong bound on u_{n} (in $X=H_{x}^{5 / 3} L_{y}^{2} \cap L_{x}^{2} H_{y}^{5}$).

Geometric bound in a "weak" space (difficult step)

The difference $w_{n}:=u_{n+1}-u_{n}$ solves

$\left(y+u_{n}\right) \partial_{x} w_{n}-\partial_{y y} w_{n}=-w_{n-1} \partial_{x} u_{n}+\left(\nu_{1}^{n+1}-\nu_{1}^{n}\right) f_{1}+\left(\nu_{2}^{n+1}-\nu_{2}^{n}\right) f_{2}$.

Question: $\left\|w_{n}\right\|_{Y} \lesssim \eta\left\|w_{n-1}\right\|_{Y}$?

\rightarrow Need to find a space Y such that:

- Nice product law: $\left\|w_{n}\right\|_{Y} \lesssim\left\|u_{n}\right\|_{X}\left\|w_{n-1}\right\|_{Y}+\left|\nu^{n+1}-\nu^{n}\right|$
- Lipschitz continuity of $\ell_{\bar{u}}^{J}$ in Y

Difficult!

- Analyze properties of $\bar{u} \mapsto \varrho_{\bar{u}}$;
- $Y=$ fractional space. Need to interpolate between closed subspaces of Sobolev spaces..
Remark: both difficulties are addressed by having an "explicit" representation of $\ell_{\bar{I}}^{J}$

Geometric bound in a "weak" space (difficult step)

The difference $w_{n}:=u_{n+1}-u_{n}$ solves
$\left(y+u_{n}\right) \partial_{x} w_{n}-\partial_{y y} w_{n}=-w_{n-1} \partial_{x} u_{n}+\left(\nu_{1}^{n+1}-\nu_{1}^{n}\right) f_{1}+\left(\nu_{2}^{n+1}-\nu_{2}^{n}\right) f_{2}$.

Question: $\left\|w_{n}\right\|_{Y} \lesssim \eta\left\|w_{n-1}\right\|_{Y}$?
\rightarrow Need to find a space Y such that:

- Nice product law: $\left\|w_{n}\right\|_{Y} \lesssim\left\|u_{n}\right\|_{X}\left\|w_{n-1}\right\|_{Y}+\left|\nu^{n+1}-\nu^{n}\right|$
- Lipschitz continuity of $\ell_{\bar{u}}^{j}$ in Y :

$$
\left|\nu^{n+1}-\nu^{n}\right| \lesssim \eta\left\|\ell_{y+u_{n}}^{j}-\ell_{y+u_{n-1}}^{j}\right\| \lesssim \eta\left\|w_{n-1}\right\|_{Y}
$$

- Analyze properties of $\bar{u} \mapsto \ell_{\bar{u}}$;
 - $Y=$ fractional space. Need to interpolate between closed

 subspaces of Sobolev spaces.Remark: both difficulties are addressed by having an "explicit" representation of $\ell_{\bar{U}}^{j}$.

Geometric bound in a "weak" space (difficult step)

The difference $w_{n}:=u_{n+1}-u_{n}$ solves
$\left(y+u_{n}\right) \partial_{x} w_{n}-\partial_{y y} w_{n}=-w_{n-1} \partial_{x} u_{n}+\left(\nu_{1}^{n+1}-\nu_{1}^{n}\right) f_{1}+\left(\nu_{2}^{n+1}-\nu_{2}^{n}\right) f_{2}$.

Question: $\left\|w_{n}\right\|_{Y} \lesssim \eta\left\|w_{n-1}\right\|_{Y}$?
\rightarrow Need to find a space Y such that:

- Nice product law: $\left\|w_{n}\right\|_{Y} \lesssim\left\|u_{n}\right\|_{X}\left\|w_{n-1}\right\|_{Y}+\left|\nu^{n+1}-\nu^{n}\right|$
- Lipschitz continuity of $\ell_{\bar{u}}^{j}$ in Y :

$$
\left|\nu^{n+1}-\nu^{n}\right| \lesssim \eta\left\|\ell_{y+u_{n}}^{j}-\ell_{y+u_{n-1}}^{j}\right\| \lesssim \eta\left\|w_{n-1}\right\|_{\gamma}
$$

Difficult!

- Analyze properties of $\bar{u} \mapsto \ell_{\bar{u}}^{j}$;
- $Y=$ fractional space. Need to interpolate between closed subspaces of Sobolev spaces...
Remark: both difficulties are addressed by having an "explicit" representation of $\ell_{\bar{u}}^{j}$.

The manifold \mathcal{M}

As $n \rightarrow \infty$, for any ($f, \delta_{0}, \delta_{1}$), one obtains a solution of

$$
\begin{array}{r}
u \partial_{x} u-\partial_{y y} u=f+\nu_{1} f_{1}+\nu_{2} f_{2} \\
u_{\mid y= \pm 1}=0, \quad u_{\mid \Sigma_{i}}=\delta_{i}+\nu_{1} \delta_{i, 1}+\nu_{2} \delta_{i, 2},
\end{array}
$$

for $\nu_{1}, \nu_{2} \in \mathbf{R}$ ensuring orthogonality conditions.
\rightarrow Not a solution of the original problem!
... Unless $\nu_{1}=\nu_{2}=0$: cancellation of two scalar quantities, close to linear forms.
\rightarrow Manifold of co-dimension two.

Summary

- Existence and uniqueness for quasilinear forward-backward parabolic equation, under orthogonality conditions;
- Rare case where a priori estimates don't provide a solution!
- Difficulty linked to quasilinear nature of the problem: orthogonality conditions depend on solution itself.
- Methodology could be adapted to other settings (e.g. nonlinear elliptic equations in domains with corners, traveling fronts in reaction-diffusion equations...)

> THANK YOU FOR YOUR ATTENTION!
> VI TAKKER FOR OPPMERKSOMHETEN!

