
Nonlinear forward-backward problems

Anne-Laure Dalibard
(Sorbonne Université & ENS Paris)
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Introduction

Presentation of the problem

Goal: construct solutions of

(FB)
uux − uyy = f in (x0, x1)× (−1, 1) =: Ω,

u|y=±1 = ±1, u|Σi
= y + δi ,

for ‖f ‖, ‖δi‖ � 1, i.e. ‖u − y‖ � 1: Changing-sign solution.
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Onga linge t

Zone {u > 0}: forward
parabolic equation.
Zone {u < 0}: backward
parabolic equation.
→ Boundary data on blue part
of boundary.

BLine {u = 0} is a free boundary!
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Introduction

Motivation: boundary layer separation

Original motivation: recirculation in Prandtl system

uux + vuy − uyy = f (x),

ux + vy = 0.

I Case u > 0: equation is forward parabolic (Oleinik, 1962);
I Changing sign solutions occur after boundary layer separation.

Figure: Cross-section of a flow past a cylinder (source: ONERA, France)



Introduction

Reversed flow within Prandtl system

Difficulties:

I Nonlocality of the Prandtl equation: even the linearized
equation is difficult to solve.

I Potential loss of derivatives and need for high regularity
estimates to construct a strong solution.

First result of [Iyer & Masmoudi, ’22]: a priori estimates for the
Prandtl system with reversal flow.
However, this is not sufficient to construct a solution!
→ Second result by same authors using results & methodology of
present talk to obtain existence of solutions.
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Introduction

A first näıve attempt

uux − uyy = f in Ω, u|y=±1 = ±1, u|Σi
= y + δi .

First observation: importance of the geometry of {u = 0}.
Idea: define u = y + limn→∞ un, where

(y + un)∂xun+1 − ∂yyun+1 = f ,

un+1|Σi
= δi , un+1|y=±1 = 0.

Strong a priori estimate:

(1) ‖un‖X . ‖f ‖+ ‖δ0‖+ ‖δ1‖ =: η � 1,

where X is a “strong” space, controlling W 1,∞.
Weak geometric bound: in a weaker space Y , say Y = L2

xH
1
y ,

‖un+1 − un‖Y . η‖un − un−1‖Y .

Conclusion: (un)n∈N is a Cauchy sequence in Y for η � 1.
But (1) does not hold in general!
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Introduction

Why does the previous attempt fail?

Consider the linear equation

(2)
y∂xv − ∂yyv = f in Ω,

v|y=±1 = 0, v|Σi
= δi

with f ∈ C∞c (Ω), δi ∈ C∞c (Σi ).

Fact #1: (2) has a unique weak solution v ∈ H
2/3
x L2

y ∩ L2
xH

2
y .

Fact #2: This solution is not smooth in general!

Fact #3: v ∈ H
5/3
x L2

y ∩ L2
xH

5
y if and only if

(f , δ0, δ1) satisfy two orthogonality conditions.

Remark: similar to elliptic equations in domains with corners...
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Main result

Theorem: [D., Marbach, Rax, 2022]
Assume that ‖δi‖, ‖f ‖ are small.
There exists a manifold M of codimension 2 s.t.

u∂xu − ∂yyu = f in (x0, x1)× (−1, 1),

u|Σi
= y + δi , u|y=±1 = ±1,

has a solution in H
5/3
x L2

y ∩ L2
xH

5
y iff (f , δ0, δ1) ∈M.

Remarks:

I Nonlinear orthogonality conditions. Depend on solution itself;

I Difficulty is NOT the derivation of a priori estimates;

I Extended to Prandtl by [Iyer&Masmoudi, 2022];

I Control of k derivatives in x ⇒ 2k orthogonality conditions
⇒ Manifold of codimension 2k .



Introduction

Scheme of proof

1. Linearized equation: for ū smooth s.t. ‖ū − y‖ � 1,

ū∂xu − ∂yyu = f , u|±1 = 0, u|Σi
= δi .

I Existence/uniqueness of weak solutions;
I Orthogonality conditions for strong solutions (depend on ū!)

2. Modified iterative scheme:

(y + un)∂xun+1 − ∂yyun+1 = f n+1,

un+1|Σi
= δn+1

i , un+1|y=±1 = 0.

where (f n+1, δn+1
0 , δn+1

1 ) ensure that orthogonality conditions
are satisfied.

3. Uniform estimate on un in strong space X (easy).

4. Dependency of orthogonality conditions on ū in order to have
a Cauchy sequence in weak space Y (difficult).
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The linear (and linearized) case

Review of results on the linear shear flow model

(LSF)
y∂xv − ∂yyv = f in Ω,

v|y=±1 = 0, v|Σi
= δi .

Weak solutions:

I If f ∈ L2
x(H−1

y ), |y |1/2δi ∈ L2: existence [Fichera,60] and
uniqueness [Baouendi-Grisvard,68] of solutions v ∈ L2

xH
1
z .

I If f ∈ L2, |y |1/2δi ∈ H1
0 (Σi ): v ∈ H

2/3
x L2

y ∩ L2
xH

2
y [Pagani,75].

Observation: (LSF) is stable by differentiation w.r.t. x !
Natural guess: if f ∈ H1

xL
2
y (+ conditions on δi ), then

v ∈ H
5/3
x L2

y ∩ H1
xH

2
y .

→ FALSE without additional orthogonality conditions.
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The linear (and linearized) case

Orthogonality conditions for higher regularity solutions

If f ∈ H1
xL

2
y with f|x=xi = δi = 0, then vx solves

(3)
y∂xvx − ∂yyvx = fx in Ω,

vx |y=±1 = 0, vx |Σi
= 0.

(Tentative) reconstruction: ∃!w ∈ H
2/3
x L2

y ∩ L2
xH

2
y sol. of (3);

Let

ṽ(x , y) =

{∫ x
x0
w(x ′, y) dx ′ if y > 0,

−
∫ x1

x w(x ′, y) dx ′ if y < 0.

Then...
I ∂x ṽ = w ;
I ṽ solves (LSF) in Ω \ {y = 0}.

BUT in general ṽ and ∂y ṽ have a jump across y = 0.

[ṽ ]|y=0 = [∂y ṽ ]|y=0 = 0 ⇐⇒
∫ x1

x0

w(x , 0)dx =

∫ x1

x0

∂yw(x , 0)dx︸ ︷︷ ︸
linear forms of (f ,δ0,δ1)

= 0.



The linear (and linearized) case

Decomposition of the solution into singular profiles

Polar-like variables near (xi , 0): let

ri =
(
|x − xi |2/3 + y2

)1/2
, ti =

y

|x − xi |1/3

Lemma: for any k ∈ Z, there exists Gk ∈ C∞b (R) such that

Uk,i = r
1
2

+3k

i Gk(ti )

is a solution of y∂xU − ∂yyU = 0 in R2
±.

Consequence: if (f , δ0, δ1) are smooth, there exist (c0, c1) ∈ R2

such that

v = c0U0,0 + c1U0,1 + vreg, with vreg ∈ H
5/3
x L2

y ∩ H1
xH

2
y .

Remarks:
I Orthogonality conditions ⇐⇒ cancellation of c0, c1;
I Decomposition up to any order of regularity is possible.



The linear (and linearized) case

Extension to non-constant coefficients

Consider now, for ū ∈ H
5/3
x L2

y ∩ L2
xH

5
y ,

(4)
ū∂xv − ∂yyv = f in Ω,

v|±1 = 0, v|Σi
= δi .

All previous results can be extended when ‖ū − y‖ � 1:

I Existence/uniqueness of weak solutions when f ∈ L2,
δi ∈ H1

0 (Σi ).

I Orthogonality conditions for higher regularity (2 conditions for
each x derivative);

I Decomposition into sum of singular profiles + smooth
remainder.

Remark: the orthogonality conditions depend on ū! Write as

`1
ū(f , δ0, δ1) = `2

ū(f , δ0, δ1) = 0

with `1
ū, `

2
ū two independent linear forms.
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The nonlinear scheme

Iterative scheme (easy step)

Remember that

(y + un)∂xun+1 − ∂yyun+1 = f n+1,

un+1|Σi
= δn+1

i , un+1|y=±1 = 0.

Goal: choose (f n+1, δn+1
0 , δn+1

1 ) s.t.

`jy+un(f n+1, δn+1
0 , δn+1

1 ) = 0, j = 1, 2.

Idea: take

(f n+1, δn+1
0 , δn+1

1 ) = (f , δ0, δ1) + νn+1
1 T1 + νn+1

2 T2,

where T1,T2 are fixed triplets such that

`jy (Ti ) = δi ,j .

→ Invert 2× 2 matrix (close to identity).

Conclusion: uniform strong bound on un (in X = H
5/3
x L2

y ∩ L2
xH

5
y ).



The nonlinear scheme

Geometric bound in a “weak” space (difficult step)

The difference wn := un+1 − un solves

(y+un)∂xwn−∂yywn = −wn−1∂xun+(νn+1
1 −νn1 )f1 +(νn+1

2 −νn2 )f2.

Question: ‖wn‖Y . η‖wn−1‖Y ?

→ Need to find a space Y such that:
I Nice product law: ‖wn‖Y . ‖un‖X‖wn−1‖Y + |νn+1 − νn|
I Lipschitz continuity of `jū in Y :

|νn+1 − νn| . η
∥∥∥`jy+un − `

j
y+un−1

∥∥∥ . η‖wn−1‖Y .
Difficult!
I Analyze properties of ū 7→ `jū;
I Y = fractional space. Need to interpolate between closed

subspaces of Sobolev spaces...

Remark: both difficulties are addressed by having an “explicit”
representation of `jū.
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The nonlinear scheme

The manifold M

As n→∞, for any (f , δ0, δ1), one obtains a solution of

u∂xu − ∂yyu = f + ν1f1 + ν2f2

u|y=±1 = 0, u|Σi
= δi + ν1δi ,1 + ν2δi ,2,

for ν1, ν2 ∈ R ensuring orthogonality conditions.
→ Not a solution of the original problem!

... Unless ν1 = ν2 = 0: cancellation of two scalar quantities, close
to linear forms.
→ Manifold of co-dimension two.



The nonlinear scheme

Summary

I Existence and uniqueness for quasilinear forward-backward
parabolic equation, under orthogonality conditions;

I Rare case where a priori estimates don’t provide a solution!

I Difficulty linked to quasilinear nature of the problem:
orthogonality conditions depend on solution itself.

I Methodology could be adapted to other settings (e.g.
nonlinear elliptic equations in domains with corners, traveling
fronts in reaction-diffusion equations...)

Thank you for your attention!
Vi takker for oppmerksomheten!
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