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The Benjamin–Ono equation

Long internal gravity waves in a two–layer fluid with infinite depth
(Benjamin (1967), Davis–Acrivos (1967), Ono (1975))

∂tu = ∂x(|Dx |u − u2) , u = u(t, x) ∈ R ,

u(t, x) −→
x→∞

0 ,

|̂Dx |f (ξ) := |ξ|f̂ (ξ) , ξ ∈ R .

Rigorous derivation from the Euler model by Bona–Lannes–Saut (2008)

Global wellposedness : Saut (1979) in H2(R), ..., Tao (2004) in
H1(R),..., Ionescu–Kenig (2007) in L2(R), see also Ifrim–Tataru (2017),
Killip–Laurens–Vişan (2023) in Hs(R), s > −1/2 using the Lax pair
structure (Nakamura (1979), Fokas–Ablowitz (1983), Wu (2016)).
With periodic boundary conditions : Molinet (2008) in L2(T),
Kappeler–Topalov–PG (2020) in Hs(T), s > −1/2, with counterexample
on H−1/2(T).
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The zero dispersion limit

Consider the Benjamin–Ono equation with small dispersion ε > 0,

∂tu
ε + ∂x [(uε)2] = ε∂x |Dx |uε , uε(0) = u0 ,

Question : what is the limit of uε(t) as ε→ 0 ?

If |t| is small enough, there exists a smooth solution to the inviscid
Burgers–Hopf equation,

∂tu + ∂x [u2] = 0 , u(0, x) = u0(x) ,

and uε(t, x)→ u(t, x).
Main question : What is the limit of uε(t) after the time of shock
formation ?
We are going to answer this question in some wide generality.
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Some references for the zero dispersion limit

Long standing problem, starting in the analogous question for the
Korteweg–de Vries equation with Lax–Levermore (1983), Venakides
(1985), Deift–Venakides–Zhou (1997), Clayes–Grava (2009),... studied
the problem by using inverse scattering theory. Necessitates quite
stringent assumptions on the datum u0.

Numerical approaches by Grava–Klein (2007,...) Fiksdal (Master thesis,
NTNU, 2013).

Results for Benjamin–Ono by Miller–Xu (2011), Miller–Wetzel (2016),
and more recently by Gassot (2021, 2022) in the periodic case, using the
inverse spectral theory for bell–shaped data (typically
u0(x) = 2(1 + x2)−1 on the line).

In this talk : we revisit the problem for the Benjamin–Ono equation,
using a different approach, bypassing inverse scattering theory.
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Main result

Theorem (PG, 2023)

For every u0 ∈ L2(R) ∩ L∞(R), for every t ∈ R, the solution uε(t) of

∂tu
ε + ∂x [(uε)2] = ε∂x |Dx |uε , uε(0, x) = u0(x) ,

is weakly convergent in L2(R) as ε→ 0 .
Furthermore, if u0 is a rational function, and if (t, x) is such that the
algebraic equation y + 2tu0(y) = x has exactly 2`+ 1 real simple
solutions y0(t, x) < · · · < y2`(t, x), then the weak limit is given by

(1) u(t, x) =
2∑̀
k=0

(−1)ku0(yk(t, x)) .

Remark : Formula (1) above is due to Miller–Wetzel in the special case
of a bell–shaped rational potential.



Plan of the talk

1 Prove an explicit formula for the solution of the Benjamin–Ono
equation with arbitrary datum u0 ∈ L2(R) ∩ L∞(R), bypassing
inverse spectral theory (but using the Lax pair structure).

2 Pass to the zero dispersion limit in the above formula, obtaining an
explicit formula for the limit u(t, x) for any u0 ∈ L2(R) ∩ L∞(R).

3 Link with the multivalued solution of the inviscid Burgers–Hopf
equation from the method of characteristics.
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The Lax pair

The Hardy space is

L2
+(R) := {f ∈ L2(R) : ∀ξ < 0, f̂ (ξ) = 0}

= {f holomorphic on C+ : sup
y>0

∫
R
|f (x + iy)|2 dx < +∞}

The associated Riesz–Szegő projector is

Π : L2(R)→ L2
+(R) , Π̂f (ξ) = 1ξ≥0 f̂ (ξ) .

Given b ∈ L∞, define the Toeplitz operator of symbol b,

Tb : L2
+ → L2

+ , f 7→ Tbf := Π(bf ) .

Notice that T ∗b = Tb.



The Lax pair, continued

For u ∈ L∞, real valued, define Lu : H1
+ := H1 ∩ L2

+ → L2
+ by

Lu(f ) =
1

i

df

dx
− Tuf .

Lu is unbounded selfadjoint on L2
+ with Dom(Lu) := H1

+ = H1 ∩ L2
+ .

Also define, for u ∈ H2, real valued

Bu := i(T|D|u − T 2
u ) .

Notice that Bu : L2
+ → L2

+, Bu : H1
+ → H1

+ and B∗u = −Bu.



The Lax pair, statement

Theorem (Nakamura (1979), Fokas–Ablowitz (1983),Wu (2016),
PG–Kappeler(2019))

If u ∈ C (R,H2(R)) solves the Benjamin–Ono equation, then

dLu(t)

dt
= [Bu(t), Lu(t)] .

Corollary

Define the family of unitary operators {U(t)}t∈R by

U ′(t) = Bu(t)U(t) , U(0) = Id .

Then
Lu(t) = U(t)Lu(0)U(t)∗ .
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The explicit formula

Consider the Lax–Beurling semigroup on L2
+(R), S(η) := Teiηx , η ≥ 0 .

Infinitesimal generator : multiplication by x .

We define G = x∗, so that

S(η)∗ = e−iηG , η ≥ 0 , Ĝf (ξ) = i
d f̂

dξ
1ξ>0 ,

Dom(G ) = {f ∈ L2
+(R) : f̂|]0,+∞[ ∈ H1(]0,+∞[)} .

Define I+(f ) := f̂ (0+) if f̂|]0,1[ ∈ H1(]0, 1[).

Theorem (PG, 2022)

The solution u ∈ C (R,H2(R)) of the Benjamin–Ono equation with
u(0) = u0 is given by u(t, x) = Πu(t, x) + Πu(t, x), x ∈ R with

∀x ∈ C+ , Πu(t, x) =
1

2iπ
I+[(G − 2tLu0 − x)−1Πu0] .
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d f̂

dξ
1ξ>0 ,

Dom(G ) = {f ∈ L2
+(R) : f̂|]0,+∞[ ∈ H1(]0,+∞[)} .

Define I+(f ) := f̂ (0+) if f̂|]0,1[ ∈ H1(]0, 1[).

Theorem (PG, 2022)

The solution u ∈ C (R,H2(R)) of the Benjamin–Ono equation with
u(0) = u0 is given by u(t, x) = Πu(t, x) + Πu(t, x), x ∈ R with

∀x ∈ C+ , Πu(t, x) =
1

2iπ
I+[(G − 2tLu0 − x)−1Πu0] .



The explicit formula

Consider the Lax–Beurling semigroup on L2
+(R), S(η) := Teiηx , η ≥ 0 .

Infinitesimal generator : multiplication by x . We define G = x∗, so that

S(η)∗ = e−iηG , η ≥ 0 , Ĝf (ξ) = i
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Sketch of the proof

First reformulate the inverse Fourier formula for f ∈ L2
+(R).

With χε(y) := (1− iεy)−1, we have, for every x ∈ C+,

f (x) =
1

2π

∫ ∞
0

eixξ f̂ (ξ) dξ =
1

2π

∫ ∞
0

eixξ lim
ε→0+

∫
R
f (x)e−ixξχε(x) dx dξ

=
1

2π

∫ ∞
0

eixξ lim
ε→0+

〈f |S(ξ)χε〉 dξ

=
1

2π

∫ ∞
0

eixξ lim
ε→0+

〈S(ξ)∗f |χε〉 dξ

=
1

2π

∫ ∞
0

eixξ lim
ε→0+

〈e−iξG f |χε〉 dξ

=
1

2iπ
lim
ε→0+

〈(G − x)−1f |χε〉 =
1

2iπ
I+((G − x)−1f ) .

Then apply this formula to f = Πu(t) and deform it through U(t)∗.



Sketch of the proof

First reformulate the inverse Fourier formula for f ∈ L2
+(R).

With χε(y) := (1− iεy)−1, we have, for every x ∈ C+,

f (x) =
1

2π

∫ ∞
0

eixξ f̂ (ξ) dξ =
1

2π

∫ ∞
0

eixξ lim
ε→0+

∫
R
f (x)e−ixξχε(x) dx dξ

=
1

2π

∫ ∞
0

eixξ lim
ε→0+

〈f |S(ξ)χε〉 dξ

=
1

2π

∫ ∞
0

eixξ lim
ε→0+

〈S(ξ)∗f |χε〉 dξ

=
1

2π

∫ ∞
0

eixξ lim
ε→0+

〈e−iξG f |χε〉 dξ

=
1

2iπ
lim
ε→0+

〈(G − x)−1f |χε〉 =
1

2iπ
I+((G − x)−1f ) .

Then apply this formula to f = Πu(t) and deform it through U(t)∗.



A typical calculation

Since U ′(t) = Bu(t)U(t), we have

d

dt
U(t)∗GU(t) = U(t)∗[G ,Bu(t)]U(t)

Using
[G ,Bu] = −2Lu + i [L2

u,G ] ,

and
U(t)∗Lu(t)U(t) = Lu0 ,

we conclude

U(t)∗GU(t) = −2tLu0 + eitL
2
u0Ge−itL

2
u0 .



The zero dispersion limit

After rescaling t 7→ εt and u 7→ u/ε, we get, using Lu = D − Tu,

∀x ∈ C+ , Πuε(t, x) =
1

2iπ
I+[(G − 2εtLu0/ε − x)−1Πu0]

=
1

2iπ
I+[(G − 2εtD + 2tTu0 − x)−1Πu0] .

Using the L2 conservation law and the strong convergence of the
resolvents, we obtain uε(t) ⇀ u(t) in L2(R) with

∀x ∈ C+ , Πu(t, x) =
1

2iπ
I+[(G + 2tTu0 − xId)−1Πu0]
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The case of rational data

For simplicity, let us assume

u0(y) =
ay + b

1 + y2
, (a, b) ∈ R2 , Πu0(y) =

c

y + i
.

The equation y + 2tu0(y) = x reads (y − x)(y2 + 1) + 2t(ay + b) = 0 .
For x ∈ R, we have two possibilities.

1 One real solution y0 and two complex solutions y1, y2 = y1 with
Im(y2) > 0 .

2 Three real solutions y0 < y1 < y2.

Note that, if x is slightly shifted into the upper half plane with Im(x) > 0
small, then

Im(y0) > 0 , Im(y1) < 0 , Im(y2) > 0 ,

so the zeroes of y 7→ y − x + 2tu0(y) in the upper half plane are y0, y2.
Furthermore, y0 + y1 + y2 = x .
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The solution of the resolvent equation is rational !!

For x ∈ C+ with Imx > 0 small, we calculate
ft,x := (G + 2tTu0 − x)−1Πu0 . Notice that, for every f ∈ L2

+(R),

Tu0 f (y) = u0(y)f (y)− cf (i)

y − i
, Gf (y) = yf (y) +

1

2iπ
I+(f ) .

Therefore the resolvent equation reads

(y − x + 2tu0(y))ft,x(y) = u0(y) + λ(t, x) +
µ(t, x)

y − i
,

where λ(t, x), µ(t, x) are chosen so that the solution is holomorphic in
the upper half plane, namely so that the right hand side cancels at the
zeroes y0(t, x), y2(t, x) of y − x + 2tu0(y) in the upper half plane.{

u0(y0(t, x)) +λ(t, x) + µ(t,x)
y0(t,x)−i = 0

u0(y2(t, x)) +λ(t, x) + µ(t,x)
y2(t,x)−i = 0



Conclusion

Recall that 2tu0(yk(t, x)) = x − yk(t, x) , k = 0, 1, 2 .
Solving the linear system, we get

λ(t, x) =
y0 + y2 − x − i

2t
.

Since Πu(t, x) = 1
2iπ I+(ft,x) = − limy→∞ yft,x(y) = −λ(t, x) , we

conclude that, for x ∈ R,

u(t, x) = −λ(t, x)− λ(t, x)

=
2x − 2y0(t, x)− y2(t, x)− y2(t, x)

2t

=
x − y0(t, x) + y1(t, x)− y2(t, x)

2t
.

In case 1, y0, u(t, x) = u0(y0(t, x)).
In case 2, u(t, x) = u0(y0(t, x))− u0(y1(t, x)) + u0(y2(t, x)).
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2iπ I+(ft,x) = − limy→∞ yft,x(y) = −λ(t, x) , we

conclude that, for x ∈ R,

u(t, x) = −λ(t, x)− λ(t, x)

=
2x − 2y0(t, x)− y2(t, x)− y2(t, x)

2t

=
x − y0(t, x) + y1(t, x)− y2(t, x)

2t
.

In case 1, y0, u(t, x) = u0(y0(t, x)).
In case 2, u(t, x) = u0(y0(t, x))− u0(y1(t, x)) + u0(y2(t, x)).



Perspectives

Notice that formula (1) with alternate sum of branches of solutions
of the Hopf–Burgers inviscid equation extends to more general data
(sufficiently smooth) using approximation by rational data.

Use the explicit formula

∀x ∈ C+ , Πuε(t, x) =
1

2iπ
I+[(G − 2εtD + 2tTu0 − x)−1Πu0]

to describe the oscillations in the case of multiple characteristics, as
was done by Claeys and Grava (2009) for a special solution of KdV.

Can one prove such a general result for the zero dispersion limit of
the Korteweg–de Vries equation ? Of a more general nonlinear
dispersive equation ?

Use the explicit formula for studying the long time behavior of BO
solutions (soliton resolution) ?
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