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Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

∂tv
` +∇j(vjv`) +∇`p = 0 (1)

∇jvj = 0 (2)

make sense in integral form for continuous (v, p):

d

dt

∫
Ω
v`(t, x)dx =

∫
∂Ω
p(t, x)n`dσ +

∫
∂Ω
v`(t, x)(v · n)dσ (3)

∫
∂Ω

(v · n)(t, x)dσ(x) = 0 (4)

for all Ω with smooth boundary ∂Ω and interior unit normal n`.
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Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v`

v`∂tv
` + v`∇j(vjv`) + v`∇`p = 0

∇jvj = 0

Then, use the divergence free condition div v = ∇`v` = 0, and
integrate

d

dt

∫
Rn

|v|2

2
(t, x)dx = −

∫
Rn

div

[
(
|v|2

2
+ p)v

]
dx = 0
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Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

∂tv
` +∇j(vjv`) +∇`p = 0 (5)

∇jvj = 0

|v(t, x+ ∆x)− v(t, x)| ≤ C|∆x|α (6)

for some α > 1/3 must conserve energy.

2. If the α in (6) is less than 1/3, then v may fail to conserve
energy
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Motivation: Hydrodynamic turbulence
Kolmogorov (1941): As ν → 0 for solutions to 3D Navier-Stokes:{

∂tv
` +∇j(vjv`) +∇`p = ν∆v`

∇jvj = 0
(7)

the energy dissipation rate remains strictly positive as ν → 0

ε = lim
ν→0

〈
− d

dt

∫
|vν |2

2
(t, x)dx

〉
> 0.

The velocity fluctuations on average obey a law

〈|v(x+ ∆x)− v(x)|p〉1/p ∼ ε1/3|∆x|1/3

for |∆x| ≥
(
ν3/ε

)1/4
Onsager considered the case ν = 0; argued that “frequency
cascades” may lead to energy dissipation in the absence of
viscosity.



Motivation: Hydrodynamic turbulence
Kolmogorov (1941): As ν → 0 for solutions to 3D Navier-Stokes:{

∂tv
` +∇j(vjv`) +∇`p = ν∆v`

∇jvj = 0
(7)

the energy dissipation rate remains strictly positive as ν → 0

ε = lim
ν→0

〈
− d

dt

∫
|vν |2

2
(t, x)dx

〉
> 0.

The velocity fluctuations on average obey a law

〈|v(x+ ∆x)− v(x)|p〉1/p ∼ ε1/3|∆x|1/3

for |∆x| ≥
(
ν3/ε

)1/4

Onsager considered the case ν = 0; argued that “frequency
cascades” may lead to energy dissipation in the absence of
viscosity.



Motivation: Hydrodynamic turbulence
Kolmogorov (1941): As ν → 0 for solutions to 3D Navier-Stokes:{

∂tv
` +∇j(vjv`) +∇`p = ν∆v`

∇jvj = 0
(7)

the energy dissipation rate remains strictly positive as ν → 0

ε = lim
ν→0

〈
− d

dt

∫
|vν |2

2
(t, x)dx

〉
> 0.

The velocity fluctuations on average obey a law

〈|v(x+ ∆x)− v(x)|p〉1/p ∼ ε1/3|∆x|1/3

for |∆x| ≥
(
ν3/ε

)1/4
Onsager considered the case ν = 0; argued that “frequency
cascades” may lead to energy dissipation in the absence of
viscosity.



Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which
converges for v ∈ L2)

v(x, t) =
∑
k

ak(t)e
ik·x

dak
dt

= i
∑
m

ak−m · k
[
−am +

(am · k)k

|k|2

]
He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy

∑
k |ak|2 escapes to infinite frequency (i.e. vanishes to

small spatial scales) in finite time.

However, only low regularity solutions could behave this way, and
he stated that solutions in Cα with α > 1/3 must conserve energy.
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the energy

∑
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By a statistical physics argument, a “typical” turbulent flow should
have:

∑
λ
2
≤|k|≤2λ |ak|

2 ∼ λ−2/3 (hence regularity exactly 1/3).



Motivation: Onsager’s Conjecture (1949)

1. Solutions (v, p) to Euler obeying a Hölder estimate

∂tv
` +∇j(vjv`) +∇`p = 0 (8)

∇jvj = 0

|v(t, x+ ∆x)− v(t, x)| ≤ C|∆x|α (9)

for some α > 1/3 must conserve energy.

2. If the α in (9) is less than 1/3, then v may fail to conserve
energy

Part 1 is known: (Eyink, ’94), (Constantin-E-Titi, ’94)
Refinements: (Duchon-Robert ’00), (Cheskidov-Constantin-

Shvydkoy-Friedlander ’08): v ∈ L3
tB

1/3
3,c(N), but not L∞t C

1/3.
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Shell models and continuous model equations:
(Cheskidov-Friedlander-Pavlović ’06, Ches.-Fried. ’08,
Ches.-Fried.-Shvydkoy ’11, Friedlander-Glatt Holtz-Vicol ’14)
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Weak solutions that fail to conserve energy

I Weak solutions in L2
t,x(R× R2) with compact support in

space and time (Scheffer, ’93)

I Weak solutions in L2
t,x(R× T2) (Shnirelman, ’97)

I Dissipative solutions in L∞t L
2
x(R× T3) (Shnirelman, ’00 )

I Solutions in L∞t,x ∩ CtL2
x(R× Rn) with any energy density

|v|2

2
= e(t, x)

(De Lellis, Székelyhidi, ’07)
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(De Lellis, Székelyhidi, ’07)



Weak solutions that fail to conserve energy

I Weak solutions in L2
t,x(R× R2) with compact support in

space and time (Scheffer, ’93)

I Weak solutions in L2
t,x(R× T2) (Shnirelman, ’97)

I Dissipative solutions in L∞t L
2
x(R× T3) (Shnirelman, ’00 )

I Solutions in L∞t,x ∩ CtL2
x(R× Rn) with any energy density

|v|2

2
= e(t, x)

(De Lellis, Székelyhidi, ’07)
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Convex Integration and Isometric Embeddings

I (Nash, ’54) Constructs surprising, C1 isometric embeddings in
very low codimension.

I (Borisov, ’65, ’04) Irregular C1,α isometric embeddings for
analytic metric

I (Gromov, ’86) Generalizes Nash’s idea to the method of
“convex integration” in topology and geometry

I (Müller-Sverak, ’04) Elliptic systems with Lipschitz but
nowhere C1 solutions (i.e. ∇u ∈ L∞, but ∇u /∈ C0).

I (De Lellis-Székelyhidi, ’09) Simpler proofs and extensions of
Borisov’s results on C1,α isometric embeddings
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Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, ’12)

For every α < 1/10, ∃ solutions (v, p) ∈ Cαt,x × C2α
t,x(R× T3) that

can realize any smooth energy profile∫
|v|2

2
(t, x)dx = e(t) ≥ c > 0

I Extension to R× T2 (De Lellis, Székelyhidi ’12, Choffrut ’12)
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Improved regularity of energy non-conserving solutions

Theorem (I., ’12)

For every α < 1/5 there exist nontrivial weak solutions to the
incompressible Euler equations on R× T3 in the class

v ∈ Cαt,x p ∈ C2α
t,x

that are identically 0 outside of a bounded time interval.

I Shorter proof, solutions with arbitrary smooth
e(t) =

∫
|v|2(t, x)dx ≥ c > 0

(Buckmaster-De Lellis-Székelyhidi, ’13)

I Solutions with compact support in Ω ⊆ R× R3 (I.-Oh, ’14)
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Main Ideas

New ideas for 1/10 (DeL, Sze)

I Euler Reynolds system

I Nonstationary phase

I Transport term vs. oscillatory term

I Beltrami flows (= special stationary solutions to 3D Euler)

New ideas for 1/5 (I.)

I “Frequency Energy Levels” used to measure Hölder regularity
(= sharp estimates)

I Nonlinear phase functions and transport of high frequency
fluctuations along the coarse scale flow

I Improved bounds for Dt := ∂t + v · ∇
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(= sharp estimates)

I Nonlinear phase functions and transport of high frequency
fluctuations along the coarse scale flow

I Improved bounds for Dt := ∂t + v · ∇



Onsager’s Conjecture in Weaker Topologies

Can the exponent 1/5 be improved if we weaken the topology?

I (Buckmaster, ’13) Solutions in v ∈ C1/5−ε
t,x with

v(t, ·) ∈ C1/3−ε for a.e. t

I (Buckmaster-De Lellis-Székelyhidi, ’14) C0 solutions in

v ∈ L1
tC

1/3−ε
x

I (Buckmaster-Masmoudi-Vicol, ’16) Solutions with

v ∈ CtH1/3−ε
x

Note: The improvement in regularity is in an averaged sense (in L1

or L2), but achieves the Onsager critical exponent 1/3−.

To compare: energy conservation requires L3
tB

1/3
3,c0(N).

(Buck.-Masmoudi-Novak-Vicol, ’21; Novack-Vicol, ’22;
Giri-Kwon-Novack ’23) Solutions belonging to the space

CtH
1/2−
x ∩ CtL∞− ⊆ CtB1/3−

3,∞
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Main Theorem: A Proof of Onsager’s Conjecture

Theorem (I. ’16)

For every α < 1/3 there exists a weak solution in the class

v ∈ Cαt,x, p ∈ C2α
t,x, (t, x) ∈ R× T3

such that v has nonempty, compact support in time.

New Ideas:
I Using “Mikado Flows” instead of Beltrami Flows to perform

the convex integration method (Daneri-Székelyhidi)
I Difficulty controlling interactions between distinct Mikado flows

I Gluing technique
I Hidden special structure in the linearization of the Euler

equations to estimate main terms
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I (Buck., De L., Szé., Vicol, ’17) Solutions in v ∈ C1/3−ε
t,x with

any smooth energy profile
∫
T3 |v|2(t, x)dx = e(t) > 0.

I (I., ’17) Solutions with borderline endpoint regularity

|v(t, x+ ∆x)− v(t, x)| . |∆x|
1
3
−B

√
log log |∆x|−1

log |∆x|−1
, B = 4/3+.

I (Giri,Radu,’23) Solutions in C
1/3−ε
t,x on T2 based on different

ideas.
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Significance: Confirmation of energy cascades

Onsager considered the Euler equations in Fourier series form

v(x, t) =
∑
k

ak(t)e
ik·x

dak
dt

= i
∑
m

ak−m · k
[
−am +

(am · k)k

|k|2

]
He argued that energy can “cascade” from low wavenumbers to
high wavenumbers, and the cascade can happen so rapidly that
part of the energy

∑
k |ak|2 escapes to infinite frequency (i.e.

vanishes to small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
have:

∑
λ
2
≤|k|≤2λ |ak|

2 ∼ λ−2/3 (hence regularity exactly 1/3).



K41-Onsager Conjecture for Navier Stokes

Open problem:

Are there sequences of smooth Navier-Stokes solutions with
ν → 0 that dissipate energy at a uniform rate while having a
uniformly bounded C1/3 norm?

If so, then (weak) C1/3 dissipative Euler flows that satisfy

∂t
|v|2

2
+∇j

((
|v|2

2
+ p

)
vj
)
≤ 0

arise as limits of convergent subsequences.

Problem is wide open but there are results in this direction both
for forced Navier-Stokes (Bruè-Colombo-de Lellis-Sorella ’22), and
for Euler (I. ’17, de Lellis-Kwon ’20, Giri-Kwon-Novack ’23).
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(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations
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(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

∂tv
` +∇j(vjv`) +∇`p = ∇jRj` (ER)

∇jvj = 0

The symmetric tensor Rj` measures the error from solving Euler.
Examples: If (v, p) solves the Euler equations then

I (vε, pε, R
j`
ε ), Rj`ε = vjεv`ε − (vjv`)ε, v

`
ε = ηε ∗ v`

I Corollary: Every continuous incompressible Euler flow (v, p)
is the uniform limit of a sequence of smooth Euler-Reynolds
flows (vq, pq, Rq) with ‖Rq‖C0 → 0 as q →∞



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

∂tv
` +∇j(vjv`) +∇`p = ∇jRj` (ER)

∇jvj = 0

The symmetric tensor Rj` measures the error from solving Euler.
Examples:

I Any v` that is incompressible and conveserves momentum

∂tv
` +∇j(vjv`) = U `∫
T3

U `(t, x)dx = 0

∇jRj` = U `



Continuous Solutions: Convex Integration for Euler

We construct a sequence (vq, pq, Rq) indexed by q solving

∂tv
`
q +∇j(vjqv`q) +∇`pq = ∇jRj`q (ERq)

∇jvjq = 0

where vq+1 = vq + Vq, pq+1 = pq + Pq solve (ERq+1) with

much smaller |Rq+1| � |Rq|1+δ

In the limit as q →∞, we get continuous solutions

‖Rq‖C0 → 0, |Vq| ∼ |Rq|1/2, |Pq| ∼ |Rq|
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Continuous Solutions: Convex Integration for Euler

Start with any smooth solution to Euler-Reynolds on R× T3

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`

∇jvj = 0

and add high-frequency corrections

∗
v = v + V,

∗
p = p+ P,

which are designed to “get rid of” Rj`.



Continuous Solutions: Convex Integration for Euler

Get new solutions
∗
v = v + V ,

∗
p = p+ P to Euler-Reynolds

∂t
∗
v` +∇j(

∗
vj
∗
v`) +∇` ∗p = ∇j

∗
Rj`

∇j
∗
vj = 0

with ||
∗
R||C0

t,x
much smaller than ||R||C0

t,x
.

The new error ‖
∗
R‖C0 will only be small when V and P are very

oscillatory and are designed carefully depending on the given v`

and Rj`.
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The Error terms

Let (v, p,R) be a smooth solution to Euler-Reynolds.

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`

Then
∗
v = v + V and

∗
p = p+ P satisfy

∂t
∗
v` +∇j(

∗
vj
∗
v`) +∇` ∗p = ∂tV

` +∇j(vjV `) +∇j(V jv`)

+∇j(V jV ` + Pδj` +Rj`)

want = ∇j
∗
Rj`

with ‖
∗
R‖C0 . λ−1

where V ` oscillates at large frequency λ.



The Error terms

We name the terms as follows

Transport term:

∇jRj`T = ∂tV
` +∇j(vjV `) +∇j(V jv`)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`)]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]

Each one of RT , RS and RH must be ‖
∗
R‖C0 . λ−1.



The Error terms

We name the terms as follows

Transport term:

∇jRj`T = ∂tV
` +∇j(vjεV `) +∇j(V jv`ε)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]

Each one of RT , RS and RH must be ‖
∗
R‖C0 . λ−1.

(There is also another term involving errors from mollifying v 7→ vε
and R 7→ Rε that we are neglecting here.)



The High-Frequency Correction

The correction V ` is a high-frequency, divergence free wave.
For example, in (I., ’12), it has the form

V ` =
∑
I

eiλξIv`I + δV `

∇`V ` = 0 (by choice of small δV `)

(∂t + vjε∇j)ξI = 0 (⇒ nonlinear phase functions)

∇× (eiλξIvI) ≈ λeiλξIvI (by taking (i∇ξI)× vI ≈ vI)

The last condition makes V ` approximate a Beltrami flow
(∇× V ≈ λV ), which are special steady state solutions to 3D
Euler. It is used to control

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]
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The Error terms again

Each one of RT , RS and RH must have size ‖
∗
R‖C0 . λ−1, and

requires solving a divergence equation:

Transport term:

∇jRj`T = ∂tV
` +∇j(vjεV `) +∇j(V jv`ε)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]



Nonstationary phase

Lemma (Nonstationary Phase Lemma)

Suppose u`(x) and ξ(x) are smooth functions on T3 and

U `(x;λ) = eiλξ(x)u`(x)

‖ |∇ξ|−1‖C0 ≤ A,
∫
T3

U `(x)dx = 0

Then U ` is very small in C−1. That is, we can solve

∇jRj` = eiλξ(x)u`(x)

‖Rj`‖C0 . λ−1

The implicit constant depends on A and Ck norms of ∇ξ, u`
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Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

div R(x) =
dR

dx
= eiλξ(x)u(x)

⇒ R(x) =

∫ x

0
eiλξ(X)u(X)dX

=

∫ x

0

1

iλξ′(X)

d

dX
(eiλξ(X))u(X)dX

=
u(X)eiλξ(X)

iλ∇ξ(X)

∣∣∣X=x

X=0
− 1

iλ

∫ x

0
eiλξ(X) d

dX

(
1

∇ξ(X)
u(X)

)
dX

Using ‖|∇ξ|−1‖C0 ≤ A, the solution has size ‖R‖C0 . λ−1.
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Nonstationary phase: Proof

Proof: To solve ∇jRj` = eiλξ(x)u`(x), write

eiλξ(x)u`(x) = ∇j
(

1

λ
eiλξ(x)qj`(x)

)
+∇jŘj`

i∇jξqj`(x) = u`(x), qj` ∈ C∞(T3;R3 ⊗ R3) (12)

∇jŘj` = − 1

λ
eiλξ(x)∇jqj`(x) (13)

Equation (12) is solved pointwise and leads to a bound

‖qj`‖C0 . ‖ |∇ξ|−1 ‖C0‖u`‖C0

We can solve (13) because
∫
T3 e

iλξ(x)u`(x)dx = 0.
The solution satisfies ‖Řj`‖C0 . λ−1.
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Nonstationary phase 2

In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)

Suppose u`(x) and ω(x) ∈ C∞(T3) and Γ ∈ C∞(T3;T3)

U `(x;λ) = ω(λΓ(x))u`(x)

‖(∇Γ)−1‖C0 ≤ A,
∫
T3

U `(x)dx = 0∫
T3

ω(X)dX = 0

Then U ` is very small in C−1. That is, we can solve

∇jRj` = ω(λΓ(x))︸ ︷︷ ︸
fast

u`(x)︸ ︷︷ ︸
slow

‖Rj`‖C0 . λ−1
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Nonstationary phase 2: Proof outline

To solve ∇jRj` = ω(λΓ(x))u`(x), write (using
∫
T3 ω(X)dX = 0)

ω(λΓ(x))u`(x) =
∑
m 6=0

ω̂(m)eiλm·Γ(x)u`(x) (14)

Can apply the previous Lemma if we have nonstationary phase
functions, which requires

‖(∇Γ)−1‖C0 ≤ A⇒ |∇(m · Γ)|−1 ≤ A|m|−1

Applying the Nonstationary Phase Lemma gives a solution with

‖Rj`‖C0 . λ−1
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Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, ’16)

For every smooth Euler-Reynolds flow (v̄, p, R) with

−Rj` ≥ cδj`, c > 0, (15)

there exist weak solutions to Euler in v(k) ∈ C
1/5−ε
t,x such that

v`(k) ⇀ v̄` in L∞t,x (16)

vj(k)v
`
(k) − v̄

j v̄` ⇀ Rj` in L∞t,x as k →∞ (17)

With Beltrami flows, would require Rj` = −a(t, x)(δj` + small).
To overcome this restriction, they introduce a different family of
stationary solutions to Euler (“Mikado flows”) that provide more
algebraic flexibility to achieve an arbitrary stress Rj`.
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W `(X) = f `ψf (X), ψf ∈ C∞(T3)

We choose ψf whose level surfaces are concentric cylinders with an
axis pointed in the f ` direction. With this choice we have

∇`ψf (X)f ` = 0 ⇐ orthogonality

Then W `(X) is a stationary Euler flow with 0 pressure:

∇`W `(X) = 0

∇j(W jW `(X)) = ∇j(ψ2
f (X)f jf `)
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axis pointed in the f ` direction. With this choice we have

∇`ψf (X)f ` = 0 ⇐ orthogonality

Then W `(X) is a stationary Euler flow with 0 pressure:

∇`W `(X) = 0

∇j(W jW `(X)) = 0



Elementary Mikado flows on T3

Fix a constant integer vector f ` ∈ Z3 and define for X ∈ T3

W `(X) = f `ψf (X), ψf ∈ C∞(T3)

In addition to ∇jψf (X)f j = 0, we require that∫
T3

ψf (X)dX = 0,

∫
T3

ψ2
f (X)dX = 1 (18)

With these choices, we have:∫
T3

W `(X)dX = 0︸ ︷︷ ︸
Oscillation

,

∫
T3

W jW `(X)dX = f jf `︸ ︷︷ ︸
Nontrivial low-frequency part

(19)



Elementary Mikado flows on T3

More generally, fix a finite set F ⊆ Z3 and coefficients γf and set

W `(X) =
∑
f∈F

γfψf (X)f `

supp ψf ∩ supp ψf ′ = ∅, if f 6= f ′ ∈ F

We still have ∇`W ` = 0, ∇j(W jW `) = 0 and
∫
T3 W

`(X)dX = 0,
but now ∫

T3

W jW `(X)dX =
∑
f∈F

γ2
ff

jf `

can be an arbitrary, positive definite tensor.



Designing a wave with Mikado flows

Using these flows, we design our high-frequency wave V ` as follows.
At time t = 0 it looks like

V `(0, x) =
∑
f∈F

γf (0, x)︸ ︷︷ ︸
slow

f ` ψf (λx)︸ ︷︷ ︸
fast

+ δV `︸︷︷︸
small
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slow
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fast
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small

At nonzero times, it has the form:

V `(t, x) =
∑
f∈F

γf (t, x) f̃ `(t, x)︸ ︷︷ ︸
slow

ψf (λΓ(t, x)︸ ︷︷ ︸
slow

) + δV `

(∂t+vε · ∇)Γ(t, x) = 0, Γ(0, x) = x



Designing a wave with Mikado flows

The vector field f̃ ` satisfies

V `(t, x) =
∑
f∈F

γf (t, x)f̃ `(t, x)ψf (λΓ(t, x)) + δV `

f̃ ` = (∇Γ−1)`af
a

⇒ f̃ `∇`[ψf (λΓ(t, x))] = 0, since fa∇aψf = 0



Designing a wave with Mikado flows

The vector field f̃ ` satisfies

V `(t, x) =
∑
f∈F

γf (t, x)f̃ `(t, x)ψf (λΓ(t, x)) + δV `

f̃ ` = (∇Γ−1)`af
a

⇒ f̃ `∇`[ψf (λΓ(t, x))] = 0, since fa∇aψf = 0

We can then make V ` divergence free by solving
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slow

ψf (λΓ(t, x))︸ ︷︷ ︸
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+∇`δV `

⇒ ‖δV `‖C0 . λ−1 (starting now we will neglect this term...)
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Recalling the Error terms again

Each one of RT , RS and RH must have size ‖
∗
R‖C0 . λ−1, and

requires solving a divergence equation:

Transport term:

∇jRj`T = ∂tV
` +∇j(vjεV `) +∇j(V jv`ε)

Stress term:

∇jRj`S = LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

High-Frequency Interference terms:

∇jRj`H = HFreq[∇j(V jV ` + Pδj`)]
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The Main Error Terms

With this Ansatz the Transport term is under control:
Letting Dt := (∂t + vjε∇j) be the “advective derivative” we have

∂tV
` +∇j(vjεV `) +∇j(V jv`ε) = (∂t + vjε∇j)V ` + V j∇jv`ε

=
∑
f∈F

Dt[γf f̃
`ψf (λΓ(t, x))] + γf f̃

jψf (λΓ(t, x))∇jv`ε

∇jRj`T =
∑
f∈F

(Dt[γf f̃
`] + γf f̃

j∇jv`ε)︸ ︷︷ ︸
slow

ψf (λΓ(t, x))︸ ︷︷ ︸
fast

Nonstationary phase ⇒ ‖RT ‖C0 . λ−1.
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With this Ansatz the Transport term is under control:
Letting Dt := (∂t + vjε∇j) be the “advective derivative” we have

∂tV
` +∇j(vjεV `) +∇j(V jv`ε) = (∂t + vjε∇j)V ` + V j∇jv`ε

=
∑
f∈F

Dt[γf f̃
`ψf (λΓ(t, x))] + γf f̃

jψf (λΓ(t, x))∇jv`ε

∇jRj`T =
∑
f∈F

(Dt[γf f̃
`] + γf f̃

j∇jv`ε)︸ ︷︷ ︸
slow

ψf (λΓ(t, x))︸ ︷︷ ︸
fast

(Used ∇jV j = 0.)



The Main Error Terms

The Stress term is controlled as follows:

LFreq[∇j(V jV ` + Pδj` +Rj`ε )]

= LFreq
[
∇j
( ∑
f1,f2∈F

γf1γf2

disjoint if 6=︷ ︸︸ ︷
ψf1ψf2(λΓ) f̃ j1 f̃

`
2 + Pδj` +Rj`ε

)]
= LFreq

[
∇j
(∑
f∈F

γ2
fψ

2
f (λΓ)f̃ j f̃ ` + Pδj` +Rj`ε

)]
:= ∇j

[∑
f∈F

γ2
f (t, x)f̃ j f̃ ` + P (t, x)δj` +Rj`ε

]
= ∇j [0] = 0

Here we solve for the γ2
f (t, x) at each point using that the

(f̃ j f̃ `)f∈F span the space of symmetric tensors.



The Main Error Terms

The remaining High-Frequency Interference term is controlled as
follows using the orthogonality f̃ j∇j [ψ2

f (λΓ)] = 0

HFreq[∇j(V jV `)] = ∇j

∑
f∈F

γ2
f f̃

j f̃ `(ψ2
f (λΓ(t, x))− 1)


∇jRj`H =

∑
f∈F
∇j [γ2

f f̃
j f̃ `](ψ2

f (λΓ(t, x))− 1)



The Main Error Terms

The remaining High-Frequency Interference term is controlled as
follows using the orthogonality f̃ j∇j [ψ2

f (λΓ)] = 0

HFreq[∇j(V jV `)] = ∇j

∑
f∈F

γ2
f f̃

j f̃ `(ψ2
f (λΓ(t, x))− 1)


∇jRj`H =

∑
f∈F
∇j [γ2

f f̃
j f̃ `]︸ ︷︷ ︸

slow

(ψ2
f (λΓ(t, x))− 1)︸ ︷︷ ︸

fast :=ω(λΓ(t,x))

The last term is “fast-oscillating” since
∫
T3(ψ2

f (X)− 1)dX = 0.
(Using Beltrami flows, the corresponding term is under control only
for a very short period of time.)



Can we use Mikado flows for Onsager’s conjecture?

All the error terms discussed above appear sufficiently small for the
method of convex integration to yield regularity 1/3− ε.

However, there is a substantial difficulty standing in the way of
using Mikado flows to prove Onsager’s conjecture, namely:

Problem: To iterate the previous construction again and again
(i.e. perform convex integration) we need to use multiple waves
(see next slide). The difficulty comes in dealing with the
interactions of distinct Mikado flows that start from different
times.
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Why we Need Multiple Waves

A crucial assumption we are using is the bound ‖(∇Γ−1)‖C0 ≤ A
for the solution to

(∂t + vjε∇j)Γ(t, x) = 0, Γ(0, x) = x

We can see that this assumption holds only for times of the order
|t| . ‖∇v‖−1

C0 from the PDE:

(∂t + vjε∇j)(∇Γ−1)ab = ∇jvaε (∇Γ−1)jb

(∇Γ−1)ab = Idab at t = 0

Since ‖∇v‖C0 →∞ as v converges to a C1/3−ε vector field, we
need to use more and more waves starting at different times!



Difficulty with Mikado Flows

It seems very difficult to control the interactions between two
Mikado flow based waves. Suppose we have two such waves

V `
1 =

∑
f∈F1

γf,1f
jf `ψf (λΓ1), V `

0 =
∑
f∈F0

γf,0f
jf `ψf (λΓ0)

where Γ1 and Γ0 both solve (∂t + vε · ∇)ΓI = 0, but start as the
identity at different times

|t1 − t0| ∼ ‖∇v‖−1
C0 .

Then the supports of the ψf (λΓI) (which are unions of long,
λ−1-thin, λ−1-separated cylinders deformed by the flow) will in
general overlap and we will lose control over the interference term

∇j [V j
1 V

`
0 + V j

0 V
`

1 ]
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Strategy to Fix the Problem

Idea: Find a new stress error R̃ that is supported in disjoint time
intervals of width τ ∼ |∇v|−1

suppt R̃ ⊆
⋃
I

[t(I)− τ, t(I) + τ ]

so that the new velocity field is a perturbation of the old one
v 7→ ṽ = v + y and R̃ obeys the same estimates as the original R.



Strategy to Fix the Problem

Idea: More precisely, starting with (v, p,R), find a new
Euler-Reynolds flow (ṽ, p̃, R̃) with ṽ close to v such that

∂tṽ
` +∇j(ṽj ṽ`) +∇`p̃ = ∇jR̃j`, R̃ =

∑
I∈Z

RI

supp RI ⊆ [t(I)− τ, t(I) + τ ], τ ∼ |∇v|−1

|t(I)− t(I ′)| ≥ 4τ, I 6= I ′

Rules: (ṽ, p̃, R̃) must obey the same Ck estimates as (v, p,R). In
particular, the new error R̃ cannot be much larger than the
previous error R! (‖R̃‖C0 . ‖R‖C0 is OK.) Also, we require ṽ to

be close to v: ‖v − ṽ‖C0 . ‖R‖1/2
C0
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Constructing the new (ṽ, p̃, R̃)

We introduce the velocity increment y` and pressure increment p̄,
which satisfy ṽ` = v` + y`, p̃ = p+ p̄ and

∂ty
` + vj∇jy` + yj∇jv` +∇j(yjy`) +∇`p̄ = ∇jR̃j` −∇jRj`

∇jyj = 0

Need R̃ =
∑

I RI where supptRI ⊆ [t(I)− τ, t(I) + τ ],
τ ∼ ‖∇v‖−1

C0 . Also need

‖y‖C0 . e
1/2
R ∼ ‖R‖1/2

C0

and ‖R̃‖C0 . eR ∼ ‖R‖C0
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The Gluing Technique

Want the new error R̃ =
∑

I RI supported in disjoint intervals:

supptRI ⊆ [t(I)− τ, t(I) + τ ]

⇒ R̃ ≡ 0 outside of
⋃
I

[t(I)− τ, t(I) + τ ]

So the new ṽ` should solve the Euler equations exactly in the gaps
between the intervals

[t(I)− τ, t(I) + τ ] and [t(I + 1)− τ, t(I + 1) + τ ]

Also, ṽ` needs to be a close approximation to v`.
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The Gluing Technique

Let u`I = v` + y`I be the unique, smooth solution to Euler starting
at the middle of the Ith gap t0(I) with initial data

u`I(t0(I), x) = v`(t0(I), x), y`I(t0(I), x) = 0

Then set y` =
∑

I ηIy
`
I , ṽ

` =
∑

I ηIu
`
I with a partition of unity

Theorem (Classical Existence Result)

There exists a unique open interval J̃I containing t0(I) such that
uI is smooth on J̃I × T3 and for all T ∗ ∈ ∂J̃I endpoints of J̃I ,

lim sup
t→T ∗

‖∇uI(t)‖C0 =∞

(We will have to prove that suppt ηI ⊆ J̃I to know the formula is
well-defined).
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The New Stress

With y`I and y` =
∑

I ηIy
`
I as above, the new R̃j` is a solution to

∇jR̃j` =
∑
I

η′I(t)y
`
I +

∑
I

ηIηI+1∇j(yjIy
`
I+1 + yjI+1y

`
I)

+
∑
I

(η2
I − ηI)∇j(y

j
Iy
`
I),

where each y`I = u`I − v` solves

∂ty
`
I + vj∇jy`I + yjI∇jv

` +∇j(yjIy
`
I) +∇`p̄I = −∇jRj`

∇jyjI = 0

y`I(t0(I), x) = 0



The New Stress

With y`I and y` =
∑

I ηIy
`
I as above, the new R̃j` is a solution to

∇jR̃j` =
∑
I

η′I(t)y
`
I +

∑
I

ηIηI+1∇j(yjIy
`
I+1 + yjI+1y

`
I)

+
∑
I

(η2
I − ηI)∇j(y

j
Iy
`
I),

Choosing rj`I such that ∇jrj`I = y`I , the new stress will be

R̃j` =
∑
I

η′I(t)r
j`
I +

∑
I

ηIηI+1(yjIy
`
I+1 + yjI+1y

`
I)

+
∑
I

(η2
I − ηI)y

j
Iy
`
I

Note that suppt R̃ ⊆
⋃
I suppt η

′
I ⊆

⋃
I [t(I)− τ, t(I) + τ ].
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Finding a good Anti-Divergence: Attempt 1

Problem: we get bad estimates from solving

∇jrj`I = y`I . (20)

Suppose that eR is the size of the error (‖R‖C0 ≤ eR) and

suppose (optimistically) that ‖y`I‖C0 ∼ e1/2
R obeys the bound we

desire for y` = ṽ` − v`. Then our new error has size

‖R̃‖C0 =‖η′I(t)rI + . . . ‖C0

. τ−1‖rI‖C0 . τ−1‖yI‖C0

‖R̃‖C0 . τ−1e
1/2
R + . . .

Our goal was eR. Having e
1/2
R is already too big, and having τ−1

makes this bound diverge to ∞!



Finding a good Anti-Divergence: Attempt 2

We can find a better solution to ∇jrj`I = y`I using the equation

∂ty
`
I = −vj∇jy`I − y

j
I∇jv

` −∇j(yjIy
`
I)−∇`p̄I −∇jRj`
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Finding a good Anti-Divergence: Attempt 2

We can find a better solution to ∇jrj`I = y`I using the equation

∂ty
`
I = −∇j(vjy`I + yjIv

` + yjIy
`
I + p̄Iδ

j` +Rj`)

y`I(t, ·) = −∇j

=−rj`I (t,·)︷ ︸︸ ︷∫ t

0
(vjy`I(τ, ·) + yjIv

`(τ, ·) + . . .+Rj`(τ, ·))dτ

‖R̃‖C0 . τ−1‖rI‖C0 + . . . . ‖v‖C0‖yI‖C0 + . . .

‖R̃‖C0 . e
1/2
R + . . .

Still not the desired ‖R̃‖C0 . eR.



Finding a good Anti-Divergence: Attempt 3

Idea: Set rj`I (t0(I), x) = 0 and solve a transport equation

(∂t + vi∇i)[∇jrj`I ] = (∂t + vi∇i)y`I ,

(∂t + vi∇i)[∇jrj`I ] = −yjI∇jv
` −∇j(yjIy

`
I)−∇`p̄I −∇jRj`

(Motivation: “integration” over trajectories is more natural than
integrating in time at fixed x.)
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Idea: Set rj`I (t0(I), x) = 0 and solve a transport equation

(∂t + vi∇i)[∇jrj`I ] = (∂t + vi∇i)y`I ,

(∂t + vi∇i)[∇jrj`I ] = −yjI∇jv
` −∇j(yjIy

`
I)−∇`p̄I −∇jRj`

Setting rj`I = ρj`I + zj`I , we can solve away the last few terms:

(∂t + vj∇j)zj`I = −yjIy
`
I − p̄Iδj` −Rj` (21)

Then ‖zI‖C0 looks good if we have

‖yI‖C0 . e
1/2
R , ‖p̄I‖C0 . eR



Finding a good Anti-Divergence: Attempt 3

Idea: Set rj`I (t0(I), x) = 0 and solve a transport equation

(∂t + vi∇i)[∇jrj`I ] = (∂t + vi∇i)y`I ,

(∂t + vi∇i)[∇jrj`I ] = −yjI∇jv
` −∇j(yjIy

`
I)−∇`p̄I −∇jRj`

To handle the linear term, let rj`I = ρj`I + zj`I where

∇j [(∂t + vi∇i)ρj`I ] = ∇jvi∇irj`I − y
j
I∇jv

`

(Obtained by commuting ∇j and (∂t + vi∇i).)



Finding a good Anti-Divergence: Attempt 3

To handle the linear term, let rj`I = ρj`I + zj`I where

∇j [(∂t + vi∇i)ρj`I ] = ∇jvi∇irj`I − y
i
I∇iv` (22)

Equation (22) can only be solved if we can invert the divergence on
both sides. We need to know the right hand side has integral 0:

∇jvi∇irj`I − y
j
I∇jv

` = ∇i[∇jvirj`I − y
i
Iv
`]

Here we use that ∇ivi = ∇iyiI = 0.

We now invert the divergence to obtain an equation for ρI .

Key point: We can actually prove ‖Rj`[yiI∇ivb]‖C0 . eR! (almost)



Finding a good Anti-Divergence: Attempt 3

We let ρj`I solve a “transport-elliptic” equation:

(∂t + vi∇i)ρj`I = Rj`[∇avi∇i(ρabI + zabI )− yiI∇ivb]

where Rj` = div−1 is an order −1 operator that inverts divergence.
This type of equation can be solved as in (I. ’12) as long as yI and
zI are smooth.

Question: Are the estimates good enough?
(e.g. Do we have ‖R̃‖C0 . eR?)

Key point: We can actually prove ‖Rj`[yiI∇ivb]‖C0 . eR! (almost)
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. ‖Rj`[yiI∇ivb]‖C0 + other terms

. e
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(if we pretend R∇ = div−1∇ is bounded on C0)

But that is still not good enough for ‖R̃‖C0 . eR...
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The Pressure Has a Similar Bad Term

The pressure increment has a similar bad term

p̄I = −2∆−1∇`[yjI∇jv
`]−∆−1∇`∇j [yjIy

`
I +Rj`]

Note that the highlighted operator is of order −1, similar to Rj`.
Let us show how to (almost) estimate this term by

‖∆−1∇`[yjI∇jv
`]‖C0 . eR



The Pressure Has a Similar Bad Term

Notation: We define the Littlewood-Paley projections

Pqu
`(x) =

∫
R3

u`(x− h)ηq(h)dh

supp η̂q(ξ) ⊆ {2q−2 ≤ |ξ| ≤ 2q+2}
ηq(h) = 23qη0(2qh)

u`(x) = Π0u
` +

∞∑
q=0

Pqu
`(x), x ∈ T3



The Pressure Has a Similar Bad Term

Choose Ξ̂ such that τ−1 ∼ ‖∇v‖C0 . Ξ̂e
1/2
R and choose q̂ ∈ Z such

that 2q̂−1 ≤ Ξ̂ < 2q̂. Then

∆−1∇`[yjI∇jv
`] = ∆−1∇`P≤q̂[yjI∇jv

`] +
∑
q>q̂

∆−1∇`Pq[yjI∇jv
`]

= p̄I,L + p̄I,H



The Pressure Has a Similar Bad Term

Choose Ξ̂ such that τ−1 ∼ ‖∇v‖C0 . Ξ̂e
1/2
R and choose q̂ ∈ Z such

that 2q̂−1 ≤ Ξ̂ < 2q̂. Then

∆−1∇`[yjI∇jv
`] = ∆−1∇`P≤q̂[yjI∇jv

`] +
∑
q>q̂

∆−1∇`Pq[yjI∇jv
`]

= p̄I,L + p̄I,H

The high frequency term is bounded by

‖p̄I,H‖C0 ≤
∑
q>q̂

‖∆−1∇`Pq[yjI∇jv
`]‖C0

≤
∑
q>q̂

‖∆−1∇`Pq‖︸ ︷︷ ︸
(C0 7→C0)norm

‖yjI∇jv
`‖C0

(Note the operator convolves with an L1 Schwartz kernel.)



The Pressure Has a Similar Bad Term

Choose Ξ̂ such that τ−1 ∼ ‖∇v‖C0 . Ξ̂e
1/2
R and choose q̂ ∈ Z such

that 2q̂−1 ≤ Ξ̂ < 2q̂. Then

∆−1∇`[yjI∇jv
`] = ∆−1∇`P≤q̂[yjI∇jv

`] +
∑
q>q̂

∆−1∇`Pq[yjI∇jv
`]

= p̄I,L + p̄I,H

The high frequency term is bounded by

‖p̄I,H‖C0 ≤
∑
q>q̂

‖∆−1∇`Pq‖ ‖yjI∇jv
`‖C0

.
∑
q>q̂

2−q‖yjI∇jv
`‖C0

. Ξ̂−1e
1/2
R (τ−1) = eR

It now remains to bound the low frequency term.



The Low Frequency Term

The low frequency term has the form

p̄I,L = ∆−1∇`P≤q̂[yjI∇jv
`] =

q̂∑
q=0

∆−1∇`Pq[yjI∇jv
`]

In this case, we do not gain smallness from bounding

‖∆−1∇`Pq‖ . 2−q . 1



The Low Frequency Term

Step 2: Decompose v into high and low frequencies

p̄I,L = p̄I,LL + p̄I,LH

p̄I,LL = ∆−1∇`P≤q̂[yjI∇jP≤q̂v
`]

p̄I,LH =
∑
q>q̂

∆−1∇`P≤q̂[yjI∇jPqv
`]



The Low Frequency Term

Step 2: Decompose v into high and low frequencies

p̄I,L = p̄I,LL + p̄I,LH

p̄I,LL = ∆−1∇`P≤q̂[yjI∇jP≤q̂v
`]

p̄I,LH =
∑
q>q̂

∆−1∇`P≤q̂[yjI∇jPqv
`]

And bound the LH term using ∇jyjI = 0:

‖p̄I,H‖C0 ≤
∑
q>q̂

‖∆−1∇`∇jP≤q̂‖‖yI‖C0‖Pqv‖C0

.
∑
q>q̂

log Ξ̂ e
1/2
R (2−q‖∇v‖C0)

. log Ξ̂ e
1/2
R Ξ̂−1(Ξ̂e

1/2
R ) . log Ξ̂ eR



Remaining Problematic Term

The remaining problematic term is

p̄I,LL = ∆−1∇`P≤q̂[yjI∇jP≤q̂v
`]

or

p̄I,LL = ∆−1∇`P≤q̂[P≤q̂+3y
j
I∇jP≤q̂v

`]

using that high frequencies of yI do not contribute.



Remaining Problematic Term

The remaining problematic term is

p̄I,LL = ∆−1∇`P≤q̂[yjI∇jP≤q̂v
`]

We treat this term by decomposing into frequency increments

p̄I,LL =

q̂∑
q=−1

δqp̄I,LL

δqp̄I,LL = ∆−1∇`P≤q+1[yjI∇jP≤q+1v
`]−∆−1∇`P≤q[yjI∇jP≤qv

`]

Note: Starting now, 2q is in the low to medium range of frequencies.



Frequency Increments

The frequency increment can either fall on the operator or on v:

δqp̄I,LL = ∆−1∇`Pq+1[yjI∇jP≤q+1v
`] + ∆−1∇`P≤q[yjI∇jPq+1v

`]
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`] + ∆−1∇`P≤q[yjI∇jPq+1v
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Consider the second term. Using ∇jyjI = 0, we have

∆−1∇`P≤q[yjI∇jPq+1v
`] = ∆−1∇`∇jP≤q[yjIPq+1v
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= ∆−1∇`∇jP≤q[P≤q+6y
j
IPq+1v

`]



Frequency Increments

The frequency increment can either fall on the operator or on v:

δqp̄I,LL = ∆−1∇`Pq+1[yjI∇jP≤q+1v
`] + ∆−1∇`P≤q[yjI∇jPq+1v

`]

Consider the second term. Using ∇jyjI = 0, we have

∆−1∇`P≤q[yjI∇jPq+1v
`] = ∆−1∇`∇jP≤q[yjIPq+1v

`]

= ∆−1∇`∇jP≤q[P≤q+6y
j
IPq+1v

`]

In the last line, we observe that frequencies of y`I above 2q+4 do not
contribute to the product by the frequency localization.



Frequency Increments

Now use that we can solve yjI = ∇irijI to write

∆−1∇`∇jP≤q[P≤q+6y
j
IPq+1v

`]

= ∆−1∇`∇jP≤q[P≤q+6∇irijI Pq+1v
`]

‖ · ‖C0 . ‖∆−1∇`∇jP≤q‖ ‖P≤q+6∇i‖ ‖rI‖C0 [2−q‖∇v‖C0 ]

. (2 + q)2q‖rI‖C02−qΞ̂e
1/2
R

Note how the 2q and 2−q cancel out.



Frequency Increments

Now use that we can solve yjI = ∇irijI to write

∆−1∇`∇jP≤q[P≤q+6y
j
IPq+1v

`]

= ∆−1∇`∇jP≤q[P≤q+6∇irijI Pq+1v
`]

‖ · ‖C0 . ‖∆−1∇`∇jP≤q‖ ‖P≤q+6∇i‖ ‖rI‖C0 [2−q‖∇v‖C0 ]

. (2 + q)‖rI‖C0(Ξ̂e
1/2
R )

Almost closes if there exists rI such that ‖rI‖C0Ξ̂ . e
1/2
R



Frequency Increments

Now use that we can solve yjI = ∇irijI to write

∆−1∇`∇jP≤q[P≤q+6y
j
IPq+1v

`]

= ∆−1∇`∇jP≤q[P≤q+6∇irijI Pq+1v
`]

‖ · ‖C0 . ‖∆−1∇`∇jP≤q‖ ‖P≤q+6∇i‖ ‖rI‖C0 [2−q‖∇v‖C0 ]

. (2 + q)‖rI‖C0(Ξ̂e
1/2
R )

Idea: impose a bootstrap assumption on ρI and zI that implies

Ξ̂‖rI‖C0 . e
1/2
R

Then summing over q ≤ q̂ ∼ log Ξ̂ leads to ‖R̃I‖C0 . (log Ξ̂)2eR,
which is the correct estimate (except for the (log Ξ̂)2)!



Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale τ by a
logarithmic factor) it is possible to close the argument implying the
above estimates by using certain weighted C3,α norms.

But there is a catch...



Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale τ by a
logarithmic factor) it is possible to close the argument implying the
above estimates by using certain weighted C3,α norms.

But there is a catch, namely this gluing construction loses deriva-
tives. E.g., ∇v and ∇R both enter in the equation for yI

∂ty
`
I + vj∇jy`I + yjI∇jv

` +∇j(yjIy
`
I) +∇`p̄I = −∇jRj`

Similarly, bounds on ∇2v and ∇2R are required to estimate ∇yI
and so on...



Loss of Derivatives

To fully close the argument, we first regularize the Euler-Reynolds
flow (v, p,R) 7→ (vε, pε, Rε) using a mollifier ηε∗

∂tv
` +∇j(vjv`) +∇`p = ∇jRj`

⇒ ∂tv
`
ε +∇j(vjεv`ε) +∇`pε = ∇j [vjεv`ε − (vjv`)ε + ηε ∗Rj`]

We apply the Constantin-E-Titi commutator estimate to bound the
resulting Stress for ε ∼ Ξ̂−1 not too small.

This regularization gains derivatives (with acceptable bounds on
higher, “borrowed” derivatives), and allows the whole scheme (i.e.
Regularize 7→ Gluing 7→ Convex integration with Mikado flows 7→
repeat) to close.



Thank you!


