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Motivation: Weak Solutions to the Euler equations

The incompressible Euler equations for a homogeneous fluid:

o’ + V(i) + Vip =0 (1)
Vil =0 (2)

make sense in integral form for continuous (v, p):

d

12 — xne o ve x)(v-n)aoc
pr Qv(t,x)dx—/(mp(t, )n“d +/aQ (t,z)(v-n)do  (3)

/ (v n)(t, 2)do(z) = 0 (4)
o0

for all  with smooth boundary 92 and interior unit normal n’.
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Motivation: Sufficiently smooth solutions conserve energy

Take the dot product of the Euler equations with v*
000" + vV (V) + v Vip =0
Vjvj =0

Then, use the divergence free condition div v = Vyuf = 0, and
integrate
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Motivation: Onsager’s Conjecture (1949)

1. Solutions (v,p) to Euler obeying a Holder estimate

vt + V(vivt) + Vip =0
Vjvj =0
lv(t,x + Az) —v(t,x)| < C|Az|*
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Motivation: Hydrodynamic turbulence
Kolmogorov (1941): As v — 0 for solutions to 3D Navier-Stokes:
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Motivation: Hydrodynamic turbulence
Kolmogorov (1941): As v — 0 for solutions to 3D Navier-Stokes:

{ vt + Vi (vt + Vip = vAv® )

Vil =0

the energy dissipation rate remains strictly positive as v — 0

1 d [ |v?
5—313%)<—dt/ 5 (t,:l:)d:r>>0.

The velocity fluctuations on average obey a law

([o(x + Az) = v(@) )P ~ V3| Ax|'/?
for |Ax| > (1/3/5)1/4
Onsager considered the case v = 0; argued that “frequency

cascades” may lead to energy dissipation in the absence of
viscosity.



Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which
converges for v € L?)

d m - k)k
ﬂ :Z‘Zakfm'k |:_am+ (a|k|2)

He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy >, |ax|? escapes to infinite frequency (i.e. vanishes to
small spatial scales) in finite time.

However, only low regularity solutions could behave this way, and
he stated that solutions in C* with o > 1/3 must conserve energy.



Onsager and Ideal Turbulence

Onsager considered the Euler equations in Fourier series form (which
converges for v € L?)

v(z,t) = Zak(t)eik'x
k

dag . (am - k)k
T =i ek [‘“’"* SR

He argued that energy can “cascade” from low wavenumbers to high
wavenumbers, and the cascade can happen so rapidly that part of
the energy >, |ax|? escapes to infinite frequency (i.e. vanishes to
small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
have: 37 <oy lak]? ~ A~2/3 (hence regularity exactly 1/3).
5 <|k|<
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1. Solutions (v, p) to Euler obeying a Holder estimate

vt + V(i) + Vip =0 (8)
Vil =0
|v(t,x + Azx) —v(t,x)| < C|Az|* (9)

for some o > 1/3 must conserve energy.

2. If the ain (9) is less than 1/3, then v may fail to conserve
energy

Part 1 is known: (Eyink, '94), (Constantin-E-Titi, '94)
Refinements: (Duchon-Robert '00), (Cheskidov-Constantin-

Shvydkoy-Friedlander '08): v € L;?’B;/C?EN), but not L{C/3.
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Weak solutions that fail to conserve energy

» Weak solutions in Lf}x(R x R?) with compact support in
space and time (Scheffer, '93)

» Weak solutions in L7 (R x T?) (Shnirelman, '97)
» Dissipative solutions in L°L2(R x T3) (Shnirelman, '00 )
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Convex Integration and Isometric Embeddings

» (Nash, '54) Constructs surprising, C! isometric embeddings in
very low codimension.

» (Borisov, '65, '04) Irregular C'1* isometric embeddings for
analytic metric
» (Gromov, '86) Generalizes Nash's idea to the method of
“convex integration” in topology and geometry

» (Miiller-Sverak, '04) Elliptic systems with Lipschitz but
nowhere C! solutions (i.e. Vu € L™, but Vu ¢ C°).



Convex Integration and Isometric Embeddings

v

(Nash, '54) Constructs surprising, C'' isometric embeddings in
very low codimension.
» (Borisov, '65, '04) Irregular C'1* isometric embeddings for
analytic metric

v

(Gromov, '86) Generalizes Nash's idea to the method of
“convex integration” in topology and geometry
(Miiller-Sverak, '04) Elliptic systems with Lipschitz but
nowhere C! solutions (i.e. Vu € L™, but Vu ¢ C°).

v

v

(De Lellis-Székelyhidi, '09) Simpler proofs and extensions of
Borisov's results on C1 isometric embeddings



Continuous weak solutions that fail to conserve energy

Theorem (De Lellis, Székelyhidi, '12)

For every a < 1/10, 3 solutions (v,p) € Cf, x C?%(R x T?) that
can realize any smooth energy profile

/|U|2(t x)dxr =e(t)>¢c>0
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Improved regularity of energy non-conserving solutions

Theorem (1., '12)

For every a < 1/5 there exist nontrivial weak solutions to the
incompressible Euler equations on R x T3 in the class

v ey, pEC’Z?Z

that are identically 0 outside of a bounded time interval.



Improved regularity of energy non-conserving solutions

Theorem (1., '12)
For every o < 1/5 there exist nontrivial weak solutions to the
incompressible Euler equations on R x T3 in the class
€ ng pE C’fg
that are identically 0 outside of a bounded time interval.

> Shorter pr001c solutions with arbitrary smooth
= [|v|*(t,x)dz > ¢ >0
(Buckmaster—De Lellis-Székelyhidi, '13)

» Solutions with compact support in 2 C R x R? (1.-Oh, '14)
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» Improved bounds for D; := 0; +v -V
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Onsager's Conjecture in Weaker Topologies

Can the exponent 1/5 be improved if we weaken the topology?

» (Buckmaster, '13) Solutions in v € 0%576 with
v(t,-) € CY/3 for ace. t

» (Buckmaster-De Lellis-Székelyhidi, '14) C° solutions in
v E L%C’;/g_e

» (Buckmaster-Masmoudi-Vicol, '16) Solutions with
v E C’,gHgi/?'_6

Note: The improvement in regularity is in an averaged sense (in L*

or L?), but achieves the Onsager critical exponent 1/3—.
1/3

. : : 3
To compare: energy conservation requires Ly B37CO(N).



Onsager's Conjecture in Weaker Topologies

Can the exponent 1/5 be improved if we weaken the topology?

» (Buckmaster, '13) Solutions in v € C’tlvf)*e with
v(t,-) € CY/3 for ace. t

» (Buckmaster-De Lellis-Székelyhidi, '14) C° solutions in
v E L%C’;/g_e

» (Buckmaster-Masmoudi-Vicol, '16) Solutions with
v E C’,gHgi/?'_6

Note: The improvement in regularity is in an averaged sense (in L*
or L?), but achieves the Onsager critical exponent 1/3—.

) . . 31/3
To compare: energy conservation requires L} By’ .

(Buck.-Masmoudi-Novak-Vicol, '21; Novack-Vicol, '22;
Giri-Kwon-Novack '23) Solutions belonging to the space

CLHY* no,n°- c o,BY?

3,00



Main Theorem: A Proof of Onsager’'s Conjecture

Theorem (I. '16)

For every a < 1/3 there exists a weak solution in the class
v e Cfy, pGC’tQ,g, (t,z) e R x T?

such that v has nonempty, compact support in time.



Main Theorem: A Proof of Onsager’'s Conjecture

Theorem (I. '16)

For every a < 1/3 there exists a weak solution in the class
v e Cfy, pGC’Zg, (t,z) e R x T?

such that v has nonempty, compact support in time.
New Ideas:

» Using “Mikado Flows"” instead of Beltrami Flows to perform
the convex integration method (Daneri-Székelyhidi)

» Difficulty controlling interactions between distinct Mikado flows



Main Theorem: A Proof of Onsager’'s Conjecture

Theorem (I. '16)

For every a < 1/3 there exists a weak solution in the class
v e Cfy, pGC’Zg, (t,z) e R x T?

such that v has nonempty, compact support in time.
New Ideas:

» Using “Mikado Flows"” instead of Beltrami Flows to perform
the convex integration method (Daneri-Székelyhidi)
» Difficulty controlling interactions between distinct Mikado flows
» Gluing technique

» Hidden special structure in the linearization of the Euler
equations to estimate main terms
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Main Theorem: A Proof of Onsager’'s Conjecture

Theorem (I. '16)
For every a < 1/3 there exists a weak solution in the class

v e Cy, Cf‘;‘, (t,z) € R x T3

such that v has nonempty, compact support in time.

» (Buck., De L., Szé., Vicol, '17) Solutions in v € C /3 ¢

any smooth energy profile [1s [v[*(¢,z)dz = e(t) > 0

with

» (I., '17) Solutions with borderline endpoint regularity

l*B loglog|AI\71
lo(t,z + Az) —v(t,z)| < |[Az|® —V lesldd™t g — 4/3+

> (Giri,Radu,'23) Solutions in C;. 1/3<
ideas.

on T2 based on different



Significance: Confirmation of energy cascades

Onsager considered the Euler equations in Fourier series form

v(z,t) = Zak(t)eik'x
k

dap . (am - k)k
B {‘“m TURE

He argued that energy can ‘“cascade” from low wavenumbers to
high wavenumbers, and the cascade can happen so rapidly that
part of the energy >, |ax|? escapes to infinite frequency (i.e.
vanishes to small spatial scales) in finite time.

By a statistical physics argument, a “typical” turbulent flow should
haver 375 ) <oy lag|? ~ A~%/3 (hence regularity exactly 1/3).
2 — V| =



K41-Onsager Conjecture for Navier Stokes

Open problem:

Are there sequences of smooth Navier-Stokes solutions with
v — 0 that dissipate energy at a uniform rate while having a
uniformly bounded C'/3 norm?

If so, then (weak) C''/3 dissipative Euler flows that satisfy
[v]* [v]” :
6t7+vj‘ T-I-p v ] <0
arise as limits of convergent subsequences.
Problem is wide open but there are results in this direction both

for forced Navier-Stokes (Brue-Colombo-de Lellis-Sorella '22), and
for Euler (1. '17, de Lellis-Kwon 20, Giri-Kwon-Novack '23).



Main Theorem: A Proof of Onsager’'s Conjecture

Theorem (I. '16)
For every a < 1/3 there exists a weak solution in the class

veCy, peC™ (t,z) € R x T?

t,x» t,x

such that v has nonempty, compact support in time.
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Convex Integration for Euler (General Strategy):
» The Euler Reynolds Equations (= Approximate solutions)

» Nonstationary Phase Lemma
» = Acceptable errors (high frequency - slowly varying)

» Mikado flows = Pipe flows (Daneri-Székelyhidi)

» Convex integration using Mikado flows
» The difficulty with Mikado flows for Onsager’s conjecture

» The Gluing technique
» Deriving the Gluing equations

» Dangerous terms
» Special structure in the equations
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(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

At + V;(vIv') + Vip = V; RI* (ER)
Vjvj =0
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(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations

At + V;(vIv') + Vip = V; RI* (ER)
Vjvj =0

The symmetric tensor R/ measures the error from solving Euler.
Examples: If (v, p) solves the Euler equations then

> (ve,pe,Rgz), Rﬁz = vgvf — (vjvf)e, vf =7 x v’

» Corollary: Every continuous incompressible Euler flow (v, p)
is the uniform limit of a sequence of smooth Euler-Reynolds
flows (vg, pg, Rq) with ||Rg||co — 0 as ¢ — oo



Continuous Solutions: The Euler-Reynolds Equations

(De Lellis, Székelyhidi): Consider the Euler-Reynolds equations
At + V;(vIv') + Vip = V; RI* (ER)
Vjvj =0

The symmetric tensor R/ measures the error from solving Euler.
Examples:

» Any v’ that is incompressible and conveserves momentum
o’ + Vvt = U
/ U(t, z)dz =0
T3
V,R* =U*



Continuous Solutions: Convex Integration for Euler

We construct a sequence (vq, pg, Ry) indexed by ¢ solving

Ol + V;(vivh) + Vip, = V;RI* (ERq)
Vjvg =0

where vgy1 = vg + V4, pgy1 = pg + Py solve (ERg+1) with

much smaller |R,,| < |R,|*™



Continuous Solutions: Convex Integration for Euler

We construct a sequence (vq, pg, Ry) indexed by ¢ solving
¢ j 0 ¢ it
O, + Vj(viv,) + Vip, = Vi R) (ERq)
Vjvé =0
where vy11 = vy + Vj, pg+1 = pg + Py solve (ERq+1) with
much smaller |R,,| < |R,|*™

In the limit as ¢ — oo, we get continuous solutions

IRqllco = 0. Vgl ~ [Rgl /2, |Py| ~ |Ry|



Continuous Solutions: Convex Integration for Euler

Start with any smooth solution to Euler-Reynolds on R x T?

Aot + V(') + Vip = V; RI*
Vjvj =0

and add high-frequency corrections
V=" + ‘/a ﬁ =p+ P7

which are designed to “get rid of" R7‘.



Continuous Solutions: Convex Integration for Euler

Get new solutions 0 = v+ V, p = p + P to Euler-Reynolds

80" + V(20") + Vi = VR’
Vil =0

with H}?HC? much smaller than ||R|[co .
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= not in the form ij%je
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Continuous Solutions: Convex Integration for Euler

The corrected v = v + V, p = p + P satisfy
0t + V(0 + V=0 Vi .+ V;(VIVE 4 P&t 4 RIY
= not in the form ij%je
Vil =0
so we will have to solve a divergence equation:
ViR = 9,V + V(0 V) + (Vi) + V;(VIVE 4 P&+ RIY)

to define ]*%

The new error H]*%HCO will only be small when V' and P are very
oscillatory and are designed carefully depending on the given v*
and RI‘.



The Error terms

Let (v,p, R) be a smooth solution to Euler-Reynolds.

It + V;(wivh) + Vip = V;RI*

Then v = v+ V and p = p + P satisfy
D0t + Vi (070°) + Vi = 9,V + V(v V) + V; (Vi)
+ V;(VIVE 4 P§it + RIY)
want = Vj}*%ﬂ

with || R]co < A7

where V¢ oscillates at large frequency \.



The Error terms

We name the terms as follows

Transport term:
ViR =9,V + V(0 V) + V;(Vivh)
Stress term:
VjRJ; = LFreq[V;(VIV! + P§7* + RIY)]
High-Frequency Interference terms:

VRl = HFreq[V;(VIV* + P§7Y)]

Each one of Ry, Rg and Ry must be H}*%HCO <AL



The Error terms

We name the terms as follows

Transport term:
ViRy = 0V + V0V + V(7))
Stress term:
V;RY = LFreq[V;(VIV + P& + RIY)]
High-Frequency Interference terms:

VRl = HFreq[V;(VIV! + P§7*)]
Each one of Ry, Rg and Ry must be H}:ZHCO <AL

(There is also another term involving errors from mollifying v — v,
and R — R, that we are neglecting here.)



The High-Frequency Correction

The correction V% is a high-frequency, divergence free wave.
For example, in (I., '12), it has the form

VE=Y" el 4oVt
I
V,VE=0 (by choice of small §V¢)
(0 +vIV;)é =0 (= nonlinear phase functions)

V x (eM1ur) = Ae*Typ  (by taking (iVEr) x vy = v)
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(0, +v!V;)ér =0 (= nonlinear phase functions)
V x (eM1ur) = Ae*Typ  (by taking (iVEr) x vy = v)



The High-Frequency Correction

The correction V% is a high-frequency, divergence free wave.
For example, in (I., '12), it has the form

VE=> "Ml 4 oV!
1

V,VE=0 (by choice of small §V¢)
(0 +vIV;)é =0 (= nonlinear phase functions)
V x (e1up) = Ae™S1u;  (by taking (iVEr) x vy = vp)
The last condition makes V¢ approximate a Beltrami flow

(V x V = AV), which are special steady state solutions to 3D
Euler. It is used to control

V;RiY = HFreq[V,; (VIV*! 4 P&t



The High-Frequency Correction

The correction V% is a high-frequency, divergence free wave.
For example, in (I., '12), it has the form

VE=> "l 4oVt
I
V,VE=0 (by choice of small §V¢)
(0 +vIV;)é =0 (= nonlinear phase functions)

V x (eM1ur) = Ae*Typ  (by taking (iVEr) x vy = v)

The last condition makes V¢ approximate a Beltrami flow
(V x V = AV), which are special steady state solutions to 3D
Euler. It is used to control

V;RiY = HFreq[V,; (VIV*! 4 P&t



The Error terms again

Each one of Ry, Rg and Ry must have size Hé”co <\ !, and
requires solving a divergence equation:
Transport term:
ViRY =0V + VIV + V,(Vif)
Stress term:
V,RY = LFreq[V;(VIV! + P& + RiY)]
High-Frequency Interference terms:

V;Rj; = HFreq[V;(VIV! 4 P§7%)]



Nonstationary phase

Lemma (Nonstationary Phase Lemma)
Suppose u‘(x) and &(z) are smooth functions on T and

Ul(z; N) = @b (1)

nwaWWSAL@me:o

Then U’ is very small in C~!. That is, we can solve

VjR-jg = ei)‘g(“j)ué(:t)
IR lco S A1

The implicit constant depends on A and C* norms of V¢, u*



Nonstationary phase

Lemma (Nonstationary Phase Lemma)
Suppose u‘(x) and &(z) are smooth functions on T and

Ul(z; N) = @b (1)

| IVE o < A, /T U (2)dz = 0

Then U’ is very small in C~!. That is, we can solve

vJR]E — ei)x&(ﬂ:)uf(x)
R oo S A7

The implicit constant depends on A and C* norms of V¢, u*



Nonstationary phase

Lemma (Nonstationary Phase Lemma)
Suppose u‘(x) and &(z) are smooth functions on T and

Ul(z; N) = @b (1)

nwaWWSAL@me:o

Then U’ is very small in C~!. That is, we can solve

VjR-jg = ei)‘g(“j)ué(:t)
IR lco S A1

The implicit constant depends on A and C* norms of V¢, u*



Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

dR 4
div R(x) = £ = e”‘fmu(a})
~ R(z) = / M)y (X)X
0

_ L d e
_ / e (e mx)ax

IN(X) | X = T
u(‘L‘ x_‘i eME(X)i 1 u(X) ) dX
IANVE(X) Ix=0 i\ ) dX \V¢(X)

Using |||[VE€|~|co < A, the solution has size |R||co < AL



Nonstationary phase Lemma: Cartoon Proof

In 1D, we want to solve

div R(x) = % = @)y (2)

~ R(z) = / M)y (X)X
0
Tl d e
S . X)dX
/iAg/(X)dX(e Ju(X)d
“(X)GMX)‘Xf_l Coinen 4 (1
TUOWVE) Ix=o i, O Tax \ve(x)

u(X)> dX

Using |||[VE€|~|co < A, the solution has size |R||co < AL



Nonstationary phase: Proof

Proof: To solve V;RI¢ = @)yl (), write

M@yt (r) = v <iei>‘£(x)qﬂ(m)> + VR

iViEd (x) = ul(z), ¢ e C®(T3R3 @ R3)
. 1 et .
V,;RI* = %€ AV )
Equation (12) is solved pointwise and leads to a bound

14 — l
lg o S 1 IVET lleollu’llco

(12)
(13)



Nonstationary phase: Proof

Proof: To solve V;RI¢ = @)yl (), write

M@yt (r) = v <iei>‘§(x)qﬂ(m)> + VR

iViEd (x) = ul(z), ¢ e C®(T3R3 @ R3)
. 1 et .
V,;RI* = %€ AV )
Equation (12) is solved pointwise and leads to a bound

14 — l
lg o S 1 IVET lleollu’llco

We can solve (13) because [rs M@yl (2)dx = 0.
The solution satisfies || R7||co < AL

(12)
(13)



Nonstationary phase 2
In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)
Suppose u*(x) and w(z) € C=(T?3) and T € C°°(T3;T?3)

Ul(z; \) = w(AD(2))u (z)
1Y) o < 4, /T Uy =0

/T3w(X)dX =0

Then Ut is very small in C~1L. That is, we can solve

VR = w(\T(2)) v’ ()
A o
fast  slow

IR g0 S A7



Nonstationary phase 2
In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)
Suppose u*(x) and w(z) € C=(T?3) and T € C°°(T3;T?3)

U(x;\) = w(AT(2))ub(2)
(VD)o < A4, /T Ul(z)dz =0

/Tgw(X)dX =0

Then Ut is very small in C~1L. That is, we can solve

VR = w(\T(2)) v’ ()
A o
fast  slow

IR g0 S A7



Nonstationary phase 2
In order to use pipe flows aka Mikado flows:

Lemma (Generalized Nonstationary Phase, Daneri-Székelyhidi)
Suppose u*(x) and w(z) € C=(T?3) and T € C°°(T3;T?3)

U'(2;\) = w(AT(2))u’ (z)
1(VT) o < A, /T Uy =0

/T3w(X)dX =0

Then Ut is very small in C~1L. That is, we can solve

VR = w(\T(2)) v’ ()
A o
fast  slow

IR g0 S A7



Nonstationary phase 2: Proof outline

To solve V; kI = w(AT'(z))u’(z), write (using [ps w(X)dX = 0)

wAL ()’ (z) = > @(m)e™ T @yl (z) (14)
m##0



Nonstationary phase 2: Proof outline

To solve V; kI = w(AT'(z))u’(z), write (using [ps w(X)dX = 0)

wAL ()’ (z) = > @(m)e™ T @yl (z) (14)
m7#0

Can apply the previous Lemma if we have nonstationary phase
functions, which requires

(VD)oo < A= [V(m-T)[7F < Am| ™
Applying the Nonstationary Phase Lemma gives a solution with

1B lgo S A7



Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, '16)
For every smooth Euler-Reynolds flow (v, p, R) with

—RI* > 6, >0, (15)
there exist weak solutions to Euler in v € Ct{ 45_6 such that

v =0 in LS, (16)

vl vl — et~ BRI in L ask — oo 17
(k) ~ (k) ta



Motivation for Mikado flows

Theorem (Daneri-Székelyhidi, '16)
For every smooth Euler-Reynolds flow (v, p, R) with

—RI* > 6, >0, (15)
there exist weak solutions to Euler in v € Ct{ 45_6 such that

v =0 in LS, (16)

v{k)vfk) — 7t =~ R in Ly, ask — oo (17)

With Beltrami flows, would require R7* = —a(t, z)(67¢ + small).
To overcome this restriction, they introduce a different family of
stationary solutions to Euler (“Mikado flows") that provide more
algebraic flexibility to achieve an arbitrary stress R7‘.



Elementary Mikado flows on T3

Fix a constant integer vector f¢ € Z3 and define for X € T3

WHX) = fl9p(X), 5 e C®(T?)



Elementary Mikado flows on T3

Fix a constant integer vector f¢ € Z3 and define for X € T3
WHX) = fr(X), 4y € C=(T%)

We choose 1y whose level surfaces are concentric cylinders with an
axis pointed in the f¢ direction. With this choice we have

Vgl/Jf(X)fE =0 < orthogonality
Then W¥(X) is a stationary Euler flow with 0 pressure:

VWW{X) =0
Vi(WIWHX)) = Vi(FHX) )



Elementary Mikado flows on T3

Fix a constant integer vector f¢ € Z3 and define for X € T3
WHX) = fr(X), 4y € C=(T%)

We choose 1y whose level surfaces are concentric cylinders with an
axis pointed in the f¢ direction. With this choice we have

Ve (X)ff =0 < orthogonality
Then W¥(X) is a stationary Euler flow with 0 pressure:

VWW{X) =0
=2

Vi(WIWH(X)) = 200 (X) V00 (X) 7 f



Elementary Mikado flows on T3

Fix a constant integer vector f¢ € Z3 and define for X € T3
WHX) = fr(X), 4y € C=(T%)

We choose 1y whose level surfaces are concentric cylinders with an
axis pointed in the f¢ direction. With this choice we have

Ve (X)ff =0 < orthogonality
Then W¥(X) is a stationary Euler flow with 0 pressure:

VWW{X) =0
V(W WHX)) =0



Elementary Mikado flows on T3

Fix a constant integer vector f¢ € Z3 and define for X € T3
WHX) = flp(X), vy € (T

In addition to V1 ¢(X)f7 = 0, we require that
vrax o, [ wicoax =1 (18)
T3 T3
With these choices, we have:

W4X)dX =0, WIW4X)dX = f7 f* (19)
T3 T3

Oscillation Nontrivial low-frequency part



Elementary Mikado flows on T3

More generally, fix a finite set F C Z3 and coefficients s and set

WHX) =D s (X)

fer
supp s Nsupp Ypr =0, if f#f €F

We still have V,W*¢ =0, V;(WIW*) =0 and [, WY(X)dX =0,
but now

[ wiwtcnax =3 s
T3

feF

can be an arbitrary, positive definite tensor.



Designing a wave with Mikado flows

Using these flows, we design our high-frequency wave V¢ as follows.
At time ¢t = 0 it looks like

VA0,2) =Y y(0,2) Fur(Na) + §V1

€F
f slow fast small



Designing a wave with Mikado flows

Using these flows, we design our high-frequency wave V¢ as follows.
At time ¢t = 0 it looks like

VA0,2) =Y y(0,2) Fur(Na) + §V1

€F
f slow fast small

At nonzero times, it has the form:

4
= > sl ) {6, 2) by AL (1 2) + 6V

€F
! sIow slow

(Or+ve - V)I(t,z) =0, r'0,z) =



Designing a wave with Mikado flows

The vector field fﬁ satisfies

Z'yf (t, ) fo(t, ) (AL (¢, 2)) + 6V*
ferF

fl=(vrhLs
= ['Viliy (AL (t,2))) =0, since f*Vaty =0



Designing a wave with Mikado flows

The vector field fz satisfies

Z'yf (t, ) fo(t, ) (AL (¢, 2)) + 6V*
ferF

fl=(vrhLs
= ['Velur(\L(t,2))] =0, since f*Vathy =0

We can then make V* divergence free by solving

VAV E=0=> Vily(t, ) f'(t,2)] s (AT (t,2)) + VeV
fer

slow fast
= |6V¥|co S A7 (starting now we will neglect this term...)



Designing a wave with Mikado flows

The vector field fz satisfies

Z vi(t, ) fo(t, @) Y (AT (¢, x)) +6V*E
ferF

slow fast
Jh= (VI
= fKVg[LZJf(AF(t,ZL‘))] =0, since f*Vapr =0

We can then make V¢ divergence free by solving

VeV =0 =3 Vil (t,) F(t,2)] (AT (1,2)) + V5V
feF

slow fast
= [|6V¥co S AT (starting now we will neglect this term...)



Recalling the Error terms again

Each one of Ry, Rg and Ry must have size Hé”co <! and
requires solving a divergence equation:
Transport term:
ViRY = V' + V;(0IV) + V;(Vf)
Stress term:
V,;RY = LFreq[V;(VIV! 4 P&/ + RI%)]
High-Frequency Interference terms:

V,;RiE = HFreq[V,;(VIV! 4 P6§7*)]



Recalling the Error terms again

Each one of Ry, Rg and Ry must have size ||}*%||Co <71, and
requires solving a divergence equation:
Transport term:
ViRE =0,V + V;(0IV) + v, (Vi)
Stress term:
V,;RY = LFreq[V;(VIV! 4 P&/ + RI%)]
High-Frequency Interference terms:

V,;RiE = HFreq[V,;(VIV! 4 P6§7*)]



The Main Error Terms

With this Ansatz the Transport term is under control:
Letting D, := (0, + vIV;) be the “advective derivative” we have

OVE+V,;(IVE) + V;(VIuh) = (9, + vIV,)VE 4 VIV 0!

= Dilys flrs T (t,2))] + v FIp (AL (¢, 2)) Vo
feF

ViRy =Y (D f' 1+ 97V 08) 5 (OT (¢, @)
feF

slow fast

Nonstationary phase = ||Rr|co < AL



The Main Error Terms

With this Ansatz the Transport term is under control:
Letting Dy := (0, + v!V;) be the “advective derivative” we have

AV + V,(0IV) + Y (Vi) = (8 + v/ V)V + VIVt

= > Dulys D (8 2))] + 97 f14 (AT (¢, 7)) Vo
feFr

ViRy =Y (D S+ 7V 08) 5 (AT (¢, @)
feF

slow fast

(Used V;V7 =0.)



The Main Error Terms

The Stress term is controlled as follows:

LFreq[V;(VIV* + P6i* + RI%)]
disjoint if #
r f_Aﬁ ~ o~ . .

= LFreq Vj( > AprRvats(AD) fifs + P+ Rie)]
i f1,f2€F
= LFreq|V; ( Z W?@b?()xf)fjfz + P&t + Rzeﬂ
i feF
=V [ > it @) I+ Pt x)e + Rﬁﬂ

~ feF
=V,[0]=0

Here we solve for the fyfc(t, x) at each point using that the

(f’jfg)fgp span the space of symmetric tensors.



The Main Error Terms

The remaining High-Frequency Interference term is controlled as
follows using the orthogonality f7V;[1)7(A)] = 0

HFreq(V;(VIVE)] = V; | Y A3 F{(7 (0D (¢ 7)) — 1)
feF
ViRl =Y Vil P @Ot 2) - 1)

feF



The Main Error Terms

The remaining High-Frequency Interference term is controlled as
follows using the orthogonality f7V;[1)7(A)] = 0

HFreq[V;(V/V] =V | D27 P f (03Ot 2) = 1)
=
ViRl = > Vil F () — 1)
T low fast :=w(Ar(t,2))

The last term is “fast-oscillating” since [rs (wfc(X) —1)dX = 0.
(Using Beltrami flows, the corresponding term is under control only
for a very short period of time.)



Can we use Mikado flows for Onsager’s conjecture?

All the error terms discussed above appear sufficiently small for the
method of convex integration to yield regularity 1/3 — e.

However, there is a substantial difficulty standing in the way of
using Mikado flows to prove Onsager’s conjecture, namely:



Can we use Mikado flows for Onsager’s conjecture?

All the error terms discussed above appear sufficiently small for the
method of convex integration to yield regularity 1/3 — e.

However, there is a substantial difficulty standing in the way of
using Mikado flows to prove Onsager’s conjecture, namely:

Problem: To iterate the previous construction again and again
(i.e. perform convex integration) we need to use multiple waves
(see next slide). The difficulty comes in dealing with the
interactions of distinct Mikado flows that start from different
times.



Why we Need Multiple Waves

A crucial assumption we are using is the bound [[(VI'!)[|c0 < A
for the solution to

(O +vIV;)T(t,2) =0, ro,z) ==

We can see that this assumption holds only for times of the order
|t| < ||Vl o from the PDE:

(0 + 0!V (VDY) = Vul (VI
(VI He =1d¢ att=0

Since ||Vv||co — 0o as v converges to a C''/3~¢ vector field, we
need to use more and more waves starting at different times!



Difficulty with Mikado Flows

It seems very difficult to control the interactions between two
Mikado flow based waves. Suppose we have two such waves

VE= 3" (0, Ve =S vpef Fbs(ATo)

fE]Fl fE]Fo

where 'y and I’y both solve (9; + ve - V)I'; = 0, but start as the
identity at different times

It1 — to| ~ || Vvl|Zo-



Difficulty with Mikado Flows

It seems very difficult to control the interactions between two
Mikado flow based waves. Suppose we have two such waves

VE= 3" (0, Ve =S vpef Fbs(ATo)

fE]Fl fE]Fo

where 'y and I’y both solve (9; + ve - V)I'; = 0, but start as the
identity at different times

It1 — to| ~ || Vvl|Zo-

Then the supports of the ¢ ;(AI'7) (which are unions of long,
A~ L-thin, A~ !-separated cylinders deformed by the flow) will in
general overlap and we will lose control over the interference term

VilViVE + VI V]



Strategy to Fix the Problem

Idea: Find a new stress error R that is supported in disjoint time
intervals of width 7 ~ |Vuv|™!

supp, R C U[t([) — 7, t(I) + 7]
I

so that the new velocity field is a perturbation of the old one
v— U =wv+y and R obeys the same estimates as the original R.



Strategy to Fix the Problem

Idea: More precisely, starting with (v, p, R), find a new
Euler-Reynolds flow (v, p, R) with ¢ close to v such that

o' + V(") + V' =V;R', R=) R
I€Z
supp Ry C [t(I) — 1,t(I) + 7], 7~ |Vo|™!
t(I) —t(I")| >4, T#T



Strategy to Fix the Problem

Idea: More precisely, starting with (v, p, R), find a new
Euler-Reynolds flow (v, p, R) with ¢ close to v such that

o' + V(") + V' =V;R', R=) R
I€Z
supp Ry C [t(I) — 1,t(I) + 7], 7~ |Vo|™!
t(I) —t(I")| >4, T#T

Rules: (9, p, R) must obey the same C* estimates as (v,p, R). In
particular, the new error R cannot be much larger than the
previous error R! (|| R||co < ||R||co is OK.) Also, we require ¥ to

be close to v: [[v — ¥||c0 < ||R|]im2



Constructing the new (0, p, R)

We introduce the velocity increment y* and pressure increment ,
which satisfy 7 = vl + ot p=p+p and
Oy’ + Vgt + Vol + V(YY) + Vi = VR — VR
Viy' =0



Constructing the new (0, p, R)

We introduce the velocity increment y* and pressure increment ,
which satisfy 7 = vl + ot p=p+p and
Oy’ + Vgt + Vol + V(YY) + Vi = VR — VR
Viy' =0

Need R = > Rr where supp, Ry C [t(I) — 7, t(L) + 7],
T ~ HVUHE,(I) Also need

1/2 1/2
lyllco S eff? ~ |R|IZ

and || Rllco S er ~ || Rllco



The Gluing Technique

Want the new error R = > 7 R supported in disjoint intervals:

supp; Ry C [t(I) — 7, t(I) + 7]
= R = 0 outside of U[t([) —7,t(I) + 7]
I



The Gluing Technique

Want the new error R = > 7 R supported in disjoint intervals:

supp; Ry C [t(I) — 7, t(I) + 7]
= R = 0 outside of U[t([) —7,t(I) + 7]
I

So the new @ should solve the Euler equations exactly in the gaps
between the intervals

[t(I) —7,t(I)+ 7] and [t(I + 1) — 7, t(I + 1) + 7]

Also, # needs to be a close approximation to v°.



The Gluing Technique

Let u% = v* + y be the unique, smooth solution to Euler starting
at the middle of the I'th gap to(/) with initial data

uj(to(I),z) = v (to(1),2),  yi(to(I),2) =0



The Gluing Technique

Let u§ =l + yf be the unique, smooth solution to Euler starting
at the middle of the I'th gap to(/) with initial data

uj(to(I),z) = v (to(1),2),  yi(to(I),2) =0

Then set ' = >, nryt, of = > mu§ with a partition of unity



The Gluing Technique

Let u§ =l + yf be the unique, smooth solution to Euler starting
at the middle of the I'th gap to(/) with initial data

uj(to(I),z) = v (to(1),2),  yi(to(I),2) =0

Then set y* = >, nryh, 9° = 3", nrub with a partition of unity
Theorem (Classical Existence Result)

There exists a unique open interval Jr containing to(I) such that
ur is smooth on Jr x T3 and for all T* € d.J; endpoints of J;,

limsup || Vur(t)||co = o0
t—T™*

(We will have to prove that supp, n; C j] to know the formula is
well-defined).



The New Stress

With yf and ¢ = > myf as above, the new R’! is a solution to

VR = Z MrOys+ > ViWlyia + vlvh)
i

+ Z ylyl)

where each yf = u§ — o' solves

Oyt + vyt + iVt + V(i) + Vi = -V R
Vi =0
yi(to(I),) =0



The New Stress

With yf and ¢ = > myf as above, the new R’! is a solution to

VR = 2771 v+ meﬂv (i1 + Yi4197)
T

+ Z ylyl)

Choosing ¢ such that V7' = y!, the new stress will be
&7 iTT I

R = Z MO+ nmea Wi + vyl
I

+ Z —n1)yiys

Note that supp, R C |J; supp, 7} C U, [t(I) — 7, t(I) + 7.



The New Stress

With yf and ¢ = > myf as above, the new R’! is a solution to

VR = 2771 v+ meﬂv (i1 + Yi4197)
T

+ Z ylyl)

Choosing ¢ such that V7' = y!, the new stress will be
g7y i Y1

p . .
R = E MO+ i (VY + vl un)
I

+ Z —n1)yiys

Note that supp, R C |J; supp, 7} C U, [t(I) — 7, t(I) + 7.



Finding a good Anti-Divergence: Attempt 1

Problem: we get bad estimates from solving
vV, 'rI = b (20)

Suppose that e is the size of the error (||R]|co < er) and

suppose (optimistically) that ||y%co ~ 6111{2 obeys the bound we

desire for y* = # — v!. Then our new error has size

IRllgo =lnt(t)rs + .. llco
ST Hrrlleo S 7 Hlyrllco
IBco <7 tel? 4.

Our goal was er. Having 61112/2 is already too big, and having 7~

makes this bound diverge to oco!

1



Finding a good Anti-Divergence: Attempt 2

We can find a better solution to er}[ = yf using the equation

Oyt = = Vyyi — V' = Vi) — Vipr — VR



Finding a good Anti-Divergence: Attempt 2

We can find a better solution to er}[ = yf using the equation

By = —V;(vyf + yjot + vyl + 567t + RIY)



Finding a good Anti-Divergence: Attempt 2

We can find a better solution to er}[ = yf using the equation

Oy = =V, (WIys + ypo' + iyt + pro’t + R

j£
:—’I"; (t7')

t . .
Yt ) = —V; / (Wyh(r,) + il (n, ) + ...+ R, ))dr



Finding a good Anti-Divergence: Attempt 2

We can find a better solution to er}[ = yf using the equation

Byt = —V;(vyf + yjot + vyl + 567t + RIY)

je
:—r} (t,7)

3 . .
Yt ) = -V, / (Wyh(r, ) + il (n, ) + ...+ R, ))dr

IRllco S 77 rrlleo + .. S llvlleollytlloo + -

IR0 S eld? + ...

Still not the desired ||R||co < eg.



Finding a good Anti-Divergence: Attempt 3

Idea: Set r}[(to(I),x) = 0 and solve a transport equation
(00 + v'V) V9] = (9 + 0" Vi)t
(0 + 0"V [Vir7'] =~y Vo' = Vjlygyh) — Vo — VR

(Motivation: “integration” over trajectories is more natural than
integrating in time at fixed x.)



Finding a good Anti-Divergence: Attempt 3

Idea: Set 1 “(to(I), ) = 0 and solve a transport equation

(0 + 'V V)] = (9 + 0" Vi),
(0 + v'Vi) V11 = =y V' — V,(ylyh) — V' — VR

Setting 7"1 = pI + z}g, we can solve away the last few terms:
. y . L .
(0 + IV )21 = —yjyt — pro?t — RI* (21)
Then ||z7||co looks good if we have

1/2 _
lyrlco S el Iprlleo S er



Finding a good Anti-Divergence: Attempt 3

Idea: Set r}[(to(I),x) = 0 and solve a transport equation
(0 + 0"V [Vjr7'] = (@ +0'Vilyf,
(0 + 0"V V] = =)V o' = V(ygyi) — V'pr — ViR
To handle the linear term, let rI = p] + z}[ where
Vj[(E)t + Uivi)pge] = VjviviT‘}[ - y;vj'vz

(Obtained by commuting V; and (8 +v'V;).)



Finding a good Anti-Divergence: Attempt 3

To handle the linear term, let r}[ = p][[ + z}[ where
Vj[(at + Uivi)p]I[] = Vjvivir}[ - y}Vﬂ/ (22)

Equation (22) can only be solved if we can invert the divergence on
both sides. We need to know the right hand side has integral 0:

Vjvivir}[ — yﬁvjvf = VZ'[VJ'UZ"I‘;[ — yif]
Here we use that Vv’ = V,y¢ = 0.

We now invert the divergence to obtain an equation for p;.



Finding a good Anti-Divergence: Attempt 3

We let p]I‘Z solve a “transport-elliptic” equation:
) Avs jﬁ_Rjev iy (b aby _ 1 ixg )b
(O +v z)/)[_ [Vav"Vi(p]” + 277) — yiViv”]
where R7¢ = div™! is an order —1 operator that inverts divergence.

This type of equation can be solved as in (I. '12) as long as y; and
zy are smooth.

Question: Are the estimates good enough?
(e.g. Do we have ||R|co < er?)



Finding a good Anti-Divergence: Attempt 3

We let p]I‘Z solve a “transport-elliptic” equation:
, " : . .
(O +v'Vi)pl = RV Vi (o + 2 — 4 Vi)
The corresponding estimate for RI¢ = np()rr + ... is:

1Rlco S 7 M lprllco + - S 1@ +v-Vprlleo + -
N HR'M[Z/%V%UZ’]HC() + other terms
<e}%/2-7'_1—|—...

~



Finding a good Anti-Divergence: Attempt 3

We let p]I‘Z solve a “transport-elliptic” equation:
, " : . .
(0 +v'Vi)pr = RV Vo' Vi(pf’ + 2°) — y; Vi)
The corresponding estimate for R7¢ = np()rr + ... is:

HRHCO 5 7—_1”/””00 +... 5 ”(815 +wv- V)p[HCo + ...
N |’Rje[3/§vwb]||co + other terms
<e}%/2-7'_1—|—...

~



Finding a good Anti-Divergence: Attempt 3

We let p]I‘Z solve a “transport-elliptic” equation:
(9 + ' Vi)pl = R [Vav' Vilpf? + 2) — 4 Vo]
The corresponding estimate for R7¢ = np()rr + ... is:

IRllco S 77 lorlloo + - S0 +v-Vprleo + ...
< |R*Vi[yi0] || o + other terms
< 6}{/2 14
(if we pretend RV = div_!V is bounded on C?)

But that is still not good enough for || B||co < er...
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(9 + ' Vi)pl = R [Vav' Vilpf? + 2) — 4 Vo]
The corresponding estimate for R7¢ = np()rr + ... is:
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But that is still not good enough for HEHC'O < eg...
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Finding a good Anti-Divergence: Attempt 3

We let p]f solve a “transport-elliptic” equation:
(9 + ' Vi)pl = R [Vav' Vilpf? + 2) — 4 Vo]
The corresponding estimate for R7¢ = np()rr + ... is:

IRllco S 77 lorlloo + - S0 +v-Vprleo + ...
< |R*Vi[yi0] || o + other terms
< 6}{/2 14
(if we pretend RV = div_!V is bounded on C?)

But that is still not good enough for HEHC'O < eg...
Key point: We can actually prove |R/[y¢V,v°]||co < er! (almost)



The Pressure Has a Similar Bad Term

The pressure increment has a similar bad term
pr= =207V [yjV;0] = ATV lyjy; + R

Note that the highlighted operator is of order —1, similar to R7*.
Let us show how to (almost) estimate this term by

IAT [yl V0 [l co S er



The Pressure Has a Similar Bad Term

Notation: We define the Littlewood-Paley projections

Pa'(@) = [ u(a = Ry, ()

supp 7)g(&) € {2772 < [¢] < 2777}
1g(h) = 2311(27h)

o
u(z) = Mou’ + Z Pt (z), z €T3
q=0



The Pressure Has a Similar Bad Term

Choose Z such that 77! ~ ||V||co < ée}f and choose ¢ € Z such

that 201 < Z < 24. Then

ATV lyp Vo] = ATV P<glyp Vo] + Y ATIVeP [y V']
>4
= DI,L + DI,H



The Pressure Has a Similar Bad Term
Choose Z such that 77! ~ ||V||co < 26%2 and choose ¢ € Z such
that 2071 <= < 29, Then
ATV lyp Vo] = ATV P<glyp Vo] + Y ATIVeP [y V']
q>q

= DI.L + DI.H

The high frequency term is bounded by

Ipr,mllco <D ATV Py} V0|l co

q>q
— j Y
<Y ATVR Ny V0 o

729 (0o co)norm

(Note the operator convolves with an L' Schwartz kernel.)



The Pressure Has a Similar Bad Term

Choose Z such that 77! ~ ||V||co < 26%2 and choose ¢ € Z such

that 201 < Z < 24. Then

ATV lyp Vo] = ATV P<glyp Vo] + Y ATIVeP [y V']
7>q

= DI,L + DIH
The high frequency term is bounded by

Iprsllco <Y INAT'VePy|| |y7V 50" o

a>q
<27yl o
a>q

It now remains to bound the low frequency term.



The Low Frequency Term

The low frequency term has the form
Pri=A'ViPlyiVi') = > ATIVP [y V0
q=0
In this case, we do not gain smallness from bounding

IATIVeR | £277 51



The Low Frequency Term

Step 2: Decompose v into high and low frequencies

D1, = PI,LL + DI.LH
pr.r = A7V Pegly)V; P<gv’]
PILH = Z N v P AT A

q>q



The Low Frequency Term

Step 2: Decompose v into high and low frequencies

D1, = PI,LL + DI.LH
pror = A7'ViPegly)ViPego']
Prom =Y  AT'ViPglyV Pp']
q>q

And bound the LH term using ij‘} =0:

D7, llco <D NATVV; Pegllllyrllcoll Pyvl o
q>q
= 12,4
Sy lgE ef* (27 Vo))
q>q
< logée}fé*l(ge}{z) <logZep



Remaining Problematic Term

The remaining problematic term is
prir = A7'VePly} Vi Pgo’]
or
prir = AT'VePeq[PegiayiViPeg']

using that high frequencies of y; do not contribute.



Remaining Problematic Term

The remaining problematic term is
PrLL = A_lvépqu[y}VjPSévg]

We treat this term by decomposing into frequency increments

q
DPrLL = Z 0¢D1,LL
g=—1

0qpr,er = ATV Py [y Vi Pegi10'] = ATV Pey [y} Vi P<go’]

Note: Starting now, 27 is in the low to medium range of frequencies.



Frequency Increments

The frequency increment can either fall on the operator or on v:

Sapr.r = ATV Py [y]V i Pey 10" + ATV Py [y Vi Py 1]



Frequency Increments

The frequency increment can either fall on the operator or on v:
0qpr,r = AV Pyia[y] Vi Pegi1v'] + A7V Pey [y V Pyyr']
Consider the second term. Using ijf = 0, we have

A_1V4qu[y;Vqu+lvé] = A_lvajpéq[i’/jllpqﬂvg]
= A7V V; Peg[P<gyoy) Pyarv']



Frequency Increments

The frequency increment can either fall on the operator or on v:
0qprir = A7 ViPyia[y]ViPeqi1v] + A7V Pey [y Vi Pyyav']
Consider the second term. Using ijg = 0, we have

A‘lngSq[ygijque] = A_lvajpéq[ygpq+lvg]
= ATV Y, Peg[Peqroyy Past']

In the last line, we observe that frequencies of y? above 29t do not
contribute to the product by the frequency localization.



Frequency Increments

Now use that we can solve y} = V;r} to write

ATV VY Peg[Pegi6y) Part']
= ATIVV; Pyl PegroViry Pyrav’]
I llco SNATIV eV Pegll [|P<gi6Vill Irillco 279V co]

< (24 q)2rr]| o2 “Eeyl?

Note how the 29 and 279 cancel out.



Frequency Increments

Now use that we can solve y} = Vﬁ? to write
ATV Vi Py [Pegioy) Py ']
= A7'V(VP<y[PegisVirf Pyav’]
I+ lloo S IATVeViP<q|l [1P<q+6 Vil Irilloo[27Vollco]

= 1/2
S @+ q)lrrlleoEell?)

~
—_
—

Almost closes if there exists 7 such that ||r7||coZ < 6}%/2



Frequency Increments

Now use that we can solve y} = V;r} to write

ATV Vi Py [Pegioy) Py ']
= A_lvajpéq[PSq-FGVir;qu—HUE]
I+ lloo S IATVeViP<q|l [1P<q+6 Vil Irilloo[27Vollco]
< 2+ 9llrrloo(Eeyl”)
Idea: impose a bootstrap assumption on py and z; that implies

= 1/2
Elrilleo S efl

Then summing over ¢ < § ~ log = leads to ||§1HACO < (logE)2ep,
which is the correct estimate (except for the (log Z)?)!



Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale 7 by a
logarithmic factor) it is possible to close the argument implying the
above estimates by using certain weighted C*® norms.

But there is a catch...



Loss of Derivatives

It turns out that (if one furthermore shrinks the time scale 7 by a
logarithmic factor) it is possible to close the argument implying the
above estimates by using certain weighted C*® norms.

But there is a catch, namely this gluing construction loses deriva-
tives. E.g., Vv and VR both enter in the equation for y;

Byt + VIVt + YVl + Vit + Vi = -V R

Similarly, bounds on V2v and V2R are required to estimate Vy;
and so on...



Loss of Derivatives

To fully close the argument, we first regularize the Euler-Reynolds
flow (v, p, R) — (ve, pe, Re) using a mollifier nex

ot + Vj(vjvf) + Vep = VjRjz
= Ot + V;(vlvl) + Vipe = V;lof — (00°)e + ne x R

We apply the Constantin-E-Titi commutator estimate to bound the
resulting Stress for € ~ Z~1 not too small.

This regularization gains derivatives (with acceptable bounds on
higher, “borrowed” derivatives), and allows the whole scheme (i.e.
Regularize +— Gluing — Convex integration with Mikado flows
repeat) to close.



Thank you!



