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Introduction

This talk deals with the Calogero-Moser derivative NLS (CM-NLS) given by

i∂tu + ∂xxu + f (u,Du) = 0 on Rt × Rx

with some nonlinearity f (u,Du) related to the Hardy space L2
+(R).

Contents of Talk:

1 Motivation/Derivation

2 PDE Features

3 Results

4 Outlook

Main Goal

Construct turbulent solutions of (CM-NLS) with growth of Sobolev norms:

∥u(t)∥Hs ∼ |t|2s as |t| → ∞

Based on arXiv:2208.04105 joint with Patrick Gérard (Orsay).
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Introduction: Genesis of Calogero-Moser Systems

We begin in 1975 with a seminal paper by Jürgen Moser.

ADVANCES IN MATHEMATICS 16, 197-220 (1975) 

Three Integrable Hamiltonian Systems 
Connected with lsospectral Deformations* 

J. MOSER 

Courant Institute of Mathematical Sciences, New York University, 
New York, New York 10012 

DEDICATED TO STAN ULAM 

1. INTRODUCTION 

(a) Background. In the early stages of classical mechanics it was the 
ultimate goal to integrate the differential equations of motions explicitly 
or by quadrature. This led to the discovery of various “integrable” 
systems, such as Euler’s two fixed center problems, Jacobi’s integration 
of the geodesics on a three-axial ellipsoid, S. Kovalevski’s motion of the 
top under gravity for special ratios of the principal moments of inertia, 
to name a few nontrivial examples. These efforts and their climax with 
the work of Jacobi who applied skillfully the method of separation of 
variables to partial differential equations, the Hamilton- Jacobi equations 
associated with the mechanical system, to establish their integrable 
character. 

However, this development took a sharp turn when Poincare showed 
that most Hamiltonian systems are not integrable and gave arguments 
indicating the nonintegrability of the three-body problem. In the same 
negative direction lies Brun’s discovery that the three-body problem has 
no algebraic integral except for the well-known classical ones and 
algebraic functions of these. These results express, in other words, that 
integrability of Hamiltonian systems is not a generic property; it is 
destroyed under small perturbations of the Hamiltonian. 

Therefore it seems an anachronismus to discuss these exceptional 

* This work was partially supported by the National Science Foundation, Grant 
No. NSF-GP-42298X. 

197 
Copyright 0 1975 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

Moser solves a conjecture by F. Calogero (1971) claiming complete
integrability of classical Hamiltonian systems with inverse square
interaction

V (x) ∼ 1

|x |2

Moser’s idea: Use Lax pairs!
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Classical Calogero-Moser Systems

Jürgen Moser (Adv. Math. 1975) proved complete integrability of classical
N-body system with Hamiltonian

HN =
1

2

N∑
k=1

p2
k +

1

2

N∑
k ̸=ℓ

1

(xk − xℓ)2

with positions xk ∈ R and momenta pk ∈ R for 1 ≤ k ≤ N.
(Conjectured by F. Calogero (1971) based on exactly solvable QM model.)

Moser’s recasts equations of motion into Lax form:

d

dt
L = [B,L]

for suitable matrices L = L(xk , pk) and B = B(xk , pk) in CN×N .

We find N conserved quantities by traces of Moser’s L matrix:

Tr(Lk) = const. for k = 1, . . .N.

Some extra effort shows complete integrability for HN .
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Classical Calogero-Moser Systems

The completely integrable Calogero-Moser (CM) Hamiltonian:

HN =
1

2

N∑
k=1

p2
k +

1

2

N∑
k ̸=ℓ

1

(xk − xℓ)2

with positions xk ∈ R and momenta pk ∈ R for 1 ≤ k ≤ N.

(Oleshanetsky/Perelomov ’75) free matrix flows with

M(t) = 2L0t +M0

where Moser’s matrix L0 = Lt=0 and M0 = diag(x1(0), . . . , xN(0)).

The eigenvalues {xk(t)}Nk=1 of M(t) solve

d2xk
dt2

=
N∑
l ̸=k

1

(xk − xl)3

which are the equations of motion for HN .

By now, many variations on this theme exist → Generalized CM-Systems.
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Continuum Limit of CM-Systems

(Wiegmann et al. ’09): Formal analysis of continuum limit of CM-Hamiltonian
HN as N → ∞. the hydrodynamic fields of mass and momentum density:

ϱ(t, x) =
N∑

k=1

δ(x − xk(t)), p(t, x) =
N∑

k=1

pk(t)δ(x − xk(t)).

In the formal limit N → ∞, they obtain that complex field ψ =
√
ϱeiϑ

with ∂xϑ = p/ϱ solves the Hamiltonian NLS:

i∂tψ + ∂xxψ + (|D||ψ|2)ψ − 1

4
|ψ|4ψ = 0.

By the gauge transform u(t, x) := ψ(t, x)e−
i
2

∫ x
−∞ |ψ(t,y)|2dy , we arrive at

i∂tu + ∂xxu + 2Π+(D|u|2)u = 0 (CM-NLS)

Here D = −i∂x and Π+ : L2(R) → L2
+(R) is Cauchy-Szegő projection:

(̂Π+f )(ξ) = 1ξ≥0 f̂ (ξ).

Positive frequency condition interpreted as chirality.
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(̂Π+f )(ξ) = 1ξ≥0 f̂ (ξ).

Positive frequency condition interpreted as chirality.

6 / 22



Introducing the (CM-NLS)

With the short-hand notation D+ := Π+D, we compactly write

i∂tu + ∂xxu + 2(D+|u|2)u = 0 (CM-NLS)

For s ≥ 0, the Hardy-Sobolev spaces

Hs
+(R) = L2

+(R) ∩ Hs(R) = {f ∈ Hs(R) : supp f̂ ⊂ [0,∞)}.

Note that the Benjamin-Ono equation can written in similar form:

i∂tu + ∂xxu + D(u2) + 2D+(|u|2) = 0 (BO)

Thus (CM-NLS) can be seen as L2-mass critical sibling of (BO).

There is also a ‘defocusing’ version of (CM-NLS) with

i∂tu + ∂xxu− 2(D+|u|2)u = 0. (INLS)

found by (Pelinovsky/Grimshaw ’95) in fluid dynamics. No finite-energy
solitons.
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Contents:

1 Motivation/Derivation

2 PDE Features

3 Main Results
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Features of Calogero-Moser DNLS

i∂tu = −∂xxu − 2D+(|u|2)u

Hamiltonian PDE on spaces Hs
+ with energy

E(u) =

∫
R
|Du|2 + . . . =

∫
R
|Du − iΠ+(|u|2)u|2 (Energy)

Conservation of L2-Mass and Momentum:

M(u) =

∫
R
|u|2 (L2-Mass), P(u) =

∫
R
(uDu − 1

2
|u|4) (Momentum)

We find infinite set of conserved quantities {Ik(u)}∞k=0 by Lax structure.

Scaling of (CM-NLS) is L2-critical with

u(t, x) 7→ uλ = λ1/2u(λ2t, λx), M(u) = M(uλ)

Large data initial M(u0) ≫ 1 may not be controlled a-priori. Blowup?
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Ground State Solitons

i∂tu = −∂xxu − 2D+(|u|2)u

Ground states = Minimizers of E(u). Solve 1st order equation:

∂xR − iΠ+(|R|2)R = 0

Explicit solutions given by

R(x) =

√
2

x + i
∈ H1

+(R), M(R) =

∫
R
|R|2 = 2π, E(R) = 0,

and u(t, x) ≡ R(x) are static solutions of (CM-NLS).

Lemma [Gérard-L. ’22]

R(x) is (up to symmetries) the unique minimizer of E(u).

L2-mass of R defines threshold for (CM-DNLS):

M(u0) < M(R), M(u0) = M(R), M(R) > M(u0).

We’ll mainly focus on the large data with M(u0) ≥ M(R).
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Equivalence to nonlocal Liouville equation in R via w = log(|R|2).
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Well-Posedness

Cauchy Problem for (CM-NLS)

i∂tu + ∂xxu + 2(D+|u|2)u = 0, u|t=0 = u0 ∈ Hs
+(R).

Local Well-Posedness in Hs
+(R) for any s > 1/2.

Use Kato’s scheme and arguments by (de Moura-Pilod ’10) for
‘defocusing’ version of (CM-DNLS); Tao’s gauge trick for (BO).

Global Well-Posedness for subcritical L2-mass M(u0) < M(R) with
a-priori bounds

sup
t∈R

∥u(t)∥Hk ≲ ∥u0∥Hk for any k ∈ N.

by hierarchy of conserved quantities {Ik(u)}∞k=0 from Lax structure.
Scattering.

Question: What happens for large L2-mass M(u0) ≥ M(R)?

13 / 22



Well-Posedness

Cauchy Problem for (CM-NLS)

i∂tu + ∂xxu + 2(D+|u|2)u = 0, u|t=0 = u0 ∈ Hs
+(R).

Local Well-Posedness in Hs
+(R) for any s > 1/2.

Use Kato’s scheme and arguments by (de Moura-Pilod ’10) for
‘defocusing’ version of (CM-DNLS); Tao’s gauge trick for (BO).

Global Well-Posedness for subcritical L2-mass M(u0) < M(R) with
a-priori bounds

sup
t∈R

∥u(t)∥Hk ≲ ∥u0∥Hk for any k ∈ N.

by hierarchy of conserved quantities {Ik(u)}∞k=0 from Lax structure.
Scattering.

Question: What happens for large L2-mass M(u0) ≥ M(R)?

13 / 22



Well-Posedness

Cauchy Problem for (CM-NLS)

i∂tu + ∂xxu + 2(D+|u|2)u = 0, u|t=0 = u0 ∈ Hs
+(R).

Local Well-Posedness in Hs
+(R) for any s > 1/2.

Use Kato’s scheme and arguments by (de Moura-Pilod ’10) for
‘defocusing’ version of (CM-DNLS); Tao’s gauge trick for (BO).

Global Well-Posedness for subcritical L2-mass M(u0) < M(R) with
a-priori bounds

sup
t∈R

∥u(t)∥Hk ≲ ∥u0∥Hk for any k ∈ N.

by hierarchy of conserved quantities {Ik(u)}∞k=0 from Lax structure.
Scattering.

Question: What happens for large L2-mass M(u0) ≥ M(R)?

13 / 22



About critical L2-mass

Theorem (GWP for Critical Mass)

Let u0 ∈ H1
+(R) with critical L2-mass:

M(u0) = M(R).

Then the solution u ∈ C(R;H1
+(R)) of (CM-NLS) exists globally in time.

No a-priori control on Sobolev norms ∥u(t)∥H1 .

Proof rests on ruling out minimal mass blowup solutions.

Indeed, if limt→T ∥u(t)∥H1 = ∞ for some T <∞, then adapting (Merle
’93) for L2-critical NLS, we deduce (up to symmetries) that initial datum
is pseudo-conformal transform of ground state:

u0(x) = eix
2/4TR(x).

But by slow decay |R(x)| ∼ 1
|x| , we deduce that

∥∇u0∥L2 ∼
∫
R
|x |2|R(x)|2 = +∞.

Contradiction to u0 ∈ H1(R).
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Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

u(t, x) =
N∑

k=1

ak(t)

x − zk(t)
∈ H1

+(R)

Here a1(t), . . . , aN(t) ∈ C and pairwise distinct z1(t), . . . , zN(t) ∈ C−.

Set of nonlinear constraints for {ak(t), zk(t)}.
Quantization of L2-mass: ∥u∥2L2 = 2πN.

Pole dynamics obey complex Calogero-Moser system:

d2zk
dt2

=
N∑
ℓ̸=k

8

(zk − zℓ)3
.

Two Caveats: Collision of poles and possible blowup.

Way out: Develop robust approach using the Lax structure. Next!

15 / 22



Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

u(t, x) =
N∑

k=1

ak(t)

x − zk(t)
∈ H1

+(R)

Here a1(t), . . . , aN(t) ∈ C and pairwise distinct z1(t), . . . , zN(t) ∈ C−.

Set of nonlinear constraints for {ak(t), zk(t)}.

Quantization of L2-mass: ∥u∥2L2 = 2πN.

Pole dynamics obey complex Calogero-Moser system:

d2zk
dt2

=
N∑
ℓ̸=k

8

(zk − zℓ)3
.

Two Caveats: Collision of poles and possible blowup.

Way out: Develop robust approach using the Lax structure. Next!

15 / 22



Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

u(t, x) =
N∑

k=1

ak(t)

x − zk(t)
∈ H1

+(R)

Here a1(t), . . . , aN(t) ∈ C and pairwise distinct z1(t), . . . , zN(t) ∈ C−.

Set of nonlinear constraints for {ak(t), zk(t)}.
Quantization of L2-mass: ∥u∥2L2 = 2πN.

Pole dynamics obey complex Calogero-Moser system:

d2zk
dt2

=
N∑
ℓ̸=k

8

(zk − zℓ)3
.

Two Caveats: Collision of poles and possible blowup.

Way out: Develop robust approach using the Lax structure. Next!

15 / 22



Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

u(t, x) =
N∑

k=1

ak(t)

x − zk(t)
∈ H1

+(R)

Here a1(t), . . . , aN(t) ∈ C and pairwise distinct z1(t), . . . , zN(t) ∈ C−.

Set of nonlinear constraints for {ak(t), zk(t)}.
Quantization of L2-mass: ∥u∥2L2 = 2πN.

Pole dynamics obey complex Calogero-Moser system:

d2zk
dt2

=
N∑
ℓ̸=k

8

(zk − zℓ)3
.

Two Caveats: Collision of poles and possible blowup.

Way out: Develop robust approach using the Lax structure. Next!

15 / 22



Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

u(t, x) =
N∑

k=1

ak(t)

x − zk(t)
∈ H1

+(R)

Here a1(t), . . . , aN(t) ∈ C and pairwise distinct z1(t), . . . , zN(t) ∈ C−.

Set of nonlinear constraints for {ak(t), zk(t)}.
Quantization of L2-mass: ∥u∥2L2 = 2πN.

Pole dynamics obey complex Calogero-Moser system:

d2zk
dt2

=
N∑
ℓ̸=k

8

(zk − zℓ)3
.

Two Caveats: Collision of poles and possible blowup.

Way out: Develop robust approach using the Lax structure. Next!

15 / 22



Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

u(t, x) =
N∑

k=1

ak(t)

x − zk(t)
∈ H1

+(R)

Here a1(t), . . . , aN(t) ∈ C and pairwise distinct z1(t), . . . , zN(t) ∈ C−.

Set of nonlinear constraints for {ak(t), zk(t)}.
Quantization of L2-mass: ∥u∥2L2 = 2πN.

Pole dynamics obey complex Calogero-Moser system:

d2zk
dt2

=
N∑
ℓ̸=k

8

(zk − zℓ)3
.

Two Caveats: Collision of poles and possible blowup.

Way out: Develop robust approach using the Lax structure. Next!

15 / 22



Digression: Lax Structure

Observe that the energy E(u) can be written as a complete square

E(u) =

∫
R
|Du − Π+(|u|2)u|2 = ⟨Luu, Luu⟩

with the self-adjoint, first-order and nonlocal operator

Luf = Df − Π+(uΠ+(ūf )) = Df − TuTūf

where Tφf := Π+(φf ) on L2
+(R) is Toeplitz operator with symbol φ.

A calculation yields that (CM-NLS) can be written as Lax equation

d

dt
Lu = [Bu, Lu]

with some suitable operator Bu.

Spectrum σ(Lu(t)) is constant in time and hierarchy of conservation laws:

Ik(u) = ⟨u, Lk
uu⟩ = I (u0) for k = 0, 1, 2, . . .

Note that M(u) = I0(u),P(u) = I1(u), and E(u) = I2(u).
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Spectral Analysis of Lu

Lax Operator for (CM-NLS)

For given u ∈ Hs
+(R) with s ≥ 0, we have the self-adjoint Lax operator

Lu = D − TuTū acting on L2
+(R).

Here D = −i∂x and Tφf = Π+(φf ) with symbol φ ∈ L∞(R) + L2(R).

Every eigenvalue of Lu is simple.

Optimal bound for number of eigenvalues is

N ≤
∥u∥2L2
2π

(⋆)

Caveat: Lu can have embedded eigenvalues. But (⋆) also applies!

Fun fact: L
(BO)
u = D − Tu is Lax operator for Benjamin-Ono equation.
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Multi-Solitons via Lax Structure

For each N ∈ N, the Lax operator Lu admits multi-soliton potentials

u(x) =
P(x)

Q(x)
∈ H1

+(R) (rational function)

with degP = N and degQ ≤ N − 1 and PP = i(Q ′Q − Q
′
Q).

Class of multi-soliton is preserved by flow of (CM-NLS).

L2-Mass of multi-solitons given by

M(u) = 2πN (quantized large data)

For N = 1, we recover u(x) = R(x) (up to symmetries).

All multi-solitons have slow decay:

|u(x)| ∼ 1

|x | as |x | → ∞

If Q(x) can have non-simple zeros (corresponding to pole collisions).
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Multi-Solitons: Inverse Spectral Formula

Lemma

For any N ≥ 1, a multi-soliton u(t) ∈ H1
+(R) can be expressed as

u(t, x) =
〈
X , (M(t)− x)−1Y

〉
CN with Im x > 0

with some constant vectors X ,Y ∈ CN (depending on initial datum u0).

The matrix M(t) ∈ CN×N evolves linearly in time:

M(t) = 2L0t +M0

Global-in-time existence of u(t) follows provided we can show

σ(M(t)) ⊂ C− for all t ∈ R.

That is no eigenvalue of M(t) becomes real in finite time.

Long-time behavior of u(t) by matrix perturbation analysis

M(t) = t

{
2L0 +

1

t
M0

}
with small parameter ε = 1

t
≪ 1. We shall need up to O(ε4).
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Turbulence of N-Solitons

Theorem (Gérard-L. ’22)

For all N ≥ 2, every multi-soliton u(t) for (CM-DNLS) satisfies:

Global existence: The solution u(t) exists for all times t ∈ R.

Turbulence: For s > 0, we have growth of Sobolev norms such that

∥u(t)∥Hs ∼ |t|2s as |t| → ∞.

Bubbling in infinite time:

u(t, x) ≃ a∞
x − z∞︸ ︷︷ ︸

final ground state

+
N∑

k=2

δ(x − vkt)︸ ︷︷ ︸
N − 1 blowup bubbles

as |t| → ∞

with some a∞ ∈ C, z∞ ∈ C−, and velocities vk ̸= vl for k ̸= l .
Striking contrast to other integrable PDEs on the line (BO), (KdV), or
the L2-critical derivative NLS

i∂tq + ∂xxq + D(|q|2q) = 0 (dNLS)

Globally well-posed in L2(R) with a-priori bounds ∥q(t)∥Hs ≲ ∥q(0)∥Hs

for s ≥ 0; see (Killip-Visan et al. ’22) and (Bahouri/Perelman ’20).
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Outlook

Sneak Preview

(Gérard ’23) found explicit solution formula for Benjamin-Ono equation; see
talk tomorrow. Same ideas apply to (CM-NLS) to get solution formula:

u(t, x) =
1

2πi
I+

[
(G + 2tLu0 − x)−1u0

]
for Im x > 0

G is the generator of the adjoint Lax-Beurling semigroup on L2
+(R).

For special case of multi-solitons, the formula above reduces to

u(t, x) =
〈
X , (M0 + 2tL0 − x)−1Y

〉
CN for Im x > 0.
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Thank you for your attention!
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