Turbulence in completely integrable PDEs: The Calogero-Moser derivative NLS

Enno Lenzmann

University of Basel

Abel Symposium, Norway

June 2023

UNI
BASEL

Introduction

This talk deals with the Calogero-Moser derivative NLS (CM-NLS) given by

$$
\mathrm{i} \partial_{t} u+\partial_{x x} u+f(u, D u)=0 \quad \text { on } \quad \mathbb{R}_{t} \times \mathbb{R}_{x}
$$

with some nonlinearity $f(u, D u)$ related to the Hardy space $L_{+}^{2}(\mathbb{R})$.

Contents of Talk:

(1) Motivation/Derivation
(2) PDE Features
(3) Results
(c) Outlook

Introduction

This talk deals with the Calogero-Moser derivative NLS (CM-NLS) given by

$$
\mathrm{i} \partial_{t} u+\partial_{x x} u+f(u, D u)=0 \quad \text { on } \quad \mathbb{R}_{t} \times \mathbb{R}_{x}
$$

with some nonlinearity $f(u, D u)$ related to the Hardy space $L_{+}^{2}(\mathbb{R})$.

Contents of Talk:

(1) Motivation/Derivation
(2) PDE Features
(3) Results
(1) Outlook

Main Goal

Construct turbulent solutions of (CM-NLS) with growth of Sobolev norms:

$$
\|u(t)\|_{H^{s}} \sim|t|^{2 s} \quad \text { as } \quad|t| \rightarrow \infty
$$

Introduction

This talk deals with the Calogero-Moser derivative NLS (CM-NLS) given by

$$
\mathrm{i} \partial_{t} u+\partial_{x x} u+f(u, D u)=0 \quad \text { on } \quad \mathbb{R}_{t} \times \mathbb{R}_{x}
$$

with some nonlinearity $f(u, D u)$ related to the Hardy space $L_{+}^{2}(\mathbb{R})$.

Contents of Talk:

(1) Motivation/Derivation
(2) PDE Features
(3) Results
(9) Outlook

Main Goal

Construct turbulent solutions of (CM-NLS) with growth of Sobolev norms:

$$
\|u(t)\|_{H^{s}} \sim|t|^{2 s} \quad \text { as } \quad|t| \rightarrow \infty
$$

Based on arXiv:2208.04105 joint with Patrick Gérard (Orsay).

Introduction: Genesis of Calogero-Moser Systems

We begin in 1975 with a seminal paper by Jürgen Moser.
advances in mathematics 16, 197-220 (1975)

Three Integrable Hamiltonian Systems
Connected with Isospectral Deformations*
J. Moser

Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
dedicated to stan ulam

1. Introduction

(a) Background. In the early stages of classical mechanics it was the ultimate goal to integrate the differential equations of motions explicitly or by quadrature. This led to the discovery of various "integrable" systems, such as Euler's two fixed center problems, Jacobi's integration of the geodesics on a three-axial cllipsoid, S. Kovalevski's motion of the top under gravity for special ratios of the principal moments of inertia, to name a few nontrivial examples. These efforts and their climax with the work of Jacobi who applied skillfully the method of separation of variables to partial differential equations, the Hamilton-Jacobi equations associated with the mechanical system, to establish their integrable character.
However, this development took a sharp turn when Poincaré showed

- Moser solves a conjecture by F. Calogero (1971) claiming complete integrability of classical Hamiltonian systems with inverse square interaction

$$
V(x) \sim \frac{1}{|x|^{2}}
$$

- Moser's idea: Use Lax pairs!

Classical Calogero-Moser Systems

Jürgen Moser (Adv. Math. 1975) proved complete integrability of classical N-body system with Hamiltonian

$$
H_{N}=\frac{1}{2} \sum_{k=1}^{N} p_{k}^{2}+\frac{1}{2} \sum_{k \neq \ell}^{N} \frac{1}{\left(x_{k}-x_{\ell}\right)^{2}}
$$

with positions $x_{k} \in \mathbb{R}$ and momenta $p_{k} \in \mathbb{R}$ for $1 \leq k \leq N$. (Conjectured by F. Calogero (1971) based on exactly solvable QM model.)

Classical Calogero-Moser Systems

Jürgen Moser (Adv. Math. 1975) proved complete integrability of classical N-body system with Hamiltonian

$$
H_{N}=\frac{1}{2} \sum_{k=1}^{N} p_{k}^{2}+\frac{1}{2} \sum_{k \neq \ell}^{N} \frac{1}{\left(x_{k}-x_{\ell}\right)^{2}}
$$

with positions $x_{k} \in \mathbb{R}$ and momenta $p_{k} \in \mathbb{R}$ for $1 \leq k \leq N$.
(Conjectured by F. Calogero (1971) based on exactly solvable QM model.)

- Moser's recasts equations of motion into Lax form:

$$
\frac{d}{d t} \mathbf{L}=[\mathbf{B}, \mathbf{L}]
$$

for suitable matrices $\mathbf{L}=\mathbf{L}\left(x_{k}, p_{k}\right)$ and $\mathbf{B}=\mathbf{B}\left(x_{k}, p_{k}\right)$ in $\mathbb{C}^{N \times N}$.

- We find N conserved quantities by traces of Moser's L matrix:

$$
\operatorname{Tr}\left(\mathbf{L}^{k}\right)=\text { const. for } k=1, \ldots N
$$

Classical Calogero-Moser Systems

Jürgen Moser (Adv. Math. 1975) proved complete integrability of classical N-body system with Hamiltonian

$$
H_{N}=\frac{1}{2} \sum_{k=1}^{N} p_{k}^{2}+\frac{1}{2} \sum_{k \neq \ell}^{N} \frac{1}{\left(x_{k}-x_{\ell}\right)^{2}}
$$

with positions $x_{k} \in \mathbb{R}$ and momenta $p_{k} \in \mathbb{R}$ for $1 \leq k \leq N$.
(Conjectured by F. Calogero (1971) based on exactly solvable QM model.)

- Moser's recasts equations of motion into Lax form:

$$
\frac{d}{d t} \mathbf{L}=[\mathbf{B}, \mathbf{L}]
$$

for suitable matrices $\mathbf{L}=\mathbf{L}\left(x_{k}, p_{k}\right)$ and $\mathbf{B}=\mathbf{B}\left(x_{k}, p_{k}\right)$ in $\mathbb{C}^{N \times N}$.

- We find N conserved quantities by traces of Moser's L matrix:

$$
\operatorname{Tr}\left(\mathbf{L}^{k}\right)=\text { const. for } k=1, \ldots N
$$

- Some extra effort shows complete integrability for H_{N}.

Classical Calogero-Moser Systems

The completely integrable Calogero-Moser (CM) Hamiltonian:

$$
H_{N}=\frac{1}{2} \sum_{k=1}^{N} p_{k}^{2}+\frac{1}{2} \sum_{k \neq \ell}^{N} \frac{1}{\left(x_{k}-x_{\ell}\right)^{2}}
$$

with positions $x_{k} \in \mathbb{R}$ and momenta $p_{k} \in \mathbb{R}$ for $1 \leq k \leq N$.

Classical Calogero-Moser Systems

The completely integrable Calogero-Moser (CM) Hamiltonian:

$$
H_{N}=\frac{1}{2} \sum_{k=1}^{N} p_{k}^{2}+\frac{1}{2} \sum_{k \neq \ell}^{N} \frac{1}{\left(x_{k}-x_{\ell}\right)^{2}}
$$

with positions $x_{k} \in \mathbb{R}$ and momenta $p_{k} \in \mathbb{R}$ for $1 \leq k \leq N$.

- (Oleshanetsky/Perelomov '75) free matrix flows with

$$
\mathbf{M}(t)=2 \mathbf{L}_{0} t+\mathbf{M}_{0}
$$

where Moser's matrix $\mathbf{L}_{0}=\mathbf{L}_{t=0}$ and $\mathbf{M}_{0}=\operatorname{diag}\left(x_{1}(0), \ldots, x_{N}(0)\right)$.

- The eigenvalues $\left\{x_{k}(t)\right\}_{k=1}^{N}$ of $\mathbf{M}(t)$ solve

$$
\frac{d^{2} x_{k}}{d t^{2}}=\sum_{l \neq k}^{N} \frac{1}{\left(x_{k}-x_{l}\right)^{3}}
$$

which are the equations of motion for H_{N}.

Classical Calogero-Moser Systems

The completely integrable Calogero-Moser (CM) Hamiltonian:

$$
H_{N}=\frac{1}{2} \sum_{k=1}^{N} p_{k}^{2}+\frac{1}{2} \sum_{k \neq \ell}^{N} \frac{1}{\left(x_{k}-x_{\ell}\right)^{2}}
$$

with positions $x_{k} \in \mathbb{R}$ and momenta $p_{k} \in \mathbb{R}$ for $1 \leq k \leq N$.

- (Oleshanetsky/Perelomov '75) free matrix flows with

$$
\mathbf{M}(t)=2 \mathbf{L}_{0} t+\mathbf{M}_{0}
$$

where Moser's matrix $\mathbf{L}_{0}=\mathbf{L}_{t=0}$ and $\mathbf{M}_{0}=\operatorname{diag}\left(x_{1}(0), \ldots, x_{N}(0)\right)$.

- The eigenvalues $\left\{x_{k}(t)\right\}_{k=1}^{N}$ of $\mathbf{M}(t)$ solve

$$
\frac{d^{2} x_{k}}{d t^{2}}=\sum_{l \neq k}^{N} \frac{1}{\left(x_{k}-x_{l}\right)^{3}}
$$

which are the equations of motion for H_{N}.

- By now, many variations on this theme exist \rightarrow Generalized CM-Systems.

Continuum Limit of CM-Systems

(Wiegmann et al. '09): Formal analysis of continuum limit of CM-Hamiltonian H_{N} as $N \rightarrow \infty$. the hydrodynamic fields of mass and momentum density:

$$
\varrho(t, x)=\sum_{k=1}^{N} \delta\left(x-x_{k}(t)\right), \quad p(t, x)=\sum_{k=1}^{N} p_{k}(t) \delta\left(x-x_{k}(t)\right)
$$

Continuum Limit of CM-Systems

(Wiegmann et al. '09): Formal analysis of continuum limit of CM-Hamiltonian H_{N} as $N \rightarrow \infty$. the hydrodynamic fields of mass and momentum density:

$$
\varrho(t, x)=\sum_{k=1}^{N} \delta\left(x-x_{k}(t)\right), \quad p(t, x)=\sum_{k=1}^{N} p_{k}(t) \delta\left(x-x_{k}(t)\right)
$$

- In the formal limit $N \rightarrow \infty$, they obtain that complex field $\psi=\sqrt{\varrho} e^{\mathrm{i} \vartheta}$ with $\partial_{x} \vartheta=p / \varrho$ solves the Hamiltonian NLS:

$$
\mathrm{i} \partial_{t} \psi+\partial_{x x} \psi+\left(|D \| \psi|^{2}\right) \psi-\frac{1}{4}|\psi|^{4} \psi=0
$$

Continuum Limit of CM-Systems

(Wiegmann et al. '09): Formal analysis of continuum limit of CM-Hamiltonian H_{N} as $N \rightarrow \infty$. the hydrodynamic fields of mass and momentum density:

$$
\varrho(t, x)=\sum_{k=1}^{N} \delta\left(x-x_{k}(t)\right), \quad p(t, x)=\sum_{k=1}^{N} p_{k}(t) \delta\left(x-x_{k}(t)\right) .
$$

- In the formal limit $N \rightarrow \infty$, they obtain that complex field $\psi=\sqrt{\varrho} e^{\mathrm{i} \vartheta}$ with $\partial_{x} \vartheta=p / \varrho$ solves the Hamiltonian NLS:

$$
\mathrm{i} \partial_{t} \psi+\partial_{x x} \psi+\left(|D \| \psi|^{2}\right) \psi-\frac{1}{4}|\psi|^{4} \psi=0
$$

- By the gauge transform $u(t, x):=\psi(t, x) e^{-\frac{i}{2} \int_{-\infty}^{x}|\psi(t, y)|^{2} d y}$, we arrive at

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u+2 \Pi_{+}\left(D|u|^{2}\right) u=0 \tag{CM-NLS}
\end{equation*}
$$

Here $D=-\mathrm{i} \partial_{x}$ and $\Pi_{+}: L^{2}(\mathbb{R}) \rightarrow L_{+}^{2}(\mathbb{R})$ is Cauchy-Szegő projection:

$$
\widehat{\left(\Pi_{+} f\right)}(\xi)=\mathbb{1}_{\xi \geq 0} \widehat{f}(\xi)
$$

- Positive frequency condition interpreted as chirality.

Introducing the (CM-NLS)

With the short-hand notation $D_{+}:=\Pi_{+} D$, we compactly write

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u+2\left(D_{+}|u|^{2}\right) u=0 \tag{CM-NLS}
\end{equation*}
$$

- For $s \geq 0$, the Hardy-Sobolev spaces

$$
H_{+}^{s}(\mathbb{R})=L_{+}^{2}(\mathbb{R}) \cap H^{s}(\mathbb{R})=\left\{f \in H^{s}(\mathbb{R}): \operatorname{supp} \widehat{f} \subset[0, \infty)\right\}
$$

With the short-hand notation $D_{+}:=\Pi_{+} D$, we compactly write

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u+2\left(D_{+}|u|^{2}\right) u=0 \tag{CM-NLS}
\end{equation*}
$$

- For $s \geq 0$, the Hardy-Sobolev spaces

$$
H_{+}^{s}(\mathbb{R})=L_{+}^{2}(\mathbb{R}) \cap H^{s}(\mathbb{R})=\left\{f \in H^{s}(\mathbb{R}): \operatorname{supp} \widehat{f} \subset[0, \infty)\right\}
$$

- Note that the Benjamin-Ono equation can written in similar form:

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u+D\left(u^{2}\right)+2 D_{+}\left(|u|^{2}\right)=0 \tag{BO}
\end{equation*}
$$

Thus (CM-NLS) can be seen as L^{2}-mass critical sibling of (BO).

With the short-hand notation $D_{+}:=\Pi_{+} D$, we compactly write

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u+2\left(D_{+}|u|^{2}\right) u=0 \tag{CM-NLS}
\end{equation*}
$$

- For $s \geq 0$, the Hardy-Sobolev spaces

$$
H_{+}^{s}(\mathbb{R})=L_{+}^{2}(\mathbb{R}) \cap H^{s}(\mathbb{R})=\left\{f \in H^{s}(\mathbb{R}): \operatorname{supp} \widehat{f} \subset[0, \infty)\right\}
$$

- Note that the Benjamin-Ono equation can written in similar form:

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u+D\left(u^{2}\right)+2 D_{+}\left(|u|^{2}\right)=0 \tag{BO}
\end{equation*}
$$

Thus (CM-NLS) can be seen as L^{2}-mass critical sibling of (BO).

- There is also a 'defocusing' version of (CM-NLS) with

$$
\begin{equation*}
\mathrm{i} \partial_{t} u+\partial_{x x} u-2\left(D_{+}|u|^{2}\right) u=0 \tag{INLS}
\end{equation*}
$$

found by (Pelinovsky/Grimshaw '95) in fluid dynamics. No finite-energy solitons.

Contents:

(1) Motivation/Derivation
(2) PDE Features
(3) Main Results

Features of Calogero-Moser DNLS

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Hamiltonian PDE on spaces H_{+}^{s} with energy

$$
E(u)=\int_{\mathbb{R}}|D u|^{2}+\ldots=\int_{\mathbb{R}}\left|D u-\mathrm{i} \Pi_{+}\left(|u|^{2}\right) u\right|^{2} \quad \text { (Energy) }
$$

Features of Calogero-Moser DNLS

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Hamiltonian PDE on spaces H_{+}^{s} with energy

$$
E(u)=\int_{\mathbb{R}}|D u|^{2}+\ldots=\int_{\mathbb{R}}\left|D u-\mathrm{i} \Pi_{+}\left(|u|^{2}\right) u\right|^{2} \quad \text { (Energy) }
$$

- Conservation of L^{2}-Mass and Momentum:

$$
M(u)=\int_{\mathbb{R}}|u|^{2} \quad\left(L^{2} \text {-Mass), } \quad P(u)=\int_{\mathbb{R}}\left(\bar{u} D u-\frac{1}{2}|u|^{4}\right) \quad\right. \text { (Momentum) }
$$

- We find infinite set of conserved quantities $\left\{I_{k}(u)\right\}_{k=0}^{\infty}$ by Lax structure.

Features of Calogero-Moser DNLS

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Hamiltonian PDE on spaces H_{+}^{s} with energy

$$
E(u)=\int_{\mathbb{R}}|D u|^{2}+\ldots=\int_{\mathbb{R}}\left|D u-\mathrm{i} \Pi_{+}\left(|u|^{2}\right) u\right|^{2} \quad \text { (Energy) }
$$

- Conservation of L^{2}-Mass and Momentum:

$$
M(u)=\int_{\mathbb{R}}|u|^{2} \quad\left(L^{2} \text {-Mass), } \quad P(u)=\int_{\mathbb{R}}\left(\bar{u} D u-\frac{1}{2}|u|^{4}\right) \quad\right. \text { (Momentum) }
$$

- We find infinite set of conserved quantities $\left\{I_{k}(u)\right\}_{k=0}^{\infty}$ by Lax structure.
- Scaling of (CM-NLS) is L^{2}-critical with

$$
u(t, x) \mapsto u_{\lambda}=\lambda^{1 / 2} u\left(\lambda^{2} t, \lambda x\right), \quad M(u)=M\left(u_{\lambda}\right)
$$

Large data initial $M\left(u_{0}\right) \gg 1$ may not be controlled a-priori. Blowup?

Ground State Solitons

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Ground states $=$ Minimizers of $E(u)$. Solve 1st order equation:

$$
\partial_{\times} R-\mathrm{i} \Pi_{+}\left(|R|^{2}\right) R=0
$$

- Explicit solutions given by

$$
R(x)=\frac{\sqrt{2}}{x+\mathrm{i}} \in H_{+}^{1}(\mathbb{R}), \quad M(R)=\int_{\mathbb{R}}|R|^{2}=2 \pi, \quad E(R)=0
$$

and $u(t, x) \equiv R(x)$ are static solutions of (CM-NLS).

Ground State Solitons

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Ground states $=$ Minimizers of $E(u)$. Solve 1st order equation:

$$
\partial_{\times} R-\mathrm{i} \Pi_{+}\left(|R|^{2}\right) R=0
$$

- Explicit solutions given by

$$
R(x)=\frac{\sqrt{2}}{x+\mathrm{i}} \in H_{+}^{1}(\mathbb{R}), \quad M(R)=\int_{\mathbb{R}}|R|^{2}=2 \pi, \quad E(R)=0
$$

and $u(t, x) \equiv R(x)$ are static solutions of (CM-NLS).

Lemma [Gérard-L. '22]

$R(x)$ is (up to symmetries) the unique minimizer of $E(u)$.

Ground State Solitons

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Ground states $=$ Minimizers of $E(u)$. Solve 1st order equation:

$$
\partial_{x} R-\mathrm{i} \Pi_{+}\left(|R|^{2}\right) R=0
$$

- Explicit solutions given by

$$
R(x)=\frac{\sqrt{2}}{x+\mathrm{i}} \in H_{+}^{1}(\mathbb{R}), \quad M(R)=\int_{\mathbb{R}}|R|^{2}=2 \pi, \quad E(R)=0
$$

and $u(t, x) \equiv R(x)$ are static solutions of (CM-NLS).

Lemma [Gérard-L. '22]

$R(x)$ is (up to symmetries) the unique minimizer of $E(u)$.

- L^{2}-mass of R defines threshold for (CM-DNLS):

$$
M\left(u_{0}\right)<M(R), \quad M\left(u_{0}\right)=M(R), \quad M(R)>M\left(u_{0}\right) .
$$

- We'll mainly focus on the large data with $M\left(u_{0}\right) \geq M(R)$.

Ground State Solitons

$$
\mathrm{i} \partial_{t} u=-\partial_{x x} u-2 D_{+}\left(|u|^{2}\right) u
$$

- Ground states $=$ Minimizers of $E(u)$. Solve 1st order equation:

$$
\partial_{x} R-\mathrm{i} \Pi_{+}\left(|R|^{2}\right) R=0 \quad \Longleftrightarrow \quad|D| w=e^{w}
$$

Equivalence to nonlocal Liouville equation in \mathbb{R} via $w=\log \left(|R|^{2}\right)$.

- Explicit solutions given by

$$
R(x)=\frac{\sqrt{2}}{x+\mathrm{i}} \in H_{+}^{1}(\mathbb{R}), \quad M(R)=\int_{\mathbb{R}}|R|^{2}=2 \pi, \quad E(R)=0
$$

and $u(t, x) \equiv R(x)$ are static solutions of (CM-NLS).

Lemma [Gérard-L. '22]

$R(x)$ is (up to symmetries) the unique minimizer of $E(u)$.

- L^{2}-mass of R defines threshold for (CM-DNLS):

$$
M\left(u_{0}\right)<M(R), \quad M\left(u_{0}\right)=M(R), \quad M(R)>M\left(u_{0}\right) .
$$

- We'll mainly focus on the large data with $M\left(u_{0}\right) \geq M(R)$.

Contents:

(1) Motivation/Derivation
(2) PDE Features
(3) Main Results

Well-Posedness

Cauchy Problem for (CM-NLS)

$$
\mathrm{i} \partial_{t} u+\partial_{x x} u+2\left(D_{+}|u|^{2}\right) u=0,\left.\quad u\right|_{t=0}=u_{0} \in H_{+}^{s}(\mathbb{R}) .
$$

- Local Well-Posedness in $H_{+}^{s}(\mathbb{R})$ for any $s>1 / 2$.
- Use Kato's scheme and arguments by (de Moura-Pilod '10) for 'defocusing' version of (CM-DNLS); Tao's gauge trick for (BO).

Well-Posedness

Cauchy Problem for (CM-NLS)

$$
\mathrm{i} \partial_{t} u+\partial_{x x} u+2\left(D_{+}|u|^{2}\right) u=0,\left.\quad u\right|_{t=0}=u_{0} \in H_{+}^{s}(\mathbb{R})
$$

- Local Well-Posedness in $H_{+}^{s}(\mathbb{R})$ for any $s>1 / 2$.
- Use Kato's scheme and arguments by (de Moura-Pilod '10) for 'defocusing' version of (CM-DNLS); Tao's gauge trick for (BO).
- Global Well-Posedness for subcritical L^{2}-mass $M\left(u_{0}\right)<M(R)$ with a-priori bounds

$$
\sup _{t \in \mathbb{R}}\|u(t)\|_{H^{k}} \lesssim\left\|u_{0}\right\|_{H^{k}} \quad \text { for any } k \in \mathbb{N}
$$

by hierarchy of conserved quantities $\left\{I_{k}(u)\right\}_{k=0}^{\infty}$ from Lax structure. Scattering.

Well-Posedness

Cauchy Problem for (CM-NLS)

$$
\mathrm{i} \partial_{t} u+\partial_{x x} u+2\left(D_{+}|u|^{2}\right) u=0,\left.\quad u\right|_{t=0}=u_{0} \in H_{+}^{s}(\mathbb{R})
$$

- Local Well-Posedness in $H_{+}^{s}(\mathbb{R})$ for any $s>1 / 2$.
- Use Kato's scheme and arguments by (de Moura-Pilod '10) for 'defocusing' version of (CM-DNLS); Tao's gauge trick for (BO).
- Global Well-Posedness for subcritical L^{2}-mass $M\left(u_{0}\right)<M(R)$ with a-priori bounds

$$
\sup _{t \in \mathbb{R}}\|u(t)\|_{H^{k}} \lesssim\left\|u_{0}\right\|_{H^{k}} \quad \text { for any } k \in \mathbb{N}
$$

by hierarchy of conserved quantities $\left\{I_{k}(u)\right\}_{k=0}^{\infty}$ from Lax structure. Scattering.

- Question: What happens for large L^{2}-mass $M\left(u_{0}\right) \geq M(R)$?

About critical L^{2}-mass

Theorem (GWP for Critical Mass)
Let $u_{0} \in H_{+}^{1}(\mathbb{R})$ with critical L^{2}-mass:

$$
M\left(u_{0}\right)=M(R) .
$$

Then the solution $u \in C\left(\mathbb{R} ; H_{+}^{1}(\mathbb{R})\right)$ of (CM-NLS) exists globally in time.

About critical L^{2}-mass

Theorem (GWP for Critical Mass)
Let $u_{0} \in H_{+}^{1}(\mathbb{R})$ with critical L^{2}-mass:

$$
M\left(u_{0}\right)=M(R)
$$

Then the solution $u \in C\left(\mathbb{R} ; H_{+}^{1}(\mathbb{R})\right)$ of (CM-NLS) exists globally in time.

- No a-priori control on Sobolev norms $\|u(t)\|_{H^{1}}$.

About critical L^{2}-mass

Theorem (GWP for Critical Mass)
Let $u_{0} \in H_{+}^{1}(\mathbb{R})$ with critical L^{2}-mass:

$$
M\left(u_{0}\right)=M(R)
$$

Then the solution $u \in C\left(\mathbb{R} ; H_{+}^{1}(\mathbb{R})\right)$ of (CM-NLS) exists globally in time.

- No a-priori control on Sobolev norms $\|u(t)\|_{H^{1}}$.
- Proof rests on ruling out minimal mass blowup solutions.

About critical L^{2}-mass

Theorem (GWP for Critical Mass)

Let $u_{0} \in H_{+}^{1}(\mathbb{R})$ with critical L^{2}-mass:

$$
M\left(u_{0}\right)=M(R)
$$

Then the solution $u \in C\left(\mathbb{R} ; H_{+}^{1}(\mathbb{R})\right)$ of $(C M-N L S)$ exists globally in time.

- No a-priori control on Sobolev norms $\|u(t)\|_{H^{1}}$.
- Proof rests on ruling out minimal mass blowup solutions.
- Indeed, if $\lim _{t \rightarrow T}\|u(t)\|_{H^{1}}=\infty$ for some $T<\infty$, then adapting (Merle '93) for L^{2}-critical NLS, we deduce (up to symmetries) that initial datum is pseudo-conformal transform of ground state:

$$
u_{0}(x)=e^{\mathrm{i} x^{2} / 4 T} R(x)
$$

About critical L^{2}-mass

Theorem (GWP for Critical Mass)

Let $u_{0} \in H_{+}^{1}(\mathbb{R})$ with critical L^{2}-mass:

$$
M\left(u_{0}\right)=M(R)
$$

Then the solution $u \in C\left(\mathbb{R} ; H_{+}^{1}(\mathbb{R})\right)$ of $(C M-N L S)$ exists globally in time.

- No a-priori control on Sobolev norms $\|u(t)\|_{H^{1}}$.
- Proof rests on ruling out minimal mass blowup solutions.
- Indeed, if $\lim _{t \rightarrow T}\|u(t)\|_{H^{1}}=\infty$ for some $T<\infty$, then adapting (Merle '93) for L^{2}-critical NLS, we deduce (up to symmetries) that initial datum is pseudo-conformal transform of ground state:

$$
u_{0}(x)=e^{\mathrm{i} x^{2} / 4 T} R(x)
$$

- But by slow decay $|R(x)| \sim \frac{1}{|x|}$, we deduce that

$$
\left\|\nabla u_{0}\right\|_{L^{2}} \sim \int_{\mathbb{R}}|x|^{2}|R(x)|^{2}=+\infty
$$

Contradiction to $u_{0} \in H^{1}(\mathbb{R})$.

Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

$$
u(t, x)=\sum_{k=1}^{N} \frac{a_{k}(t)}{x-z_{k}(t)} \in H_{+}^{1}(\mathbb{R})
$$

Here $a_{1}(t), \ldots, a_{N}(t) \in \mathbb{C}$ and pairwise distinct $z_{1}(t), \ldots, z_{N}(t) \in \mathbb{C}_{-}$.

Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

$$
u(t, x)=\sum_{k=1}^{N} \frac{a_{k}(t)}{x-z_{k}(t)} \in H_{+}^{1}(\mathbb{R})
$$

Here $a_{1}(t), \ldots, a_{N}(t) \in \mathbb{C}$ and pairwise distinct $z_{1}(t), \ldots, z_{N}(t) \in \mathbb{C}_{-}$.

- Set of nonlinear constraints for $\left\{a_{k}(t), z_{k}(t)\right\}$.

Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

$$
u(t, x)=\sum_{k=1}^{N} \frac{a_{k}(t)}{x-z_{k}(t)} \in H_{+}^{1}(\mathbb{R})
$$

Here $a_{1}(t), \ldots, a_{N}(t) \in \mathbb{C}$ and pairwise distinct $z_{1}(t), \ldots, z_{N}(t) \in \mathbb{C}_{-}$.

- Set of nonlinear constraints for $\left\{a_{k}(t), z_{k}(t)\right\}$.
- Quantization of L^{2}-mass: $\|u\|_{L^{2}}^{2}=2 \pi N$.

Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

$$
u(t, x)=\sum_{k=1}^{N} \frac{a_{k}(t)}{x-z_{k}(t)} \in H_{+}^{1}(\mathbb{R})
$$

Here $a_{1}(t), \ldots, a_{N}(t) \in \mathbb{C}$ and pairwise distinct $z_{1}(t), \ldots, z_{N}(t) \in \mathbb{C}_{-}$.

- Set of nonlinear constraints for $\left\{a_{k}(t), z_{k}(t)\right\}$.
- Quantization of L^{2}-mass: $\|u\|_{L^{2}}^{2}=2 \pi N$.
- Pole dynamics obey complex Calogero-Moser system:

$$
\frac{d^{2} z_{k}}{d t^{2}}=\sum_{\ell \neq k}^{N} \frac{8}{\left(z_{k}-z_{\ell}\right)^{3}}
$$

Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

$$
u(t, x)=\sum_{k=1}^{N} \frac{a_{k}(t)}{x-z_{k}(t)} \in H_{+}^{1}(\mathbb{R})
$$

Here $a_{1}(t), \ldots, a_{N}(t) \in \mathbb{C}$ and pairwise distinct $z_{1}(t), \ldots, z_{N}(t) \in \mathbb{C}_{-}$.

- Set of nonlinear constraints for $\left\{a_{k}(t), z_{k}(t)\right\}$.
- Quantization of L^{2}-mass: $\|u\|_{L^{2}}^{2}=2 \pi N$.
- Pole dynamics obey complex Calogero-Moser system:

$$
\frac{d^{2} z_{k}}{d t^{2}}=\sum_{\ell \neq k}^{N} \frac{8}{\left(z_{k}-z_{\ell}\right)^{3}}
$$

- Two Caveats: Collision of poles and possible blowup.

Multi-Solitons (Naive Approach)

Idea (Pole Ansatz): We seek special solutions of (CM-NLS) of the form

$$
u(t, x)=\sum_{k=1}^{N} \frac{a_{k}(t)}{x-z_{k}(t)} \in H_{+}^{1}(\mathbb{R})
$$

Here $a_{1}(t), \ldots, a_{N}(t) \in \mathbb{C}$ and pairwise distinct $z_{1}(t), \ldots, z_{N}(t) \in \mathbb{C}_{-}$.

- Set of nonlinear constraints for $\left\{a_{k}(t), z_{k}(t)\right\}$.
- Quantization of L^{2}-mass: $\|u\|_{L^{2}}^{2}=2 \pi N$.
- Pole dynamics obey complex Calogero-Moser system:

$$
\frac{d^{2} z_{k}}{d t^{2}}=\sum_{\ell \neq k}^{N} \frac{8}{\left(z_{k}-z_{\ell}\right)^{3}}
$$

- Two Caveats: Collision of poles and possible blowup.
- Way out: Develop robust approach using the Lax structure. Next!

Digression: Lax Structure

- Observe that the energy $E(u)$ can be written as a complete square

$$
E(u)=\int_{\mathbb{R}}\left|D u-\Pi_{+}\left(|u|^{2}\right) u\right|^{2}=\left\langle L_{u} u, L_{u} u\right\rangle
$$

with the self-adjoint, first-order and nonlocal operator

$$
L_{u} f=D f-\Pi_{+}\left(u \Pi_{+}(\bar{u} f)\right)=D f-T_{u} T_{\bar{u}} f
$$

where $T_{\varphi} f:=\Pi_{+}(\varphi f)$ on $L_{+}^{2}(\mathbb{R})$ is Toeplitz operator with symbol φ.

Digression: Lax Structure

- Observe that the energy $E(u)$ can be written as a complete square

$$
E(u)=\int_{\mathbb{R}}\left|D u-\Pi_{+}\left(|u|^{2}\right) u\right|^{2}=\left\langle L_{u} u, L_{u} u\right\rangle
$$

with the self-adjoint, first-order and nonlocal operator

$$
L_{u} f=D f-\Pi_{+}\left(u \Pi_{+}(\bar{u} f)\right)=D f-T_{u} T_{\bar{u}} f
$$

where $T_{\varphi} f:=\Pi_{+}(\varphi f)$ on $L_{+}^{2}(\mathbb{R})$ is Toeplitz operator with symbol φ.

- A calculation yields that (CM-NLS) can be written as Lax equation

$$
\frac{d}{d t} L_{u}=\left[B_{u}, L_{u}\right]
$$

with some suitable operator B_{u}.

Digression: Lax Structure

- Observe that the energy $E(u)$ can be written as a complete square

$$
E(u)=\int_{\mathbb{R}}\left|D u-\Pi_{+}\left(|u|^{2}\right) u\right|^{2}=\left\langle L_{u} u, L_{u} u\right\rangle
$$

with the self-adjoint, first-order and nonlocal operator

$$
L_{u} f=D f-\Pi_{+}\left(u \Pi_{+}(\bar{u} f)\right)=D f-T_{u} T_{\bar{u}} f
$$

where $T_{\varphi} f:=\Pi_{+}(\varphi f)$ on $L_{+}^{2}(\mathbb{R})$ is Toeplitz operator with symbol φ.

- A calculation yields that (CM-NLS) can be written as Lax equation

$$
\frac{d}{d t} L_{u}=\left[B_{u}, L_{u}\right]
$$

with some suitable operator B_{u}.

- Spectrum $\sigma\left(L_{u(t)}\right)$ is constant in time and hierarchy of conservation laws:

$$
I_{k}(u)=\left\langle u, L_{u}^{k} u\right\rangle=I\left(u_{0}\right) \quad \text { for } k=0,1,2, \ldots
$$

Note that $M(u)=I_{0}(u), P(u)=I_{1}(u)$, and $E(u)=I_{2}(u)$.

Spectral Analysis of L_{u}

Lax Operator for (CM-NLS)

For given $u \in H_{+}^{s}(\mathbb{R})$ with $s \geq 0$, we have the self-adjoint Lax operator

$$
L_{u}=D-T_{u} T_{\bar{u}} \quad \text { acting on } L_{+}^{2}(\mathbb{R}) .
$$

Here $D=-\mathrm{i} \partial_{x}$ and $T_{\varphi} f=\Pi_{+}(\varphi f)$ with symbol $\varphi \in L^{\infty}(\mathbb{R})+L^{2}(\mathbb{R})$.

Spectral Analysis of L_{u}

Lax Operator for (CM-NLS)

For given $u \in H_{+}^{s}(\mathbb{R})$ with $s \geq 0$, we have the self-adjoint Lax operator

$$
L_{u}=D-T_{u} T_{\bar{u}} \quad \text { acting on } L_{+}^{2}(\mathbb{R})
$$

Here $D=-\mathrm{i} \partial_{x}$ and $T_{\varphi} f=\Pi_{+}(\varphi f)$ with symbol $\varphi \in L^{\infty}(\mathbb{R})+L^{2}(\mathbb{R})$.

- Every eigenvalue of L_{u} is simple.

Spectral Analysis of L_{u}

Lax Operator for (CM-NLS)

For given $u \in H_{+}^{s}(\mathbb{R})$ with $s \geq 0$, we have the self-adjoint Lax operator

$$
L_{u}=D-T_{u} T_{\bar{u}} \quad \text { acting on } L_{+}^{2}(\mathbb{R})
$$

Here $D=-\mathrm{i} \partial_{x}$ and $T_{\varphi} f=\Pi_{+}(\varphi f)$ with symbol $\varphi \in L^{\infty}(\mathbb{R})+L^{2}(\mathbb{R})$.

- Every eigenvalue of L_{u} is simple.
- Optimal bound for number of eigenvalues is

$$
N \leq \frac{\|u\|_{L^{2}}^{2}}{2 \pi}
$$

Spectral Analysis of L_{u}

Lax Operator for (CM-NLS)

For given $u \in H_{+}^{s}(\mathbb{R})$ with $s \geq 0$, we have the self-adjoint Lax operator

$$
L_{u}=D-T_{u} T_{\bar{u}} \quad \text { acting on } L_{+}^{2}(\mathbb{R})
$$

Here $D=-\mathrm{i} \partial_{x}$ and $T_{\varphi} f=\Pi_{+}(\varphi f)$ with symbol $\varphi \in L^{\infty}(\mathbb{R})+L^{2}(\mathbb{R})$.

- Every eigenvalue of L_{u} is simple.
- Optimal bound for number of eigenvalues is

$$
N \leq \frac{\|u\|_{L^{2}}^{2}}{2 \pi}
$$

- Caveat: L_{u} can have embedded eigenvalues. But (\star) also applies!

Spectral Analysis of L_{u}

Lax Operator for (CM-NLS)

For given $u \in H_{+}^{s}(\mathbb{R})$ with $s \geq 0$, we have the self-adjoint Lax operator

$$
L_{u}=D-T_{u} T_{\bar{u}} \quad \text { acting on } L_{+}^{2}(\mathbb{R})
$$

Here $D=-\mathrm{i} \partial_{x}$ and $T_{\varphi} f=\Pi_{+}(\varphi f)$ with symbol $\varphi \in L^{\infty}(\mathbb{R})+L^{2}(\mathbb{R})$.

- Every eigenvalue of L_{u} is simple.
- Optimal bound for number of eigenvalues is

$$
N \leq \frac{\|u\|_{L^{2}}^{2}}{2 \pi}
$$

- Caveat: L_{u} can have embedded eigenvalues. But (\star) also applies!
- Fun fact: $L_{u}^{(B O)}=D-T_{u}$ is Lax operator for Benjamin-Ono equation.

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Class of multi-soliton is preserved by flow of (CM-NLS).

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Class of multi-soliton is preserved by flow of (CM-NLS).
- L^{2}-Mass of multi-solitons given by

$$
M(u)=2 \pi N \quad \text { (quantized large data) }
$$

For $N=1$, we recover $u(x)=R(x)$ (up to symmetries).

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Class of multi-soliton is preserved by flow of (CM-NLS).
- L^{2}-Mass of multi-solitons given by

$$
M(u)=2 \pi N \quad \text { (quantized large data) }
$$

For $N=1$, we recover $u(x)=R(x)$ (up to symmetries).

- All multi-solitons have slow decay:

$$
|u(x)| \sim \frac{1}{|x|} \quad \text { as } \quad|x| \rightarrow \infty
$$

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Class of multi-soliton is preserved by flow of (CM-NLS).
- L^{2}-Mass of multi-solitons given by

$$
M(u)=2 \pi N \quad \text { (quantized large data) }
$$

For $N=1$, we recover $u(x)=R(x)$ (up to symmetries).

- All multi-solitons have slow decay:

$$
|u(x)| \sim \frac{1}{|x|} \quad \text { as } \quad|x| \rightarrow \infty
$$

- If $Q(x)$ can have non-simple zeros (corresponding to pole collisions).

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Multi-soliton potentials u optimize the eigenvalue bound

$$
N \leq \frac{\|u\|_{L^{2}}^{2}}{2 \pi}
$$

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Multi-soliton potentials u optimize the eigenvalue bound

$$
N \leq \frac{\|u\|_{L^{2}}^{2}}{2 \pi}
$$

- Multi-solitons u are only supported in pure point spectrum:

$$
u \in \mathcal{H}_{p p}\left(L_{u}\right)=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}
$$

where $\left\{\psi_{k}\right\}_{k=1}^{N}$ are eigenfunctions of L_{u}.

Multi-Solitons via Lax Structure

For each $N \in \mathbb{N}$, the Lax operator L_{u} admits multi-soliton potentials

$$
u(x)=\frac{P(x)}{Q(x)} \in H_{+}^{1}(\mathbb{R}) \quad \text { (rational function) }
$$

with $\operatorname{deg} P=N$ and $\operatorname{deg} Q \leq N-1$ and $P \bar{P}=\mathrm{i}\left(Q^{\prime} \bar{Q}-\bar{Q}^{\prime} Q\right)$.

- Multi-soliton potentials u optimize the eigenvalue bound

$$
N \leq \frac{\|u\|_{L^{2}}^{2}}{2 \pi}
$$

- Multi-solitons u are only supported in pure point spectrum:

$$
u \in \mathcal{H}_{p p}\left(L_{u}\right)=\operatorname{span}\left\{\psi_{1}, \ldots, \psi_{N}\right\}
$$

where $\left\{\psi_{k}\right\}_{k=1}^{N}$ are eigenfunctions of L_{u}.

- Develop inverse spectral formula to study dynamics of multi-solitons.

Multi-Solitons: Inverse Spectral Formula

Lemma
For any $N \geq 1$, a multi-soliton $u(t) \in H_{+}^{1}(\mathbb{R})$ can be expressed as

$$
u(t, x)=\left\langle X,(\mathbf{M}(t)-x)^{-1} Y\right\rangle_{\mathbb{C}^{N}} \quad \text { with } \quad \operatorname{Im} x>0
$$

with some constant vectors $X, Y \in \mathbb{C}^{N}$ (depending on initial datum u_{0}).

Multi-Solitons: Inverse Spectral Formula

Lemma

For any $N \geq 1$, a multi-soliton $u(t) \in H_{+}^{1}(\mathbb{R})$ can be expressed as

$$
u(t, x)=\left\langle X,(\mathbf{M}(t)-x)^{-1} Y\right\rangle_{\mathbb{C}^{N}} \quad \text { with } \quad \operatorname{Im} x>0
$$

with some constant vectors $X, Y \in \mathbb{C}^{N}$ (depending on initial datum u_{0}).

- The matrix $\mathbf{M}(t) \in \mathbb{C}^{N \times N}$ evolves linearly in time:

$$
\mathbf{M}(t)=2 \mathbf{L}_{0} t+\mathbf{M}_{0}
$$

Multi-Solitons: Inverse Spectral Formula

Lemma

For any $N \geq 1$, a multi-soliton $u(t) \in H_{+}^{1}(\mathbb{R})$ can be expressed as

$$
u(t, x)=\left\langle X,(\mathbf{M}(t)-x)^{-1} Y\right\rangle_{\mathbb{C}^{N}} \quad \text { with } \quad \operatorname{Im} x>0
$$

with some constant vectors $X, Y \in \mathbb{C}^{N}$ (depending on initial datum u_{0}).

- The matrix $\mathbf{M}(t) \in \mathbb{C}^{N \times N}$ evolves linearly in time:

$$
\mathbf{M}(t)=2 \mathbf{L}_{0} t+\mathbf{M}_{0}
$$

- Global-in-time existence of $u(t)$ follows provided we can show

$$
\sigma(\mathbf{M}(t)) \subset \mathbb{C}_{-} \quad \text { for all } t \in \mathbb{R}
$$

That is no eigenvalue of $\mathbf{M}(t)$ becomes real in finite time.

Multi-Solitons: Inverse Spectral Formula

Lemma

For any $N \geq 1$, a multi-soliton $u(t) \in H_{+}^{1}(\mathbb{R})$ can be expressed as

$$
u(t, x)=\left\langle X,(\mathbf{M}(t)-x)^{-1} Y\right\rangle_{\mathbb{C}^{N}} \quad \text { with } \quad \operatorname{Im} x>0
$$

with some constant vectors $X, Y \in \mathbb{C}^{N}$ (depending on initial datum u_{0}).

- The matrix $\mathbf{M}(t) \in \mathbb{C}^{N \times N}$ evolves linearly in time:

$$
\mathbf{M}(t)=2 \mathbf{L}_{0} t+\mathbf{M}_{0}
$$

- Global-in-time existence of $u(t)$ follows provided we can show

$$
\sigma(\mathbf{M}(t)) \subset \mathbb{C}_{-} \quad \text { for all } t \in \mathbb{R}
$$

That is no eigenvalue of $\mathbf{M}(t)$ becomes real in finite time.

- Long-time behavior of $u(t)$ by matrix perturbation analysis

$$
\mathbf{M}(t)=t\left\{2 \mathbf{L}_{0}+\frac{1}{t} \mathbf{M}_{0}\right\}
$$

with small parameter $\varepsilon=\frac{1}{t} \ll 1$. We shall need up to $\mathcal{O}\left(\varepsilon^{4}\right)$.

Turbulence of N-Solitons

Theorem (Gérard-L. '22)
For all $N \geq 2$, every multi-soliton $u(t)$ for (CM-DNLS) satisfies:

- Global existence: The solution $u(t)$ exists for all times $t \in \mathbb{R}$.

Turbulence of N-Solitons

Theorem (Gérard-L. '22)

For all $N \geq 2$, every multi-soliton $u(t)$ for (CM-DNLS) satisfies:

- Global existence: The solution $u(t)$ exists for all times $t \in \mathbb{R}$.
- Turbulence: For $s>0$, we have growth of Sobolev norms such that

$$
\|u(t)\|_{H^{s}} \sim|t|^{2 s} \quad \text { as } \quad|t| \rightarrow \infty
$$

Turbulence of N-Solitons

Theorem (Gérard-L. '22)

For all $N \geq 2$, every multi-soliton $u(t)$ for (CM-DNLS) satisfies:

- Global existence: The solution $u(t)$ exists for all times $t \in \mathbb{R}$.
- Turbulence: For $s>0$, we have growth of Sobolev norms such that

$$
\|u(t)\|_{H^{s}} \sim|t|^{2 s} \quad \text { as } \quad|t| \rightarrow \infty
$$

- Bubbling in infinite time:

$$
u(t, x) \simeq \underbrace{\frac{a_{\infty}}{x-z_{\infty}}}_{\text {final ground state }}+\underbrace{\sum_{k=2}^{N} \delta\left(x-v_{k} t\right)}_{N-1 \text { blowup bubbles }} \text { as }|t| \rightarrow \infty
$$

with some $a_{\infty} \in \mathbb{C}, z_{\infty} \in \mathbb{C}_{-}$, and velocities $v_{k} \neq v_{l}$ for $k \neq l$.

Turbulence of N-Solitons

Theorem (Gérard-L. '22)

For all $N \geq 2$, every multi-soliton $u(t)$ for (CM-DNLS) satisfies:

- Global existence: The solution $u(t)$ exists for all times $t \in \mathbb{R}$.
- Turbulence: For $s>0$, we have growth of Sobolev norms such that

$$
\|u(t)\|_{H^{s}} \sim|t|^{2 s} \quad \text { as } \quad|t| \rightarrow \infty
$$

- Bubbling in infinite time:

$$
u(t, x) \simeq \underbrace{\frac{a_{\infty}}{x-z_{\infty}}}_{\text {final ground state }}+\underbrace{\sum_{k=2}^{N} \delta\left(x-v_{k} t\right)}_{N-1 \text { blowup bubbles }} \text { as }|t| \rightarrow \infty
$$

with some $a_{\infty} \in \mathbb{C}, z_{\infty} \in \mathbb{C}_{-}$, and velocities $v_{k} \neq v_{l}$ for $k \neq 1$.

- Striking contrast to other integrable PDEs on the line (BO), (KdV), or the L^{2}-critical derivative NLS

$$
\begin{equation*}
\mathrm{i} \partial_{t} q+\partial_{x x} q+D\left(|q|^{2} q\right)=0 \tag{dNLS}
\end{equation*}
$$

Globally well-posed in $L^{2}(\mathbb{R})$ with a-priori bounds $\|q(t)\|_{H^{s}} \lesssim\|q(0)\|_{H^{s}}$ for $s \geq 0$; see (Killip-Visan et al. '22) and (Bahouri/Perelman '20).

Outlook

Sneak Preview

(Gérard '23) found explicit solution formula for Benjamin-Ono equation; see talk tomorrow. Same ideas apply to (CM-NLS) to get solution formula:

$$
u(t, x)=\frac{1}{2 \pi \mathrm{i}} I_{+}\left[\left(G+2 t L_{u_{0}}-x\right)^{-1} u_{0}\right] \quad \text { for } \operatorname{Im} x>0
$$

- G is the generator of the adjoint Lax-Beurling semigroup on $L_{+}^{2}(\mathbb{R})$.
- For special case of multi-solitons, the formula above reduces to

$$
u(t, x)=\left\langle X,\left(\mathbf{M}_{0}+2 t \mathbf{L}_{0}-x\right)^{-1} Y\right\rangle_{\mathbb{C}^{N}} \quad \text { for } \operatorname{Im} x>0
$$

Outlook

Sneak Preview

(Gérard '23) found explicit solution formula for Benjamin-Ono equation; see talk tomorrow. Same ideas apply to (CM-NLS) to get solution formula:

$$
u(t, x)=\frac{1}{2 \pi \mathrm{i}} I_{+}\left[\left(G+2 t L_{u_{0}}-x\right)^{-1} u_{0}\right] \quad \text { for } \operatorname{Im} x>0
$$

- G is the generator of the adjoint Lax-Beurling semigroup on $L_{+}^{2}(\mathbb{R})$.
- For special case of multi-solitons, the formula above reduces to

$$
u(t, x)=\left\langle X,\left(\mathbf{M}_{0}+2 t \mathbf{L}_{0}-x\right)^{-1} Y\right\rangle_{\mathbb{C}^{N}} \quad \text { for } \operatorname{Im} x>0
$$

Thank you for your attention!

