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Optimal matching of random point clouds

Matching of two locally finite

point clouds {X} and {Y } ⊂ R
d,

amounts to a pairing {(X,Y )} ⊂ R
d × R

d.

Optimality means
cyclical monotonicity

∀ matched finite subset
{X1, · · · , XN}
{Y1, · · · , YN = Y0}.

∑N
n=1 |Yn −Xn|2

≤ ∑N
n=1 |Yn−1 −Xn|2

⇐⇒ ∑N
n=1(Yn − Yn−1) ·Xn ≥ 0.

Simplest random setting:

{X}, {Y } indep. samples of Poisson point processes.



The Poisson point process

Locally finite point cloud via Poisson point process

of unit intensity (means that distance between points O(1))

canonical vs.

grand-canonical

definition

Seek cyclically monotone matching

of two independent

Poisson point processes

– mean distance diverges in d = 1.



Matching depends on dimension d ...
Cyclically monotone matching of two
independent Poisson point processes
– distances diverge like square-root for d = 1.

Cause of divergence:

mesoscopic fluctuations

of number density n

= O( 1√
Ld

); lower for higher d.

Number of excess points = O(
√
Ld),

number of points in
(width one) boundary layer = O(Ld−1).

... critical dimension d = 2



Impose statistical translation invariance

(“Stationarity”) of matching

Cyclically monotone matching of

two independent Poisson point processes {X}, {Y }.

Poisson point process is stationary:

∀ shift vectors z ∈ R
d {z+X} =law {X}.

Seek random point cloud {(X,Y )} in R
d × R

d s. t.

marginals are independent Poisson point processes,

coupling is cyclically monotone almost surely,

and ∀ z ∈ R
d {(z+X, z+ Y )} =law {(X,Y )}.



Critical dimension d = 2 rigorously captured

Interest in Combinatorics (eg. Ajtai et al. ’84),

Probability Theory (Talagrand ’92+, Holroyd-Peres ’11+),

Physics (eg. Parisi et al. ’14),

Analysis (eg. Ambrosio et al. ‘16+).

Seek random point cloud {(X, Y )} in R
d × R

d s. t.

marginals are independent Poisson point processes,

coupling is cyclically monotone almost surely,

and ∀ z ∈ R
d {(z+X, z+ Y )} =law {(X, Y )}.

Theorem (Huesmann&Sturm ‘13)

For d > 2 have existence.

Theorem (H.&Mattesini&0. ’21)

For d ≤ 2 have non-existence.



Proof via continuum/PDE perspective

Optimal Transportation in Kantorowicz’ formulation

Given two measures

seek transfer plan π, i. e. π(U ×R
d) = µ(U), π(Rd×V ) = λ(V )

that minimizes Euclidean transport cost

ˆ

Rd×Rd
|y−x|2π(dxdy).

Minimum =:W2
2 (µ, λ) (squared) Wasserstein distance.



From optimal transportation to Monge-Ampère

Minimize
´

Rd×Rd
|y − x|2π(dxdy)

among all π(dxdy) with marginals µ(dx) and dy.

Support of optimal transfer plan π

is cyclically monotone;

hence ∃ convex ψ

suppπ ⊂ { (x, y) | y ∈ sub-gradient ∂ψ(x) }.

∀ test functions ζ
´

ζ(∇ψ(x))µ(dx) =
´

ζ(y)dy.

In smooth case, this amounts to detD2ψ = µ ,

an instance of the Monge-Ampère equation.



Nature of the Monge-Ampère equation

Recall Monge-Ampère: detD2ψ = 1.

Fully non-linear with F(A) := detA− 1.

However elliptic: F(A) > F(A′) for A > A′ ≥ 0 ;

satisfies comparison principle.

However degenerate: ↔ affine invariant (non-compact SL(d)).

Cf. Laplacian F(A) = trA: rotation invariant (compact SO(d)).

Caffarelli’s ‘90 breakthrough:

comparison principle,

affine invariance,

compactness.

Pogorelov’s

example is

worst case

Monge-Ampère equation at crossroads

of fully nonlinear and variational.



Parisi’s heuristics for semi-discrete matching

µ =
∑

x∈X δx Poisson, λ = dy Lebesgue

detD2ψ-1 = µ-1 ≈law ξ on scales R ≫ 1, ξ = white noise,

meaning
´

ηR(µ-1) ≈law

´

ηRξ, with ηR(x) = 1
Rd
η(xR), η ∈ C∞

0 fixed.

Consider △φ = ξ (so that ∇φ behaves as Gaussian free field)

ξ ∼ R−d
2 ≪ 1 on scales R ≫ 1 =⇒ D2φ≪ 1 on scales ≫ 1 =⇒

det(D2(φ+1
2|x|2))-1 = det(D2φ+id)-1 ≈ trD2φ = ξ

on scales ≫ 1.

Hence expect ∇ψ − x ≈law ∇φ on scales ≫ 1;

in terms of “displacement” (y-x)π(dxdy):
´

ηR(x)(y-x)π(dxdy)
´

ηR(x)π(dxdy)
≈law

´

ηR∇φ.



Quantitative large-scale linearization

Compare: π(dxdy) optimal for µ(dx) and dy

with −△φ = µ− 1.

Rate function D(R) ↑ , D(R)
R

↓
in strengthened sense of Dini

∑∞
k=0

D(2kR)
2kR

≤ 4D(R)
R

.

Theorem 1 (Goldman&Huesmann&O.) Provided
1

|BR|W
2
BR

(µ, κR)+R
2(κR-1)

2 ≤ D(R) for all R ≥ 1,

then
∣

∣

∣

´

ηR(x)(y−x)π(dxdy)
´

ηR(x)π(dxdy)
−
´

ηR∇φ
∣

∣

∣ . D(R)
R

for all R ≥ 1.

Confirms (deterministic part of) Parisi’s heuristics.

Relies on large-scale regularity theory.



Large-scale regularity via harmonic approximation

Consider π(dxdy) optimal for µ(dx) and λ(dy).

Local energy E :=

ˆ

(B6×Rd)∪(Rd×B6)
|y − x|2π(dxdy),

Local data size2 D :=W2
B6

(µ, κ=const) + (κ-1)2

+ same for λ

Theorem 2 (Goldman&Huesmann&O.)

∀ τ > 0 ∃ ǫ(τ, d) > 0, C(τ, d) <∞ s. t. E+D ≤ ǫ =⇒
∃ ∇φ harmonic,

ˆ

B1

|∇φ|2 ≤ C(E +D),
ˆ

(B1×Rd)∪(Rd×B1)

∣

∣

∣y − x−∇φ(y)
∣

∣

∣

2
π(dxdy) ≤ τE+ CD.



Harmonic approximation: correct homogeneities ...

E :=

ˆ

(B6×Rd)∪(Rd×B6)
|y − x|2π(dxdy), quadratic in solution,

D := W2
B6

(µ, κ=const) + (κ− 1)2 + same for λ, quadratic in data.

Theorem 2

∀ τ > 0 ∃ ǫ(τ, d) > 0, C(τ, d) <∞ s. t. E+D ≤ ǫ =⇒
∃ ∇φ harmonic,

ˆ

B1

|∇φ|2 ≤ C(E +D),
ˆ

(B1×Rd)∪(Rd×B1)

∣

∣

∣y − x−∇φ(y)
∣

∣

∣

2
π(dxdy) ≤ τE+ CD.

Compare to

ˆ

B1

L(∇u−∇φ) ≤ τ

ˆ

B6

L(∇u) + C

ˆ

B6

|f |2

for −∇ ·DL(∇u) = ∇ · f with uniformly convex L .

... and correct metric



Definition of ∇φ via Neumann-Poisson problem

Consider trajectories [0,1] ∋ t 7→ X(t) := ty+ (1− t)x.

Consider when & where trajectories
(enter
exit

)

BR:
(

σ
τ

)

:=
(

min
max

)

{ t ∈ [0,1] |X(t) ∈ B̄R },

´

ζdg =
´

ζ(X(σ))π(dxdy),
´

ζdf =
´

ζ(X(τ))π(dxdy).

Define ∇φ by the Neumann-Poisson problem:

−△φ = (λ−µ)(BR)
|BR| in BR and ν · ∇φ = f − g on ∂BR.

Optimize in R ∈ [2,3].



A numerical illustration in case of matching

Matching of {X} and {Y }; consider a square Q

Define ∇φ by the Neumann-Poisson problem:

−△φ =
∑

Y ∈Q δY − ∑

X∈Q δX in Q,

ν · ∇φ =
∑

Y ∈Q,X 6∈Q δZ − ∑

Y 6∈Q,X∈Q δZ on ∂Q.



A numerical illustration in case of matching

Recall −△φ =
∑

Y ∈Q δY −∑

X∈Q δX in Q,

ν · ∇φ =
∑

Y ∈Q,X 6∈Q δZ − ∑

Y 6∈Q,X∈Q δZ on ∂Q.

Check ∇φ ≈ Y −X when averaged on scale R;

R = 0.8 R = 2.2

R larger – better agreement; side-length of Q = 75.

Finite Element discretization, simulations by R. Kriemann



Analogies to minimal surfaces (Schoen&Simon ’82)

Approximate minimal surface by harmonic graph /
approximate displacement by harmonic gradient.

Use: Object is minimizing under compact perturbations.
Don’t use: Euler-Lagrange equation (= first variation).

Mismatch of type of boundary condition
for construction of harmonic competitor:
graph vs. non-graph / flux vs. displacement;
choice of good radius.

Use of strict convexity to convert energy gap
into distance (“approximate orthogonality”);
need to smooth out boundary data.



Summary and outlook

Variational regularity theory for optimal transportation,

mimics ǫ-regularity theory for minimal surfaces,

is more robust than maximum principle-based approach,

provides large-scale regularity theory for matching.

Extend non-existence result and regularity theory

from p = 2 to p ∈ (1,∞) (& L. Koch),

and to entropic regularization (& R. Gvalani).

Seek quantitative coupling of shot noise µ− 1 with

white noise ξ in d > 2 (Komlós&Major&Tusnády ’75).


