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Introduction

What is a living tissue ? A mechanistic view

Physicis/Mechanics
Benamar, Drasdo, Preziosi,
Joanny-Prost-Jüllicher,
Goriely, Ciarletta, E. Farge

Mathematical models
Byrne-Chaplain, Main, Garcke
Lowengrub et al, Friedman,
Hubert, O. Saut et al

Pressure, contact inhibition
and carrying capacity



Introduction

20-30 years ago, a tumor was considered as an invasion of
Fisher/KPP type

∂

∂t
n −∆n = rn (1− n

K
)

This is no longer the case
Pressure and contact inhibition : Byrne-Drasdo,

Joanny-Prost-Jülicher... ’Homeostatic pressure’ pM

Credit. M. Basan, SU and Institut Curie



Compressible multispecies model

A class of models are compressible

Number density of various types of cells n1, n2, ...

Fluid mechanics view : pressure p

Darcy’s rule, velocity v = −∇p
Papers by Chaplain, Byrne, Sherratt, Friedman,...





∂
∂t n1 + div

(
n1v
)

= n1F1

(
p(x , t)

)
+ n2G1(p(x , t))

∂
∂t n2 + div

(
n2v
)

= n1F2

(
p(x , t)

)
+ n2G2(p(x , t))

v = −∇p, p = Π(n) = (n1 + n2)γ

Contact inhibition : Byrne-Drasdo, Joanny-Prost-Jülicher...

’homeostatic pressure’ pM



Incompressible multispecies model

But another class by Maini, Lowengrub, Colin-Grenier-Saut..





∂
∂t n1 + div

(
n1v
)

= n1F1

(
p(x , t)

)
+ n2G1(p(x , t))

∂
∂t n2 + div

(
n2v
)

= n1F2

(
p(x , t)

)
+ n2G2(p(x , t))

v = −∇p,

And add incompressibility

n := n1 + n2 = 1

div v = −∆p = n1F
(
p(x , t)

)
+ n2G (p(x , t)),

F = F1 + F2, G = G1 + G2.



Incompressible multispecies model
Image based predictions : Swanson, Ayache, Colin-Saut..., Cristini-Wang etc

Liquid/solid tumors

Active cells

Immune system, metastasis, resistance to treatment

Nutrients/drug

Angiogenesis (new vasculature brings nutrients)

Healthy, quiescent, necrotic cells

From molecules to entire organ

Extra-cellular matrix

Models of mixture, multiphase flows
L. Preziosi et al, Titi-Lowengrub-Zhao

Result of our method

• Simulation of second and 
third scans.

• Second and third scans.

Real case

System identification in tumour growth modeling Lyon, 9-10 avril

Simulations of 
the second 
and third scan

second and 
third scan

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Real case

System identification in tumour growth modeling Lyon, 9-10 avril
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Volume history:
- Simulation (continuous line);
- scan (circle)

Errors:
Simulations reach the volume of the  
third scan a little bit after;

Why?
1) We have only 2D partial information;
2) The model is approximated, not 
explicitly designed for a lung;
3) We do not have considered 
angiogenesis.

• Introduction;

• Procedure;

• Real case;

• Conclusion;

Tuesday, April 7, 2009

Credit for pictures : INRIA team MC2 (Bordeaux)



Organisation of the talk

What is the connection ?

Incompressible limit

1. Single equation

2. Nutrients, chemotaxis

3. Multispecies



Single equation, compressible

n(x , t) = population density of tumor cells
1− n(x , t) = healthy cells

{ ∂
∂t n + div

(
nv
)

= n G
(
p(x , t)

)
,

v(x , t) = −∇p(x , t), p(x , t) ≡ Π(n) := nγ , γ > 1

G ′(p) < 0

G ′(p) < 0

G (pM) = 0

∂
∂t n(t) ≥ −K

t e
−γrG t (Aronson-Bénilan estimate)



Single equation, compressible

Black : cell density ; Blue : pressure

Traveling wave : see Dalibard, Lopez, Perrin



Free boundary/incompressible models

Geometric version

Tumor domain Ω(t)

{n(t) = 1}

Evolve ∂Ω(t) with Darcy’s law

v(x , t) = −∇p(x , t).

with the pressure

{
−∆p = G (p) x ∈ Ω(t)

p = 0 on ∂Ω(t)

Also p = aκ, See A. Friedman, S. Cui, Escher



Free boundary/incompressible models

Two approaches : cell density and free boundary. Which relation ?





∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

The stiff pressure law the limit, γ →∞

Hele-Shaw

Bénilan, Igbida, Gil, Quiros, Vazquez, X. Chen et al, Caffarelli, Friedman,
Escher, Cui,...

Obstacle problem : Kim, Mellet

Viscosity solutions : I. Kim et al.

Optimal transportation : Dambrine, Maury, Santambrogio (congestion)



Free boundary/incompressible models

Two approaches : cell density and free boundary. Which relation ?





∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

The stiff pressure law the limit, γ →∞

Hele-Shaw

Bénilan, Igbida, Gil, Quiros, Vazquez, X. Chen et al, Caffarelli,
Friedman, Escher, Cui,...

Obstacle problem : I. Kim, Mellet

Viscosity solutions : I. Kim

Optimal transportation : Dambrine, Maury, Santambrogio (congestion)



Free boundary/incompressible models
{

∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

Theorem (Hele-Shaw limit) : As γ →∞
nγ → n∞ ≤ 1, pγ → p∞ ≤ pM

∇pγ ⇀ ∇p∞ L2-w
{

∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)
,

p∞ = 0 for n∞(x , t) < 1.



Free boundary/incompressible models
{

∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

Theorem (Hele-Shaw limit) : As γ →∞
nγ → n∞ ≤ 1, pγ → p∞ ≤ pM , ∇pγ ⇀ ∇p∞ L2-w
{

∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)
,

p∞ = 0 for n∞(x , t) < 1.

Theorem The weak solution is unique.

Method à la Oleinik, by ’entropy’ see N. Igbida



Free boundary/incompressible models
{

∂
∂t nγ + div

(
nγvγ

)
= nγG

(
pγ(x , t)

)
, x ∈ Rd

vγ = −∇pγ(x , t), pγ(x , t) ≡ Π(nγ) := nγ ,

Theorem (Hele-Shaw limit) : As γ →∞
nγ → n∞ ≤ 1, pγ → p∞ ≤ pM , ∇pγ ⇀ ∇p∞ L2-w
{

∂
∂t n∞ − div

(
n∞∇p∞

)
= n∞G

(
p∞
)
,

p∞ = 0 for n∞(x , t) < 1.

Theorem The weak solution is unique.

Theorem (complementarity relation) : We also have

p∞
[
∆p∞ + G (p∞)

]
= 0,

∇pγ → ∇p∞ strongly in L2
(
(0,T )× Rd

)
,

All the difficulty is when p∞ = 0 !



Free boundary/incompressible models

Proof :

∂

∂t
pγ − |∇pγ |2 = γ pγ

[
∆pγ + G

(
pγ(x , t)

)]

↗
(i) Uniform L∞, BV estimates for nγ , pγ

(ii) L2
x estimates for ∇pγ

(iii) |∇pγ |2 → |∇p∞|2, ∇pγ → ∇p∞ strongly in L2

is equivalent to establishing the relation

p∞
(
∆p∞ + G (p∞)

)
= 0.

Follows from Aronson-Bénilan estimate

∆p + G (p) ≥ −C

t
e−γrG t



Free boundary/incompressible models
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Cell culture data in vitro at two different times. From N. Jagiella PhD thesis, INRIA and UPMC (2012)

When n0 = 1I{Ω0} then n(t) = 1I{Ω(t)}



Organisation of the talk

1. Single equation

2. Nutrients, chemotaxis

3. Multispecies



Model with nutrient




∂
∂t n + div

(
nv
)

= nG
(
p(x , t), c(x , t)︸ ︷︷ ︸

nutrients

)
,

v = −∇p, p = nγ ,

∂
∂t c −∆c + R(n)c = cB︸ ︷︷ ︸

nutrients consumption/release

Theorem (Hele-Shaw limit) As γ →∞, we have
{ ∂

∂t n∞ + div
(
n∞v∞

)
= n∞G

(
p∞, c∞

)
, v∞ = −∇p∞

p∞(1− n∞) = 0, 0 ≤ n∞ ≤ 1,

Theorem (N. David, BP)

p∞
[
−∆p∞ − G

(
p∞, c∞

)]
= 0

Proof. Two new ideas :

L2 Aronson-Bénilan estimate,

∇p ∈ L4
t,x uniform in γ (see also Alazard-Bresch)



Model with nutrient





∂
∂t n + div

(
nv
)

= nG
(
p(x , t), c(x , t)︸ ︷︷ ︸

nutrients

)
,

v = −∇p, p = nγ ,

∂
∂t c −∆c + R(n)c = cB︸ ︷︷ ︸

nutrients consumption/release

Necrotic core, instabilities

With nutrients tumor cells can die

effect of nutrient consumption. Credit for pictures M. Tang, N. Vauchelet



Model with nutrient

Closely related to instability in thermo-chemical reactions

{
∂
∂t u − α∆u = u2v

α , temperature

∂
∂t v −∆v = −u2v

α , reactant

Dynamical Turing instability (see M. Kowalckzyk, BP,
N. Vauchelet : Transversal instability of 1D traveling wave)

Credit for picture N. Vauchelet



Chemotaxis

{
∂
∂t n − div

(
n∇p

)
+ div

(
n∇S

)
= 0, p = nγ ,

−∆S = n,

Theorem (Hai-Liang Li, Qingyou He, BP)

pγ and ∇pγ converge strongly
and 




∂
∂t n∞ −∆p∞ + div

(
n∞∇S∞

)
= 0,

p∞(1− n∞) = 0, n∞∇p∞ = ∇p∞,
−∆S∞ = n∞,

and the complementarity condition holds

p∞[∆p∞ + n∞] = 0.



Organisation of the talk

1. Single equation

2. Nutrients, chemotaxis

3. Multispecies



Multispecies model




∂
∂t n1 + div

(
n1v
)

= n1F1

(
p(x , t)

)
+ n2G1(p(x , t))

∂
∂t n2 + div

(
n2v
)

= n1F2

(
p(x , t)

)
+ n2G2(p(x , t))

v = −∇p, p = (n1 + n2)γ

Seems easy : n = n1 + n2 satisfies

∂

∂t
n − div

(
n∇nγ

)
= n1F (p) + n2G (p)

Difficulties

No BV bounds on n1, n2, p (except 1D)

∂

∂t
p = |∇p|2 + γp∆p + γpR(n1, n2, p)

For the nonlinear term, we need compactness for
either ni or v = −∇p ∈ L2



Multispecies model




∂
∂t n1 + div

(
n1v
)

= n1F1

(
p(x , t)

)
+ n2G1(p(x , t))

∂
∂t n2 + div

(
n2v
)

= n1F2

(
p(x , t)

)
+ n2G2(p(x , t))

v = −∇p, p = (n1 + n2)γ

Existence

Smooth and n1 + n2 > 0 (Bertsch, Hilhorst, Mimura et al, 2012)

dim 1, BV est. for n1
n , (Carrillo, Santambrogio et al, 2018) :

∂

∂t

n1

n1 + n2
+ v

∂

∂x

n1

n1 + n2
= R(n1, n2)

Any dim. (Gwiazda, BP, Swierczewska-Gwiazda, 2019) using
Aronson-Bénilan estimate in L2 when F (0) = G (0)



Multispecies model





∂
∂t n1 + div

(
n1v
)

= n1F1

(
p(x , t)

)
+ n2G1(p(x , t)),

∂
∂t n2 + div

(
n2v
)

= n1F2

(
p(x , t)

)
+ n2G2(p(x , t)),

v = −∇p, p = (n1 + n2)γ

New approaches appeared recently

Matts Jacobs : A Lagrangian approach + Aronson-Benilan in L2

• Existence
• Limit γ →∞ when initial data is an indicator function

Price, Xiansheng Xu ; Jian-Guo Liu For simplified RHS
• Existence (compactness of ∇pγ)
• Limit γ →∞

ni ,γ converge weakly, ∇pγ converges strongly

This method is extended by Noemi David to general RHS
(compensated compactness)



Compactness of ∇pγ
Idea of Price, Xu, Liu, David’s method

∂

∂t
nγ − div

(
nγ∇pγ

)
= nγG

(
pγ(x , t)

)
, p = nγ

∂

∂t
nγ −

γ

γ + 1
∆nγ+1

γ = nγG
(
pγ(x , t)

)
, p = nγ



Compactness of ∇pγ

∂

∂t
nγ − div

(
nγ∇pγ

)
= nγG

(
pγ(x , t)

)
, p = nγ

∂

∂t
nγ −

γ

γ + 1
∆nγ+1

γ = nγG
(
pγ(x , t)

)
, p = nγ

∂

∂t
n∞ −∆p∞ = ....

(
γ

γ + 1
pγ − p∞)

∂

∂t
(nγ − n∞)− (

γ

γ + 1
pγ − p∞)∆(

γ

γ + 1
pγ − p∞) = ....

∫ ∣∣∇(
γ

γ + 1
pγ − p∞)

∣∣2 + ... = 4 terms



Compactness of ∇pγ

(
γ

γ + 1
pγ − p∞)

∂

∂t
(nγ − n∞)− (

γ

γ + 1
pγ − p∞)∆(

γ

γ + 1
pγ − p∞) = ....

∫ ∣∣∇(
γ

γ + 1
pγ − p∞)

∣∣2 + ... = 4 terms + ...

pγ
∂

∂t
nγ =

1

γ + 1

∂

∂t
nγ+1
γ → 0

p∞
∂

∂t
(nγ − n∞)→ 0 enough to use weak CV of ∇pγ

pγ
∂

∂t
n∞ → p∞

∂

∂t
n∞ = 0 weak CV enough



Organisation of the talk

1. Single equation

2. Nutrients, chemotaxis

3. Multispecies

4. Related problems



Model with active movment




∂
∂t n + div

(
nv
)
−

active movement︷︸︸︷
ν∆n = nG

(
p(x , t)

)
,

v = −∇p p = nγ , Darcy’s law,

Hele-Shaw limit : We still have

p
(
∆p + G (p)

)
= 0
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Figure 1: First steps of the initiation of the free boundary. Results obtained thanks to a discretization
of the system (2.1)–(2.2) with k = 100 and ⌫ = 0.5. The density n is plotted in solid line whereas
the pressure p is represented in dashed line. The pressure p has the same shape as in the classical
Hele-Shaw system with growth. However the density n is smoother.

The rest of the paper is organized as follows. We begin in Section 3 with some uniform (in k) a
priori estimates which are necessary for strong compactness. Then, in Section 4 we prove the main
statements in Theorem 2.1. The most delicate part, establishing (2.9), is postponed to Section 5.
After proving uniqueness for the limit problem in Section 6, we devote Section 7 to discuss further
regularity issues, including the results in Theorem 2.2, and the speed of the boundary of the tumor
zone. We end with Section 8, whose aim is to weaken the assumptions on the initial data, as explained
above.

3 Estimates

To begin with, we gather in the following statement all the a priori estimates that we need later on.

Lemma 3.1 With the assumptions and notations in Theorem 2.1, the weak solution (nk, pk) of (2.1)–
(2.2) satisfies

0  nk 
⇣k � 1

k
PM

⌘1/(k�1)
�!
k!1

1, 0  pk  PM ,

Z

Rd

nk(t)  eG(0)t

Z

Rd

nini,

Z

Rd

pk(t)  CeG(0)t

Z

Rd

nini.

with C a constant independent of k. Furthermore, there exists a uniform (with respect to k) nonnegative

constant C = C
⇣
T, kninikL1(Rd)\L1(Rd)

⌘
such that

Z

Rd

⇣
⌫|rnk|2 + knk�1

k |rnk|2 + |rpk|2
⌘

(t)  C for all t 2 (0, T ). (3.1)

Finally,

@tnk, @tpk � 0, @tnk is bounded in L1((0, T ); L1(Rd)), @tpk is bounded in L1(QT ).

Proof. Estimates on nk and pk. The L1(Q) bounds are a consequence of standard comparison
arguments for (2.1) and (2.7). The L1((0, T ); L1(Rd)) bound for nk can be obtained by integrating
(2.1) over Rd and then using (2.4). The L1((0, T ); L1(Rd)) bound for pk now follows from the relation
between pk and nk.

5

Effect of active movement (cell density is smooth)



Effect of viscosity





∂
∂t n + div

(
nv
)

= nG
(
p(x , t)

)
,

−ν∆v + v = −∇p, p = nγ , visco-elastic fluid



Multiphase models (Cahn-Hilliard)

c =
n1

n1 + n2
(concentration)

{∂c
∂t − div

(
c(1− c)2∇p

)
= c(1− c)G

(
...
)
,

p = W ′(c)− δ∆c

Wise, Lowengrub, Miranville, Poulain, Benamar, Agosti, Ciarletta,

Graselli, Garke, Roger, Lam, Rocca...

4

FIG. 2. Numerical simulations. Spatial distribution of the tumour volume fraction �c is depicted at day 7 (panel A), day 13
(B), day 18 (C) and day 30 (D) using a color scalebar. The circular domain of the numerical simulation represents the Petri
dish, having a diameter of 8.6 cm. The insets shown a comparison between the model results and the experiments. The white
scalebar in the experimental images is 1 mm

.

size L(t). Eq.(7) also implies that the domain size distri-
bution n(lc) of clusters having typical size lc becomes
self-similar. Thus, the total number N(`, t) of clus-
ters with size smaller of equal to ` scales as N(`, t) =R `

0
ds n(s, t) ⇠ L(t)�2. The experimental data highlights

that the transition to self-organization during the tumour
cell evolution occurs at day 11 of in-vitro experiments.
The onset of self-similarity in the curves N(`, t) L(t)�2

versus the scaled length `/L(t) is depicted in Figure 3
(A), where L(t) is calculated as the average measure of
the clusters size lc at time t.
An identical transition to a self-similar clustering regime
is also observed in numerical simulations by calculat-
ing the structure function S(k, t), which is the spheri-
cally averaged Fourier transform of C(h, �c(x, t)). Since
the characteristic length is given by L(t) = hki�1, we
found that S(k, t)hki2 = g(hki/k) after day 11, as de-
picted in Figure 3 (B). Recalling that f (|h|/L(t)) ⇠
(1 � (|h|)/L(t)) for L�1 << k << d�1, we recover the
universal tail of the master curve g(hki/k) ⇠ (hki/k)�3),
known as the Porod law [28].
The evolution over time of the spontaneous tumour bud-
ding is illustrated in Figure 4, displaying the quantitative
agreement between the characteristic cluster size L(t)
during in–vitro experiments and in the numerical simula-

tions. The tumour clusters enter into a coarsening phase
at day 11, that is followed by a metastable damped oscil-
latory regime driven by the kinetic coupling of the glucose
concentration. After that the bath is changed at day 15,
the phase ordering dynamics initially displays a univer-
sal growth law of the cluster size followed by a saturation
regime. We also find a good quantitative agreement be-
tween the overall number of clusters appearing over time
in numerical simulations versus the experimental mea-
sures (see Supplementary Figure 1). The characteristic
increase of the average size of the self-similar tumour ag-
gregates over time is ruled by a power law L(t) ⇠ t↵, with
↵ ' 0.21 in the coarsening phase (see Supplementary Fig-
ures 2 and 3). The exponent ↵ is found to be bounded
by two characteristic regimes. The upper limit ↵ = 1/4
corresponds to the universal dynamics imposed by the
degenerate mobility, which concentrates the mass di↵u-
sion in the vicinity of the interfaces [29]. The lower limit
↵ = 1/5 characterizes the kinetic transitions dominated
by a cluster reaction and di↵usion process [30]. This
is understood by considering that tumour bulk growth
and surface di↵usion create a spatial shift of the cluster
enter of mass of the order ⇠ L�1 [31]. The stochastic
transport of tumour cells determines a surface di↵usivity
Ds that is proportional to the cluster surface multiplied

Computations by Agosti, Ciarletta et al (Poli. Milano)



Conclusions

Modeling of tissue growth is an interdisciplinary subject

Recent progresses on the incompressible limit of porous media
flow

Systems of PDEs (unstability)

Multiphase Cahn-Hilliard approach under investigation
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