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The Simplest Framework

Let Σ be a closed surface

We are interested in u ∈ W 1,2(Σ,C2) critical points of

A(u) =

∫
Σ
|∂x1u ∧ ∂x2u| dx1 ∧ dx2

under the Lagrangian pointwise constraint

u∗ω = 0 a.e.

where
ω = dy1 ∧ dy2 + dy3 ∧ dy4

resp.

E (u, g) :=
1

2

∫
Σ
|du|2g dvolg ≥ A(u)

under u∗ω = 0 a.e.
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The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



The Euler-Lagrange Equation for fixed g

0 =
d

dt
E (u + tψ) =

∫
Σ
du ·g dψ dvolg

where

dψ1 ∧ du2 + du1 ∧ dψ2 + dψ3 ∧ du4 + du3 ∧ dψ4 = 0

⇐⇒ d [ψ · idu] = 0

Locally, there exists h
ψ · idu = dh

Recall
L Lagrangian 2 plane ⇐⇒ iL ⊥ L

(opposite of holomorphic 2-planes where iL=L)



A problematic Euler-Lagrange Equation

if u is a conformal imm. from (Σ, g) into C2 i.e.

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

in local conformal charts

(∂x1u , ∂x2u , i∂x1u , i ∂x2u) is an orthogonal. basis

and

ψ = 2−1 |∇u|2 [∂x1h i∂x1u + ∂x2h i∂x2u + a ∂x1u + b ∂x2u]

=⇒ ∫
Σ
[∂x1h ∂x1u · i∆u + ∂x2h ∂x2u · i∆u] |∇u|−2 dx2 = 0

or
div

[
|∇u|−2 ∇u · i∆u

]
= 0



A problematic Euler-Lagrange Equation
if u is a conformal imm. from (Σ, g) into C2 i.e.

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

in local conformal charts

(∂x1u , ∂x2u , i∂x1u , i ∂x2u) is an orthogonal. basis

and

ψ = 2−1 |∇u|2 [∂x1h i∂x1u + ∂x2h i∂x2u + a ∂x1u + b ∂x2u]

=⇒ ∫
Σ
[∂x1h ∂x1u · i∆u + ∂x2h ∂x2u · i∆u] |∇u|−2 dx2 = 0

or
div

[
|∇u|−2 ∇u · i∆u

]
= 0



A problematic Euler-Lagrange Equation
if u is a conformal imm. from (Σ, g) into C2 i.e.

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

in local conformal charts

(∂x1u , ∂x2u , i∂x1u , i ∂x2u) is an orthogonal. basis

and

ψ = 2−1 |∇u|2 [∂x1h i∂x1u + ∂x2h i∂x2u + a ∂x1u + b ∂x2u]

=⇒ ∫
Σ
[∂x1h ∂x1u · i∆u + ∂x2h ∂x2u · i∆u] |∇u|−2 dx2 = 0

or
div

[
|∇u|−2 ∇u · i∆u

]
= 0



A problematic Euler-Lagrange Equation
if u is a conformal imm. from (Σ, g) into C2 i.e.

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

in local conformal charts

(∂x1u , ∂x2u , i∂x1u , i ∂x2u) is an orthogonal. basis

and

ψ = 2−1 |∇u|2 [∂x1h i∂x1u + ∂x2h i∂x2u + a ∂x1u + b ∂x2u]

=⇒ ∫
Σ
[∂x1h ∂x1u · i∆u + ∂x2h ∂x2u · i∆u] |∇u|−2 dx2 = 0

or
div

[
|∇u|−2 ∇u · i∆u

]
= 0



A problematic Euler-Lagrange Equation
if u is a conformal imm. from (Σ, g) into C2 i.e.

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

in local conformal charts

(∂x1u , ∂x2u , i∂x1u , i ∂x2u) is an orthogonal. basis

and

ψ = 2−1 |∇u|2 [∂x1h i∂x1u + ∂x2h i∂x2u + a ∂x1u + b ∂x2u]

=⇒ ∫
Σ
[∂x1h ∂x1u · i∆u + ∂x2h ∂x2u · i∆u] |∇u|−2 dx2 = 0

or
div

[
|∇u|−2 ∇u · i∆u

]
= 0



A problematic Euler-Lagrange Equation
if u is a conformal imm. from (Σ, g) into C2 i.e.

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

in local conformal charts

(∂x1u , ∂x2u , i∂x1u , i ∂x2u) is an orthogonal. basis

and

ψ = 2−1 |∇u|2 [∂x1h i∂x1u + ∂x2h i∂x2u + a ∂x1u + b ∂x2u]

=⇒ ∫
Σ
[∂x1h ∂x1u · i∆u + ∂x2h ∂x2u · i∆u] |∇u|−2 dx2 = 0

or
div

[
|∇u|−2 ∇u · i∆u

]
= 0



The Mean Curvature of Lagrangian Immersions

u immersion of Σ into C2

u∗ω = 0 ⇐⇒ J0 : u∗TΣ −→ (u∗TΣ)⊥ isom.

Lemma [Dazord 1981] there exists locally β s.t.

H⃗u = J0 ∇Σβ

where
ι∗Σ dz1 ∧ dz2 = e−iβ |∂x1u ∧ ∂x2u| dx1 ∧ dx2

β ∈ R/2πZ is called the Lagrangian angle
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Hamiltonian/Lagrangian Variations

Variations preserving the Lagrangian condition: Look for X s. t.

dϕt
dt

= X (ϕt) and ∀ L lag. =⇒ (ϕt)∗L is lag.

this gives

d(ιXω) = d(X1 dy2 − X2 dy1 + X3 dy4 − X4 dy3) = λω

In closed Kähler manifold where ω is non exact =⇒ d(ιXω) = 0

When ιXω is exact: Hamiltonian Variations

ιXω = dh ⇔ X = J0∇h

When ιXω is just closed: Lagrangian Variations
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Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): ∀ X = J0∇h

0 = δArea(u) · X⃗ = − 2

∫
Σ
J0∇h(u) · H⃗u dvolu

= −2

∫
Σ
d(h ◦ u) · dβ dvolu ⇐⇒ ∆Σβ = 0

u : D2 → C2 conformal and Hamiltonian Stationary iff
div(g ∇u) = 0

div
(
g−1∇g

)
= 0 ⇐⇒ div

[
|∇u|−2 ∇u · i∆u

]
= 0

g plays the rôle of a Lagrange multiplier for the constraint
u∗ω = 0.
No Function Theoretic a-priori Bound on g ! (beside L∞ of course)
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Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

∀α ∈ Ω1(Σ) dα = 0

∫
Σ
α · dβ dvolΣ = 0

Take α = dβ we get

dβ ≡ 0 i. e. H⃗u ≡ 0 (H⃗u = J0∇Σβ)

Proposition Lagrangian Stationary closed immersions in Kähler
Einstein Manifolds are minimal lagrangian.

In C2

dvolu = e iβ dz1 ∧ dz2

=⇒ u(Σ) is calibrated.

Lagrangian variational problems are much more rigid than
hamiltonian variational problems.
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Hamiltonian Stationary/ H-Minimal Surfaces

There exist closed Hamiltonian Stationary Surfaces in C2.

Conjecture [Oh, 1993] : The Clifford Torus S1 × S1 ⊂ C2 is Area
Minimizing in it’s Hamiltonian Isotopy class.

Theorem [Anciaux, 2002] The Clifford Torus S1 × S1 ⊂ C2 is Area
Minimizing among H-minimal tori in it’s Hamiltonian Isotopy class.

Theorem [Schoen-Wolfson, 2001] There exists singular solutions to
u is W 1,2

loc (C,C
2) and weakly conformal

div(g ∇u) = 0

div
(
g−1∇g

)
= 0

Precisely g has isolated singularities

curl(g−1∇g) = 2π i
Q∑
j=1

dj δpj =⇒ g /∈ W 1,2
loc (C,C

2)
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Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let u ∈ W 1,2
loc (C,C

2),
▶

u∗ω = 0

▶
|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0

▶

∀v ∈ W 1,2
loc (C,C

2) s. t. v∗ω = 0 ∀ Br (x) ⊂ C

v = u on ∂Br (x) =⇒
∫
Br (x)

|∇v |2 dx2 ≥
∫
Br (x)

|∇u|2 dx2

Then u is a possibly branched smooth H-minimal immersion away
from isolated conical point singularities.

curl(g−1∇g) = 2π i
∑
j∈J

dj δpj

Question : Is there any restriction on the location of the conical
singularities ?
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Conclusions so Far

We aim at study the area variations under Lagrangian contraint.

In particular perform minmax operations.

▶ In such an operation we should expect singularities for the
solution.

▶ We couldn’t find a weak formulation of the E.L. equation
compatible with the Lagrangian.

▶ Can one look for non zero Morse Index Solutions without
working with a PDE in a Function Space ?

▶ This is what Geometric Measure Theory is doing in some
sense (Allard/Almgren Varifold theory).
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Monotonicity Formula for Minimal Surfaces.

Let u : Σ −→ Rn area stationary immersion then

∀r > 0
1

r2

∫
ρ<r

dvolgu =

∫
ρ<r

|(∇ρ)⊥|2

ρ2
dvolgu+π Card(u−1({p}))

where

ρ(z) := |z | and (∇ρ)⊥ = projection of ∇ρ on (TΣ)⊥.

It implies in particular

d

dr

[
1

r2

∫
ρ<r

dvolgu

]
≥ 0

It comes from

0 = δArea(Φ⃗)·X =

∫
Σ
X ·H⃗u dvolgu where X = χε(y)

n∑
j=1

yj
∂

∂yj

and χε → 1Br (0).
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No Monotonicity for H-minimal Surfaces in C2.

Let u be a Lagrangian immersion which is hamiltonian stationary:

0 = δArea(u) · X =

∫
Σ
X (u) · H⃗u dvolgu

for
X = i ∇h

Observe

χε [y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 ] ̸= i ∇h

Proposition [Minicozzi 1995, Schoen-Wolfson 1999] There exist
counter-examples to the monotonicity Formula :

Σε = {(y1, y2, y3, y4) ; y21 + y22 = ε2 − 1 ≤ y3 ≤ +1 y4 = 0}

solves the Lagrangian Plateau Problem for it’s boundary.
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The Standard Contact Structure on R5 .

Let

π : (y1, y2, y3, y4, φ) ∈ R5 −→ (y1 + i y2, y3 + i y4) ∈ C2 ,

Let α := −dφ+ y1 dy2 − y2 dy1 + y3 dy4 − y4 dy3

Observe

v : Σ −→ R5 legendrian immersion i.e. v∗α ≡ 0

then u := π ◦ v is lagragrangian.

Suggestion : Work with Legendrian Constraint instead of
Lagrangian Constraint.

α ∧ dα ∧ dα =⇒ Ker(dα) is non integrable
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Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry

|∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1

and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations

: look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Choose on R5 the metric s.t.

π∗ : Ker(α) → C2 is an isometry |∂φ| = 1 and ∂φ ⊥ Ker(α) .

(i.e. Heisenberg Group metric H2)

Legendrian variations : look for X s. t. forall v

dϕt
dt

= X (ϕt) and v∗α = 0 =⇒ v∗ϕ∗tα = 0

∃ h(φ, y) s.t. X = −J0∇Hh + 2 h ∂φ .

Hamiltonian variations



Variations of Legendrian Immersions into (R5, α).

Let

v : Σ −→ R5 legendrian immersion i.e. v∗α ≡ 0

then u := π ◦ v is lagragrangian and

u is Hamiltonian Stationary ⇐⇒ v is Legendrian Stationary

where legendrian stationary is defined by

∀X = −J0∇Hh + 2 h ∂φ 0 = δArea(v) · X =

∫
Σ
X · H⃗v dvolgv
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The Generator of Dilations is Hamiltonian in (R5, α)

A direct computation gives

J0(∇Hφ) = −y1∂y1 − y2∂y2 − y3∂y3 − y4∂y4

Hence

X := y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 + 2φ∂φ = −J0∇Hh + 2 h ∂φ

for h = φ and X is Hamiltonian

while

π∗X = y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 ̸= −J0∇Hh

is not Hamiltonian in C2.



The Generator of Dilations is Hamiltonian in (R5, α)

A direct computation gives

J0(∇Hφ) = −y1∂y1 − y2∂y2 − y3∂y3 − y4∂y4

Hence

X := y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 + 2φ∂φ = −J0∇Hh + 2 h ∂φ

for h = φ and X is Hamiltonian

while

π∗X = y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 ̸= −J0∇Hh

is not Hamiltonian in C2.



The Generator of Dilations is Hamiltonian in (R5, α)

A direct computation gives

J0(∇Hφ) = −y1∂y1 − y2∂y2 − y3∂y3 − y4∂y4

Hence

X := y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 + 2φ∂φ = −J0∇Hh + 2 h ∂φ

for h = φ and X is Hamiltonian

while

π∗X = y1∂y1 + y2∂y2 + y3∂y3 + y4∂y4 ̸= −J0∇Hh

is not Hamiltonian in C2.



Some Elements from the Geometry of the
Heisenberg Group H2

The Folland-Korányi Gauge 1985

r :=
[
ρ4 + 4φ2

]1/4
where ρ2 = y21 + y22 + y23 + y24

Invariant under group “translations” and dilations

r(t y , t2 φ) = t r(y , φ)

Distance equivalent to the Carnot Carateodory Distance.

d(p, q) := inf
γ horizontal γ(0)=p , γ(1)=q

∫ 1

0
|γ̇|H2 dt

The phase

σ :=
2φ

ρ2

is scaling invariant.
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Almost Monotonicity for H-minimal Legendrian Surfaces

Choose for hamiltonian

h := χ(r/r) arctanσ

Theorem [R. 2021] Let v be an Legendrian Stationary Immersion
of Σ into H2 then

∀ r < 1 C−1

[
θ0 +

∫
r<r/2

|(∇Σr)⊥|2

r2
dvolΣ

]

≤ 1

r2

∫
r<r

dvolΣ ≤ C

∫
1/2<r<2

dvolΣ ,

where C > 0 is universal and

θ0 = 2π Card(v−1{0}) .

□
Recall the Euclidian case (i.e. u minimal)

θ0 +

∫
ρ<r

|(∇Σρ)⊥|2

ρ2
dvolgu =

1

r2

∫
ρ<r

dvolgu
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Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian
contraint.

In particular perform minmax operations.

▶ We couldn’t find a weak formulation of the E.L. equation
compatible with the Lagrangian.

▶ The Lagrangian constraint should be replaced by Legendrian
constraint.

▶ Find a weak formulation for being critical of the area under
Legendrian constraint.
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A First weak formulation of being Legendrian
Stationary

Consider Hamiltonian variations in the target :
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such that

∀ h ∈ C∞
0 (R5)
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D2

∇v ∇[X (v)] dx2 = 0

where
X = −J0∇h + 2 h ∂ϕ
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A Digression to “Target Harmonic Maps”
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Theorem [R. 2017] W 1,2 Target harmonic map are conformal
harmonic in a classical sense and hence C∞.
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Parametrized Stationary Integer Varifolds

Definition u is a PSIV into Rm if u ∈ W 1,2(D2,Rm)

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0 ,

there exists Q ∈ L∞(Σ,N∗) s.t.∫
Ω
Q∇u · ∇[X (u)] dx2 = 0

for a.e. Ω and every X ∈ C∞(Rm,Rm) s.t.

u(∂Ω) ∩ Supp(X ) = ∅ .

Theorem [ R. Pub IHES 2017] Every non trivial minmax operation
for the area of surfaces is realized by a PSIV

Theorem [Pigati, R. Duke 2020] Every PSIV is a smooth branched
immersion equipped with a smooth multiplicity Q
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Parametrized Legendrian Stationary Integer
Varifolds

Definition [R. 2023] Let u from (Σ, h) into (N5, α)

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0 and u∗α = 0

there exists Q ∈ L∞(Σ,N∗) s.t.∫
Ω
Q∇u · ∇[X (u)] dx2 = 0

for a.e. Ω and every X ∈ C∞(Rm,Rm) hamiltonian s.t.

u(∂Ω) ∩ Supp(X ) = ∅ .

then ((Σ, h), u,Q) is called Parametrized Legendrian Stationary
Integer Varifolds

Theorem [R. 2023] Every non trivial minmax operation for the area
of surfaces within Legendrian maps is realized by a PLSIV and
u ∈ C 0(Σ,N5).
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To Conclude...

Conjecture : Every Parametrized Legendrian Stationary Integer
Varifolds is a smooth branched immersion away from isolated
Schoen-Wolfson cones and equipped with a smooth multiplicity Q

▶
u ∈ W 1,2

loc (C,R
5) , Q ∈ L∞(C,N∗) ,

▶
u∗ (−dφ+ y1 dy2 − y2 dy1 + y3 dy4 − y4 dy3) = 0 ,

▶
|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0 ,

▶ for a.e. Ω ∫
Ω
Q∇u · ∇[X (u)] dx2 = 0

where

u(∂Ω) ∩ Supp(X ) = ∅ and X = −J0∇h + 2 h ∂ϕ
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