Area Variations under pointwise Lagrangian and Legendrian Constraints

Tristan Rivière

ETH Zürich

Abel Symposium 2023
Partial Differential Equations

The Simplest Framework

The Simplest Framework

Let Σ be a closed surface

The Simplest Framework

Let Σ be a closed surface
We are interested in $u \in W^{1,2}\left(\Sigma, \mathbb{C}^{2}\right)$ critical points of

$$
A(u)=\int_{\Sigma}\left|\partial_{x_{1}} u \wedge \partial_{x_{2}} u\right| d x_{1} \wedge d x_{2}
$$

The Simplest Framework

Let Σ be a closed surface
We are interested in $u \in W^{1,2}\left(\Sigma, \mathbb{C}^{2}\right)$ critical points of

$$
A(u)=\int_{\Sigma}\left|\partial_{x_{1}} u \wedge \partial_{x_{2}} u\right| d x_{1} \wedge d x_{2}
$$

under the Lagrangian pointwise constraint

$$
u^{*} \omega=0 \quad \text { a.e. }
$$

The Simplest Framework

Let Σ be a closed surface
We are interested in $u \in W^{1,2}\left(\Sigma, \mathbb{C}^{2}\right)$ critical points of

$$
A(u)=\int_{\Sigma}\left|\partial_{x_{1}} u \wedge \partial_{x_{2}} u\right| d x_{1} \wedge d x_{2}
$$

under the Lagrangian pointwise constraint

$$
u^{*} \omega=0 \quad \text { a.e. }
$$

where

$$
\omega=d y_{1} \wedge d y_{2}+d y_{3} \wedge d y_{4}
$$

The Simplest Framework

Let Σ be a closed surface
We are interested in $u \in W^{1,2}\left(\Sigma, \mathbb{C}^{2}\right)$ critical points of

$$
A(u)=\int_{\Sigma}\left|\partial_{x_{1}} u \wedge \partial_{x_{2}} u\right| d x_{1} \wedge d x_{2}
$$

under the Lagrangian pointwise constraint

$$
u^{*} \omega=0 \quad \text { a.e. }
$$

where

$$
\omega=d y_{1} \wedge d y_{2}+d y_{3} \wedge d y_{4}
$$

resp.

$$
E(u, g):=\frac{1}{2} \int_{\Sigma}|d u|_{g}^{2} d v o I_{g} \geq A(u)
$$

under $u^{*} \omega=0$ a.e.

The Euler-Lagrange Equation for fixed g

The Euler-Lagrange Equation for fixed g

$$
0=\frac{d}{d t} E(u+t \psi)=\int_{\Sigma} d u \cdot g d \psi d v o l_{g}
$$

The Euler-Lagrange Equation for fixed g

$$
0=\frac{d}{d t} E(u+t \psi)=\int_{\Sigma} d u \cdot g d \psi d v o l_{g}
$$

where

$$
d \psi_{1} \wedge d u_{2}+d u_{1} \wedge d \psi_{2}+d \psi_{3} \wedge d u_{4}+d u_{3} \wedge d \psi_{4}=0
$$

The Euler-Lagrange Equation for fixed g

$$
0=\frac{d}{d t} E(u+t \psi)=\int_{\Sigma} d u \cdot g d \psi d v o l_{g}
$$

where

$$
\begin{gathered}
d \psi_{1} \wedge d u_{2}+d u_{1} \wedge d \psi_{2}+d \psi_{3} \wedge d u_{4}+d u_{3} \wedge d \psi_{4}=0 \\
\Longleftrightarrow \quad d[\psi \cdot i d u]=0
\end{gathered}
$$

The Euler-Lagrange Equation for fixed g

$$
0=\frac{d}{d t} E(u+t \psi)=\int_{\Sigma} d u \cdot g d \psi d v o l_{g}
$$

where

$$
\begin{gathered}
d \psi_{1} \wedge d u_{2}+d u_{1} \wedge d \psi_{2}+d \psi_{3} \wedge d u_{4}+d u_{3} \wedge d \psi_{4}=0 \\
\Longleftrightarrow \quad d[\psi \cdot i d u]=0
\end{gathered}
$$

Locally, there exists h

$$
\psi \cdot i d u=d h
$$

The Euler-Lagrange Equation for fixed g

$$
0=\frac{d}{d t} E(u+t \psi)=\int_{\Sigma} d u \cdot g d \psi d v o l_{g}
$$

where

$$
\begin{gathered}
d \psi_{1} \wedge d u_{2}+d u_{1} \wedge d \psi_{2}+d \psi_{3} \wedge d u_{4}+d u_{3} \wedge d \psi_{4}=0 \\
\Longleftrightarrow \quad d[\psi \cdot i d u]=0
\end{gathered}
$$

Locally, there exists h

$$
\psi \cdot i d u=d h
$$

Recall
L Lagrangian 2 plane $\Longleftrightarrow i L \perp L$

The Euler-Lagrange Equation for fixed g

$$
0=\frac{d}{d t} E(u+t \psi)=\int_{\Sigma} d u \cdot g d \psi d v o l_{g}
$$

where

$$
\begin{gathered}
d \psi_{1} \wedge d u_{2}+d u_{1} \wedge d \psi_{2}+d \psi_{3} \wedge d u_{4}+d u_{3} \wedge d \psi_{4}=0 \\
\Longleftrightarrow \quad d[\psi \cdot i d u]=0
\end{gathered}
$$

Locally, there exists h

$$
\psi \cdot i d u=d h
$$

Recall

$$
L \text { Lagrangian } 2 \text { plane } \Longleftrightarrow i L \perp L
$$

(opposite of holomorphic 2-planes where $\mathrm{i} \mathrm{L}=\mathrm{L}$)

A problematic Euler-Lagrange Equation

A problematic Euler-Lagrange Equation

if u is a conformal imm. from (Σ, g) into \mathbb{C}^{2} i.e.

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

A problematic Euler-Lagrange Equation

if u is a conformal imm. from (Σ, g) into \mathbb{C}^{2} i.e.

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

in local conformal charts
$\left(\partial_{x_{1}} u, \partial_{x_{2}} u, i \partial_{x_{1}} u, i \partial_{x_{2}} u\right)$ is an orthogonal. basis

A problematic Euler-Lagrange Equation

if u is a conformal imm. from (Σ, g) into \mathbb{C}^{2} i.e.

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

in local conformal charts

$$
\left(\partial_{x_{1}} u, \partial_{x_{2}} u, i \partial_{x_{1}} u, i \partial_{x_{2}} u\right) \text { is an orthogonal. basis }
$$

and

$$
\psi=2^{-1}|\nabla u|^{2}\left[\partial_{x_{1}} h i \partial_{x_{1}} u+\partial_{x_{2}} h i \partial_{x_{2}} u+a \partial_{x_{1}} u+b \partial_{x_{2}} u\right]
$$

A problematic Euler-Lagrange Equation

if u is a conformal imm. from (Σ, g) into \mathbb{C}^{2} i.e.

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

in local conformal charts

$$
\left(\partial_{x_{1}} u, \partial_{x_{2}} u, i \partial_{x_{1}} u, i \partial_{x_{2}} u\right) \text { is an orthogonal. basis }
$$

and

$$
\psi=2^{-1}|\nabla u|^{2}\left[\partial_{x_{1}} h i \partial_{x_{1}} u+\partial_{x_{2}} h i \partial_{x_{2}} u+a \partial_{x_{1}} u+b \partial_{x_{2}} u\right]
$$

$$
\int_{\Sigma}\left[\partial_{x_{1}} h \partial_{x_{1}} u \cdot i \Delta u+\partial_{x_{2}} h \partial_{x_{2}} u \cdot i \Delta u\right]|\nabla u|^{-2} d x^{2}=0
$$

A problematic Euler-Lagrange Equation

if u is a conformal imm. from (Σ, g) into \mathbb{C}^{2} i.e.

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

in local conformal charts

$$
\left(\partial_{x_{1}} u, \partial_{x_{2}} u, i \partial_{x_{1}} u, i \partial_{x_{2}} u\right) \text { is an orthogonal. basis }
$$

and

$$
\psi=2^{-1}|\nabla u|^{2}\left[\partial_{x_{1}} h i \partial_{x_{1}} u+\partial_{x_{2}} h i \partial_{x_{2}} u+a \partial_{x_{1}} u+b \partial_{x_{2}} u\right]
$$

$$
\int_{\Sigma}\left[\partial_{x_{1}} h \partial_{x_{1}} u \cdot i \Delta u+\partial_{x_{2}} h \partial_{x_{2}} u \cdot i \Delta u\right]|\nabla u|^{-2} d x^{2}=0
$$

or

$$
\operatorname{div}\left[|\nabla u|^{-2} \nabla u \cdot i \Delta u\right]=0
$$

The Mean Curvature of Lagrangian Immersions

The Mean Curvature of Lagrangian Immersions

u immersion of Σ into \mathbb{C}^{2}

The Mean Curvature of Lagrangian Immersions

u immersion of Σ into \mathbb{C}^{2}

$$
u^{*} \omega=0 \Longleftrightarrow J_{0}: u_{*} T \Sigma \longrightarrow\left(u_{*} T \Sigma\right)^{\perp} \text { isom. }
$$

The Mean Curvature of Lagrangian Immersions

u immersion of Σ into \mathbb{C}^{2}

$$
u^{*} \omega=0 \Longleftrightarrow J_{0}: u_{*} T \Sigma \longrightarrow\left(u_{*} T \Sigma\right)^{\perp} \text { isom. }
$$

Lemma [Dazord 1981] there exists locally β s.t.

$$
\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta
$$

The Mean Curvature of Lagrangian Immersions

u immersion of Σ into \mathbb{C}^{2}

$$
u^{*} \omega=0 \Longleftrightarrow J_{0}: u_{*} T \Sigma \longrightarrow\left(u_{*} T \Sigma\right)^{\perp} \text { isom. }
$$

Lemma [Dazord 1981] there exists locally β s.t.

$$
\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta
$$

where

$$
\iota_{\Sigma}^{*} d z_{1} \wedge d z_{2}=e^{-i \beta}\left|\partial_{x_{1}} u \wedge \partial_{x_{2}} u\right| d x_{1} \wedge d x_{2}
$$

The Mean Curvature of Lagrangian Immersions

u immersion of Σ into \mathbb{C}^{2}

$$
u^{*} \omega=0 \quad \Longleftrightarrow J_{0}: u_{*} T \Sigma \longrightarrow\left(u_{*} T \Sigma\right)^{\perp} \text { isom. }
$$

Lemma [Dazord 1981] there exists locally β s.t.

$$
\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta
$$

where

$$
\iota_{\Sigma}^{*} d z_{1} \wedge d z_{2}=e^{-i \beta}\left|\partial_{x_{1}} u \wedge \partial_{x_{2}} u\right| d x_{1} \wedge d x_{2}
$$

$\beta \in \mathbb{R} / 2 \pi \mathbb{Z}$ is called the Lagrangian angle

Hamiltonian/Lagrangian Variations

Hamiltonian/Lagrangian Variations

Variations preserving the Lagrangian condition

Hamiltonian/Lagrangian Variations

Variations preserving the Lagrangian condition: Look for $X \mathrm{~s} . \mathrm{t}$.

$$
\frac{d \phi_{t}}{d t}=X\left(\phi_{t}\right) \quad \text { and } \quad \forall L \text { lag. } \quad \Longrightarrow \quad\left(\phi_{t}\right)_{*} L \text { is lag. }
$$

Hamiltonian/Lagrangian Variations

Variations preserving the Lagrangian condition: Look for $X \mathrm{~s} . \mathrm{t}$.

$$
\frac{d \phi_{t}}{d t}=X\left(\phi_{t}\right) \quad \text { and } \quad \forall L \text { lag. } \quad \Longrightarrow \quad\left(\phi_{t}\right)_{*} L \text { is lag. }
$$

this gives

$$
d(\iota x \omega)=d\left(X_{1} d y_{2}-X_{2} d y_{1}+X_{3} d y_{4}-X_{4} d y_{3}\right)=\lambda \omega
$$

In closed Kähler manifold where ω is non exact $\Longrightarrow d\left(\iota_{X} \omega\right)=0$ When $\iota_{x} \omega$ is exact: Hamiltonian Variations

$$
\iota_{X} \omega=d h \quad \Leftrightarrow \quad X=J_{0} \nabla h
$$

When $\iota_{X} \omega$ is just closed: Lagrangian Variations

Area Variations under Hamiltonian Perturbations

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990)

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u}
$$

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
& 0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0
\end{aligned}
$$

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
0 & =\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0 \\
u: D^{2} \rightarrow & \mathbb{C}^{2}
\end{aligned}
$$

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
& 0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0
\end{aligned}
$$

$u: D^{2} \rightarrow \mathbb{C}^{2}$ conformal and Hamiltonian Stationary

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
& 0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0
\end{aligned}
$$

$u: D^{2} \rightarrow \mathbb{C}^{2}$ conformal and Hamiltonian Stationary iff

$$
\left\{\begin{array}{l}
\operatorname{div}(g \nabla u)=0 \\
\end{array}\right.
$$

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
& 0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0
\end{aligned}
$$

$u: D^{2} \rightarrow \mathbb{C}^{2}$ conformal and Hamiltonian Stationary iff

$$
\left\{\begin{array}{l}
\operatorname{div}(g \nabla u)=0 \\
\operatorname{div}\left(g^{-1} \nabla g\right)=0
\end{array}\right.
$$

$$
\Longleftrightarrow \quad \operatorname{div}\left[|\nabla u|^{-2} \nabla u \cdot i \Delta u\right]=0
$$

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
& 0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0
\end{aligned}
$$

$u: D^{2} \rightarrow \mathbb{C}^{2}$ conformal and Hamiltonian Stationary iff

$$
\left\{\begin{array}{l}
\operatorname{div}(g \nabla u)=0 \\
\operatorname{div}\left(g^{-1} \nabla g\right)=0 \quad \Longleftrightarrow \quad \operatorname{div}\left[|\nabla u|^{-2} \nabla u \cdot i \Delta u\right]=0
\end{array}\right.
$$

g plays the rôle of a Lagrange multiplier for the constraint $u^{*} \omega=0$.
No Function Theoretic a-priori Bound on g !

Area Variations under Hamiltonian Perturbations

u is Hamiltonian Stationary (Oh, Yong-Geun 1990): $\forall X=J_{0} \nabla h$

$$
\begin{aligned}
& 0=\delta \operatorname{Area}(u) \cdot \vec{X}=-2 \int_{\Sigma} J_{0} \nabla h(u) \cdot \vec{H}_{u} d v o l_{u} \\
& =-2 \int_{\Sigma} d(h \circ u) \cdot d \beta d v o l_{u} \Longleftrightarrow \Delta^{\Sigma} \beta=0
\end{aligned}
$$

$u: D^{2} \rightarrow \mathbb{C}^{2}$ conformal and Hamiltonian Stationary iff

$$
\left\{\begin{array}{l}
\operatorname{div}(g \nabla u)=0 \\
\operatorname{div}\left(g^{-1} \nabla g\right)=0 \quad \Longleftrightarrow \quad \operatorname{div}\left[|\nabla u|^{-2} \nabla u \cdot i \Delta u\right]=0
\end{array}\right.
$$

g plays the rôle of a Lagrange multiplier for the constraint $u^{*} \omega=0$.
No Function Theoretic a-priori Bound on g ! (beside L^{∞} of course)

Area Variations under Lagrangian Perturbations

Area Variations under Lagrangian Perturbations

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Take $\alpha=d \beta$

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Take $\alpha=d \beta$ we get

$$
d \beta \equiv 0 \quad \text { i. e. } \vec{H}_{u} \equiv 0 \quad\left(\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta\right)
$$

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Take $\alpha=d \beta$ we get

$$
d \beta \equiv 0 \quad \text { i. e. } \vec{H}_{u} \equiv 0 \quad\left(\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta\right)
$$

Proposition Lagrangian Stationary closed immersions in Kähler Einstein Manifolds are minimal lagrangian.

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Take $\alpha=d \beta$ we get

$$
d \beta \equiv 0 \quad \text { i. e. } \vec{H}_{u} \equiv 0 \quad\left(\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta\right)
$$

Proposition Lagrangian Stationary closed immersions in Kähler Einstein Manifolds are minimal lagrangian.
$\ln \mathbb{C}^{2}$

$$
d v o l_{u}=e^{i \beta} d z_{1} \wedge d z_{2}
$$

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Take $\alpha=d \beta$ we get

$$
d \beta \equiv 0 \quad \text { i. e. } \vec{H}_{u} \equiv 0 \quad\left(\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta\right)
$$

Proposition Lagrangian Stationary closed immersions in Kähler Einstein Manifolds are minimal lagrangian.
$\ln \mathbb{C}^{2}$

$$
d v o l_{u}=e^{i \beta} d z_{1} \wedge d z_{2}
$$

$\Longrightarrow u(\Sigma)$ is calibrated.

Area Variations under Lagrangian Perturbations

u is Lagrangian Stationary

$$
\forall \alpha \in \Omega^{1}(\Sigma) \quad d \alpha=0 \quad \int_{\Sigma} \alpha \cdot d \beta d v o I_{\Sigma}=0
$$

Take $\alpha=d \beta$ we get

$$
d \beta \equiv 0 \quad \text { i. e. } \vec{H}_{u} \equiv 0 \quad\left(\vec{H}_{u}=J_{0} \nabla^{\Sigma} \beta\right)
$$

Proposition Lagrangian Stationary closed immersions in Kähler Einstein Manifolds are minimal lagrangian.
$\ln \mathbb{C}^{2}$

$$
d v o l_{u}=e^{i \beta} d z_{1} \wedge d z_{2}
$$

$\Longrightarrow u(\Sigma)$ is calibrated.
Lagrangian variational problems are much more rigid than hamiltonian variational problems.

Hamiltonian Stationary/ H-Minimal Surfaces

Hamiltonian Stationary/ H-Minimal Surfaces

There exist closed Hamiltonian Stationary Surfaces in \mathbb{C}^{2}.

Hamiltonian Stationary/ H-Minimal Surfaces

There exist closed Hamiltonian Stationary Surfaces in \mathbb{C}^{2}.
Conjecture [Oh, 1993] : The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing in it's Hamiltonian Isotopy class.

Hamiltonian Stationary/ H-Minimal Surfaces

There exist closed Hamiltonian Stationary Surfaces in \mathbb{C}^{2}.
Conjecture [Oh, 1993] : The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing in it's Hamiltonian Isotopy class.

Theorem [Anciaux, 2002] The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing among H-minimal tori in it's Hamiltonian Isotopy class.

Hamiltonian Stationary/ H-Minimal Surfaces

There exist closed Hamiltonian Stationary Surfaces in \mathbb{C}^{2}.
Conjecture [Oh, 1993]: The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing in it's Hamiltonian Isotopy class.

Theorem [Anciaux, 2002] The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing among H -minimal tori in it's Hamiltonian Isotopy class.

Theorem [Schoen-Wolfson, 2001] There exists singular solutions to

$$
\left\{\begin{array}{l}
u \text { is } W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right) \text { and weakly conformal } \\
\operatorname{div}(g \nabla u)=0 \\
\operatorname{div}\left(g^{-1} \nabla g\right)=0
\end{array}\right.
$$

Hamiltonian Stationary/ H-Minimal Surfaces

There exist closed Hamiltonian Stationary Surfaces in \mathbb{C}^{2}.
Conjecture [Oh, 1993]: The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing in it's Hamiltonian Isotopy class.

Theorem [Anciaux, 2002] The Clifford Torus $S^{1} \times S^{1} \subset \mathbb{C}^{2}$ is Area Minimizing among H -minimal tori in it's Hamiltonian Isotopy class.

Theorem [Schoen-Wolfson, 2001] There exists singular solutions to

$$
\left\{\begin{array}{l}
u \text { is } W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right) \text { and weakly conformal } \\
\operatorname{div}(g \nabla u)=0 \\
\operatorname{div}\left(g^{-1} \nabla g\right)=0
\end{array}\right.
$$

Precisely g has isolated singularities

$$
\operatorname{curl}\left(g^{-1} \nabla g\right)=2 \pi i \sum_{j=1}^{Q} d_{j} \delta_{p_{j}} \quad \Longrightarrow \quad g \notin W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)
$$

Area Minimizers with Lagrangian Constraint

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

$$
u^{*} \omega=0
$$

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

$$
u^{*} \omega=0
$$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

$$
u^{*} \omega=0
$$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

$$
\begin{aligned}
& \forall v \in W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right) \quad \text { s. t. } \quad v^{*} \omega=0 \quad \forall B_{r}(x) \subset \mathbb{C} \\
& v=u \text { on } \partial B_{r}(x)
\end{aligned}
$$

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

$$
u^{*} \omega=0
$$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

$$
\begin{gathered}
\forall v \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right) \quad \text { s. t. } \quad v^{*} \omega=0 \quad \forall B_{r}(x) \subset \mathbb{C} \\
v=u \text { on } \partial B_{r}(x) \Longrightarrow \int_{B_{r}(x)}|\nabla v|^{2} d x^{2} \geq \int_{B_{r}(x)}|\nabla u|^{2} d x^{2}
\end{gathered}
$$

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

$$
u^{*} \omega=0
$$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

$$
\begin{gathered}
\forall v \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right) \quad \text { s. t. } \quad v^{*} \omega=0 \quad \forall B_{r}(x) \subset \mathbb{C} \\
v=u \text { on } \partial B_{r}(x) \Longrightarrow \int_{B_{r}(x)}|\nabla v|^{2} d x^{2} \geq \int_{B_{r}(x)}|\nabla u|^{2} d x^{2}
\end{gathered}
$$

Then u is a possibly branched smooth H-minimal immersion away from isolated conical point singularities.

Area Minimizers with Lagrangian Constraint

Theorem [Schoen-Wolfson, 2001] Let $u \in W_{\text {loc }}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right)$,

$$
u^{*} \omega=0
$$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

$$
\begin{gathered}
\forall v \in W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{C}^{2}\right) \quad \text { s. t. } \quad v^{*} \omega=0 \quad \forall B_{r}(x) \subset \mathbb{C} \\
v=u \text { on } \partial B_{r}(x) \Longrightarrow \int_{B_{r}(x)}|\nabla v|^{2} d x^{2} \geq \int_{B_{r}(x)}|\nabla u|^{2} d x^{2}
\end{gathered}
$$

Then u is a possibly branched smooth H-minimal immersion away from isolated conical point singularities.

$$
\operatorname{curl}\left(g^{-1} \nabla g\right)=2 \pi i \sum_{j \in J} d_{j} \delta_{p_{j}}
$$

Conclusions so Far

Conclusions so Far

We aim at study the area variations under Lagrangian contraint.

Conclusions so Far

We aim at study the area variations under Lagrangian contraint. In particular perform minmax operations.

Conclusions so Far

We aim at study the area variations under Lagrangian contraint. In particular perform minmax operations.

- In such an operation we should expect singularities for the solution.

Conclusions so Far

We aim at study the area variations under Lagrangian contraint. In particular perform minmax operations.

- In such an operation we should expect singularities for the solution.
- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.

Conclusions so Far

We aim at study the area variations under Lagrangian contraint. In particular perform minmax operations.

- In such an operation we should expect singularities for the solution.
- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.
- Can one look for non zero Morse Index Solutions without working with a PDE in a Function Space ?

Conclusions so Far

We aim at study the area variations under Lagrangian contraint. In particular perform minmax operations.

- In such an operation we should expect singularities for the solution.
- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.
- Can one look for non zero Morse Index Solutions without working with a PDE in a Function Space ?
- This is what Geometric Measure Theory is doing in some sense (Allard/Almgren Varifold theory).

Monotonicity Formula for Minimal Surfaces.

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then

$$
\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)
$$

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then

$$
\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)
$$

where

$$
\rho(z):=|z|
$$

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then

$$
\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)
$$

where

$$
\rho(z):=|z| \quad \text { and } \quad(\nabla \rho)^{\perp}=\text { projection of } \nabla \rho \text { on }(T \Sigma)^{\perp} .
$$

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then

$$
\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)
$$

where

$$
\rho(z):=|z| \quad \text { and } \quad(\nabla \rho)^{\perp}=\text { projection of } \nabla \rho \text { on }(T \Sigma)^{\perp} .
$$

It implies in particular

$$
\frac{d}{d r}\left[\frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}\right] \geq 0
$$

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then

$$
\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)
$$

where

$$
\rho(z):=|z| \quad \text { and } \quad(\nabla \rho)^{\perp}=\text { projection of } \nabla \rho \text { on }(T \Sigma)^{\perp} .
$$

It implies in particular

$$
\frac{d}{d r}\left[\frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}\right] \geq 0
$$

It comes from
$0=\delta \operatorname{Area}(\vec{\Phi}) \cdot X=\int_{\Sigma} X \cdot \vec{H}_{u} d v o l_{g_{u}}$

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then

$$
\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)
$$

where

$$
\rho(z):=|z| \quad \text { and } \quad(\nabla \rho)^{\perp}=\text { projection of } \nabla \rho \text { on }(T \Sigma)^{\perp} .
$$

It implies in particular

$$
\frac{d}{d r}\left[\frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}\right] \geq 0
$$

It comes from
$0=\delta \operatorname{Area}(\vec{\Phi}) \cdot X=\int_{\Sigma} X \cdot \vec{H}_{u} d v \operatorname{lvol}_{g_{u}} \quad$ where $\quad X=\chi_{\varepsilon}(y) \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial y_{j}}$

Monotonicity Formula for Minimal Surfaces.

Let $u: \Sigma \longrightarrow \mathbb{R}^{n}$ area stationary immersion then
$\forall r>0 \quad \frac{1}{r^{2}} \int_{\rho<r} d v \lg _{g_{u}}=\int_{\rho<r} \frac{\left|(\nabla \rho)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}+\pi \operatorname{Card}\left(u^{-1}(\{p\})\right)$
where

$$
\rho(z):=|z| \quad \text { and } \quad(\nabla \rho)^{\perp}=\text { projection of } \nabla \rho \text { on }(T \Sigma)^{\perp} .
$$

It implies in particular

$$
\frac{d}{d r}\left[\frac{1}{r^{2}} \int_{\rho<r} d v o l_{g_{u}}\right] \geq 0
$$

It comes from
$0=\delta \operatorname{Area}(\vec{\Phi}) \cdot X=\int_{\Sigma} X \cdot \vec{H}_{u} d$ vol $_{g_{u}} \quad$ where $\quad X=\chi_{\varepsilon}(y) \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial y_{j}}$ and $\chi_{\varepsilon} \rightarrow \mathbf{1}_{B_{r}(0)}$.

No Monotonicity for H-minimal Surfaces in \mathbb{C}^{2}.

No Monotonicity for \mathbf{H}-minimal Surfaces in \mathbb{C}^{2}.

Let u be a Lagrangian immersion which is hamiltonian stationary

No Monotonicity for H -minimal Surfaces in \mathbb{C}^{2}.

Let u be a Lagrangian immersion which is hamiltonian stationary:

$$
0=\delta \operatorname{Area}(u) \cdot X=\int_{\Sigma} X(u) \cdot \vec{H}_{u} \text { dvol }_{g_{u}}
$$

No Monotonicity for H -minimal Surfaces in \mathbb{C}^{2}.

Let u be a Lagrangian immersion which is hamiltonian stationary:

$$
0=\delta \operatorname{Area}(u) \cdot X=\int_{\Sigma} X(u) \cdot \vec{H}_{u} d v o l_{g}
$$

for

$$
X=i \nabla h
$$

No Monotonicity for H -minimal Surfaces in \mathbb{C}^{2}.

Let u be a Lagrangian immersion which is hamiltonian stationary:

$$
0=\delta \operatorname{Area}(u) \cdot X=\int_{\Sigma} X(u) \cdot \vec{H}_{u} d^{2} \lg _{u}
$$

for

$$
X=i \nabla h
$$

Observe

$$
\chi_{\varepsilon}\left[y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial_{y_{3}}+y_{4} \partial_{y_{4}}\right] \neq i \nabla h
$$

No Monotonicity for \mathbf{H}-minimal Surfaces in \mathbb{C}^{2}.

Let u be a Lagrangian immersion which is hamiltonian stationary:

$$
0=\delta \operatorname{Area}(u) \cdot X=\int_{\Sigma} X(u) \cdot \vec{H}_{u} d^{2} \lg _{g_{u}}
$$

for

$$
X=i \nabla h
$$

Observe

$$
\chi_{\varepsilon}\left[y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial_{y_{3}}+y_{4} \partial_{y_{4}}\right] \neq i \nabla h
$$

Proposition [Minicozzi 1995, Schoen-Wolfson 1999] There exist counter-examples to the monotonicity Formula

No Monotonicity for \mathbf{H}-minimal Surfaces in \mathbb{C}^{2}.

Let u be a Lagrangian immersion which is hamiltonian stationary:

$$
0=\delta \operatorname{Area}(u) \cdot X=\int_{\Sigma} X(u) \cdot \vec{H}_{u} d^{2} \lg _{g_{u}}
$$

for

$$
X=i \nabla h
$$

Observe

$$
\chi_{\varepsilon}\left[y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial_{y_{3}}+y_{4} \partial_{y_{4}}\right] \neq i \nabla h
$$

Proposition [Minicozzi 1995, Schoen-Wolfson 1999] There exist counter-examples to the monotonicity Formula :
$\Sigma_{\varepsilon}=\left\{\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \quad ; \quad y_{1}^{2}+y_{2}^{2}=\varepsilon^{2} \quad-1 \leq y_{3} \leq+1 \quad y_{4}=0\right\}$
solves the Lagrangian Plateau Problem for it's boundary.

The Standard Contact Structure on \mathbb{R}^{5}.

The Standard Contact Structure on \mathbb{R}^{5}.

Let

$$
\pi:\left(y_{1}, y_{2}, y_{3}, y_{4}, \varphi\right) \in \mathbb{R}^{5} \longrightarrow\left(y_{1}+i y_{2}, y_{3}+i y_{4}\right) \in \mathbb{C}^{2}
$$

The Standard Contact Structure on \mathbb{R}^{5}.

Let

$$
\pi:\left(y_{1}, y_{2}, y_{3}, y_{4}, \varphi\right) \in \mathbb{R}^{5} \longrightarrow\left(y_{1}+i y_{2}, y_{3}+i y_{4}\right) \in \mathbb{C}^{2}
$$

Let

$$
\alpha:=-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}
$$

The Standard Contact Structure on \mathbb{R}^{5}.

Let

$$
\pi:\left(y_{1}, y_{2}, y_{3}, y_{4}, \varphi\right) \in \mathbb{R}^{5} \longrightarrow\left(y_{1}+i y_{2}, y_{3}+i y_{4}\right) \in \mathbb{C}^{2}
$$

$$
\text { Let } \quad \alpha:=-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}
$$

Observe
$v: \Sigma \longrightarrow \mathbb{R}^{5}$ legendrian immersion i.e. $v^{*} \alpha \equiv 0$

The Standard Contact Structure on \mathbb{R}^{5}.

Let

$$
\pi:\left(y_{1}, y_{2}, y_{3}, y_{4}, \varphi\right) \in \mathbb{R}^{5} \longrightarrow\left(y_{1}+i y_{2}, y_{3}+i y_{4}\right) \in \mathbb{C}^{2}
$$

$$
\text { Let } \quad \alpha:=-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}
$$

Observe

$$
v: \Sigma \longrightarrow \mathbb{R}^{5} \quad \text { legendrian immersion i.e. } v^{*} \alpha \equiv 0
$$

then $u:=\pi \circ v$ is lagragrangian.

The Standard Contact Structure on \mathbb{R}^{5}.

Let

$$
\begin{gathered}
\pi:\left(y_{1}, y_{2}, y_{3}, y_{4}, \varphi\right) \in \mathbb{R}^{5} \longrightarrow\left(y_{1}+i y_{2}, y_{3}+i y_{4}\right) \in \mathbb{C}^{2}, \\
\quad \text { Let } \quad \alpha:=-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}
\end{gathered}
$$

Observe

$$
v: \Sigma \longrightarrow \mathbb{R}^{5} \quad \text { legendrian immersion i.e. } v^{*} \alpha \equiv 0
$$

then $u:=\pi \circ v$ is lagragrangian.
Suggestion: Work with Legendrian Constraint instead of Lagrangian Constraint.

The Standard Contact Structure on \mathbb{R}^{5}.

Let

$$
\begin{gathered}
\pi:\left(y_{1}, y_{2}, y_{3}, y_{4}, \varphi\right) \in \mathbb{R}^{5} \longrightarrow\left(y_{1}+i y_{2}, y_{3}+i y_{4}\right) \in \mathbb{C}^{2}, \\
\quad \text { Let } \quad \alpha:=-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}
\end{gathered}
$$

Observe

$$
v: \Sigma \longrightarrow \mathbb{R}^{5} \quad \text { legendrian immersion i.e. } v^{*} \alpha \equiv 0
$$

then $u:=\pi \circ v$ is lagragrangian.
Suggestion: Work with Legendrian Constraint instead of Lagrangian Constraint.
$\alpha \wedge d \alpha \wedge d \alpha \quad \Longrightarrow \quad \operatorname{Ker}(d \alpha)$ is non integrable

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2} \quad$ is an isometry

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2}$ is an isometry $\left|\partial_{\varphi}\right|=1$

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2}$ is an isometry $\quad\left|\partial_{\varphi}\right|=1$ and $\partial_{\varphi} \perp \operatorname{Ker}(\alpha)$.

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2}$ is an isometry $\quad\left|\partial_{\varphi}\right|=1$ and $\partial_{\varphi} \perp \operatorname{Ker}(\alpha)$.
(i.e. Heisenberg Group metric \mathbb{H}^{2})

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2}$ is an isometry $\quad\left|\partial_{\varphi}\right|=1$ and $\partial_{\varphi} \perp \operatorname{Ker}(\alpha)$.
(i.e. Heisenberg Group metric \mathbb{H}^{2})

Legendrian variations

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2}$ is an isometry $\quad\left|\partial_{\varphi}\right|=1$ and $\partial_{\varphi} \perp \operatorname{Ker}(\alpha)$.
(i.e. Heisenberg Group metric \mathbb{H}^{2})

Legendrian variations: look for $X \mathrm{~s} . \mathrm{t}$. forall v

$$
\frac{d \phi_{t}}{d t}=X\left(\phi_{t}\right) \quad \text { and } \quad v^{*} \alpha=0 \quad \Longrightarrow \quad v^{*} \phi_{t}^{*} \alpha=0
$$

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Choose on \mathbb{R}^{5} the metric s.t.
$\pi_{*}: \operatorname{Ker}(\alpha) \rightarrow \mathbb{C}^{2}$ is an isometry $\quad\left|\partial_{\varphi}\right|=1$ and $\partial_{\varphi} \perp \operatorname{Ker}(\alpha)$.
(i.e. Heisenberg Group metric \mathbb{H}^{2})

Legendrian variations: look for $X \mathrm{~s} . \mathrm{t}$. forall v

$$
\begin{aligned}
& \frac{d \phi_{t}}{d t}=X\left(\phi_{t}\right) \quad \text { and } \quad v^{*} \alpha=0 \quad \Longrightarrow \quad v^{*} \phi_{t}^{*} \alpha=0 \\
& \exists h(\varphi, y) \quad \text { s.t. } \quad X=-J_{0} \nabla^{H} h+2 h \partial_{\varphi} .
\end{aligned}
$$

Hamiltonian variations

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Let
$v: \Sigma \longrightarrow \mathbb{R}^{5}$ legendrian immersion i.e. $v^{*} \alpha \equiv 0$

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Let
$v: \Sigma \longrightarrow \mathbb{R}^{5}$ legendrian immersion i.e. $v^{*} \alpha \equiv 0$
then $u:=\pi \circ v$ is lagragrangian

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Let
$v: \Sigma \longrightarrow \mathbb{R}^{5}$ legendrian immersion i.e. $v^{*} \alpha \equiv 0$
then $u:=\pi \circ v$ is lagragrangian and
u is Hamiltonian Stationary $\Longleftrightarrow v$ is Legendrian Stationary

Variations of Legendrian Immersions into $\left(\mathbb{R}^{5}, \alpha\right)$.

Let

$$
v: \Sigma \longrightarrow \mathbb{R}^{5} \quad \text { legendrian immersion i.e. } v^{*} \alpha \equiv 0
$$

then $u:=\pi \circ v$ is lagragrangian and
u is Hamiltonian Stationary $\Longleftrightarrow v$ is Legendrian Stationary where legendrian stationary is defined by

$$
\forall X=-J_{0} \nabla^{H} h+2 h \partial_{\varphi} \quad 0=\delta \operatorname{Area}(v) \cdot X=\int_{\Sigma} X \cdot \vec{H}_{v} d v o g_{g}
$$

The Generator of Dilations is Hamiltonian in $\left(\mathbb{R}^{5}, \alpha\right)$

The Generator of Dilations is Hamiltonian in $\left(\mathbb{R}^{5}, \alpha\right)$

A direct computation gives

$$
J_{0}\left(\nabla^{H} \varphi\right)=-y_{1} \partial_{y_{1}}-y_{2} \partial_{y_{2}}-y_{3} \partial_{y_{3}}-y_{4} \partial_{y_{4}}
$$

Hence

$$
X:=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial_{y_{3}}+y_{4} \partial_{y_{4}}+2 \varphi \partial_{\varphi}=-J_{0} \nabla^{H} h+2 h \partial_{\varphi}
$$

The Generator of Dilations is Hamiltonian in $\left(\mathbb{R}^{5}, \alpha\right)$

A direct computation gives

$$
J_{0}\left(\nabla^{H} \varphi\right)=-y_{1} \partial_{y_{1}}-y_{2} \partial_{y_{2}}-y_{3} \partial_{y_{3}}-y_{4} \partial_{y_{4}}
$$

Hence
$X:=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial_{y_{3}}+y_{4} \partial_{y_{4}}+2 \varphi \partial_{\varphi}=-J_{0} \nabla^{H} h+2 h \partial_{\varphi}$
for $h=\varphi$ and X is Hamiltonian
while

$$
\pi_{*} X=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial_{y_{3}}+y_{4} \partial_{y_{4}} \neq-J_{0} \nabla^{H} h
$$

is not Hamiltonian in \mathbb{C}^{2}.

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}
 The Folland-Korányi Gauge 1985

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

The Folland-Korányi Gauge 1985

$$
\mathfrak{r}:=\left[\rho^{4}+4 \varphi^{2}\right]^{1 / 4} \quad \text { where } \quad \rho^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}
$$

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

The Folland-Korányi Gauge 1985

$$
\mathfrak{r}:=\left[\rho^{4}+4 \varphi^{2}\right]^{1 / 4} \quad \text { where } \quad \rho^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}
$$

Invariant under group "translations"

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

The Folland-Korányi Gauge 1985

$$
\mathfrak{r}:=\left[\rho^{4}+4 \varphi^{2}\right]^{1 / 4} \quad \text { where } \quad \rho^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}
$$

Invariant under group "translations" and dilations

$$
\mathfrak{r}\left(t y, t^{2} \varphi\right)=t \mathfrak{r}(y, \varphi)
$$

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

The Folland-Korányi Gauge 1985

$$
\mathfrak{r}:=\left[\rho^{4}+4 \varphi^{2}\right]^{1 / 4} \quad \text { where } \quad \rho^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}
$$

Invariant under group "translations" and dilations

$$
\mathfrak{r}\left(t y, t^{2} \varphi\right)=t \mathfrak{r}(y, \varphi)
$$

Distance equivalent to the Carnot Carateodory Distance.

$$
d(p, q):=\inf _{\gamma \text { horizontal }}^{\gamma(0)=p, \gamma(1)=q} \int_{0}^{1}|\dot{\gamma}|_{\mathbb{H}^{2}} d t
$$

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

The Folland-Korányi Gauge 1985

$$
\mathfrak{r}:=\left[\rho^{4}+4 \varphi^{2}\right]^{1 / 4} \quad \text { where } \quad \rho^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}
$$

Invariant under group "translations" and dilations

$$
\mathfrak{r}\left(t y, t^{2} \varphi\right)=t \mathfrak{r}(y, \varphi)
$$

Distance equivalent to the Carnot Carateodory Distance.

$$
d(p, q):=\inf _{\gamma \text { horizontal }}^{\gamma(0)=p, \gamma(1)=q} \int_{0}^{1}|\dot{\gamma}|_{\mathbb{H}^{2}} d t
$$

The phase

Some Elements from the Geometry of the Heisenberg Group \mathbb{H}^{2}

The Folland-Korányi Gauge 1985

$$
\mathfrak{r}:=\left[\rho^{4}+4 \varphi^{2}\right]^{1 / 4} \quad \text { where } \quad \rho^{2}=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}
$$

Invariant under group "translations" and dilations

$$
\mathfrak{r}\left(t y, t^{2} \varphi\right)=t \mathfrak{r}(y, \varphi)
$$

Distance equivalent to the Carnot Carateodory Distance.

$$
d(p, q):=\inf _{\gamma \text { horizontal }}^{\gamma(0)=p, \gamma(1)=q} \int_{0}^{1}|\dot{\gamma}|_{\mathbb{H}^{2}} d t
$$

The phase

$$
\sigma:=\frac{2 \varphi}{\rho^{2}}
$$

is scaling invariant.

Almost Monotonicity for H-minimal Legendrian Surfaces

Almost Monotonicity for H-minimal Legendrian Surfaces
Choose for hamiltonian

$$
h:=\chi(\mathfrak{r} / r) \arctan \sigma
$$

Almost Monotonicity for H-minimal Legendrian Surfaces

Choose for hamiltonian

$$
h:=\chi(\mathfrak{r} / r) \arctan \sigma
$$

Theorem [R. 2021] Let v be an Legendrian Stationary Immersion of Σ into \mathbb{H}^{2}

Almost Monotonicity for H-minimal Legendrian Surfaces

Choose for hamiltonian

$$
h:=\chi(\mathfrak{r} / r) \arctan \sigma
$$

Theorem [R. 2021] Let v be an Legendrian Stationary Immersion of Σ into \mathbb{H}^{2} then

$$
\begin{aligned}
\forall r & <1 \quad C^{-1}\left[\theta_{0}+\left.\int_{\mathfrak{r}<r / 2} \frac{\left|\left(\nabla^{\Sigma} \mathfrak{r}\right)^{\perp}\right|^{2}}{\mathfrak{r}^{2}} d v o\right|_{\Sigma}\right] \\
& \leq \frac{1}{r^{2}} \int_{\mathfrak{r}<r} d v o_{\Sigma} \leq\left. C \int_{1 / 2<\mathfrak{r}<2} d v o\right|_{\Sigma},
\end{aligned}
$$

where $C>0$ is universal and

$$
\theta_{0}=2 \pi \operatorname{Card}\left(v^{-1}\{0\}\right) .
$$

Almost Monotonicity for H-minimal Legendrian Surfaces

Choose for hamiltonian

$$
h:=\chi(\mathfrak{r} / r) \arctan \sigma
$$

Theorem [R. 2021] Let v be an Legendrian Stationary Immersion of Σ into \mathbb{H}^{2} then

$$
\begin{aligned}
\forall r & <1 \quad C^{-1}\left[\theta_{0}+\int_{\mathfrak{r}<r / 2} \frac{\left|\left(\nabla^{\Sigma} \mathfrak{r}\right)^{\perp}\right|^{2}}{\mathfrak{r}^{2}} d v o I_{\Sigma}\right] \\
& \leq \frac{1}{r^{2}} \int_{\mathfrak{r}<r} d v o_{\Sigma} \leq C \int_{1 / 2<\mathfrak{r}<2} d v o /_{\Sigma},
\end{aligned}
$$

where $C>0$ is universal and

$$
\theta_{0}=2 \pi \operatorname{Card}\left(v^{-1}\{0\}\right) .
$$

Recall the Euclidian case (i.e. u minimal)

$$
\theta_{0}+\int_{\rho<r} \frac{\left|\left(\nabla^{\Sigma} \rho\right)^{\perp}\right|^{2}}{\rho^{2}} d v o g_{g_{u}}=\frac{1}{r^{2}} \int_{\rho<r} d v o g_{g u}
$$

Conclusions so Far

Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian contraint.

Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian contraint.

In particular perform minmax operations.

Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian contraint.

In particular perform minmax operations.

- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.

Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian contraint.

In particular perform minmax operations.

- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.
- The Lagrangian constraint should be replaced by Legendrian constraint.

Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian contraint.

In particular perform minmax operations.

- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.
- The Lagrangian constraint should be replaced by Legendrian constraint.
- Find a weak formulation for being critical of the area under Legendrian constraint.

Conclusions so Far

We aim at study the area variations under Lagrangian/Legendrian contraint.

In particular perform minmax operations.

- We couldn't find a weak formulation of the E.L. equation compatible with the Lagrangian.
- The Lagrangian constraint should be replaced by Legendrian constraint.
- Find a weak formulation for being critical of the area under Legendrian constraint.

A First weak formulation of being Legendrian Stationary

A First weak formulation of being Legendrian Stationary

Consider Hamiltonian variations in the target :

$$
v \in W^{1,2}\left(D^{2}, \mathbb{R}^{5}\right) \quad \text { weakly conformal }
$$

A First weak formulation of being Legendrian Stationary

Consider Hamiltonian variations in the target :

$$
v \in W^{1,2}\left(D^{2}, \mathbb{R}^{5}\right) \quad \text { weakly conformal }
$$

such that

$$
\forall h \in C_{0}^{\infty}\left(\mathbb{R}^{5}\right) \int_{D^{2}} \nabla v \nabla[X(v)] d x^{2}=0
$$

A First weak formulation of being Legendrian Stationary

Consider Hamiltonian variations in the target :

$$
v \in W^{1,2}\left(D^{2}, \mathbb{R}^{5}\right) \quad \text { weakly conformal }
$$

such that

$$
\forall h \in C_{0}^{\infty}\left(\mathbb{R}^{5}\right) \int_{D^{2}} \nabla v \nabla[X(v)] d x^{2}=0
$$

where

$$
X=-J_{0} \nabla h+2 h \partial_{\phi}
$$

A First weak formulation of being Legendrian Stationary

Consider Hamiltonian variations in the target :

$$
v \in W^{1,2}\left(D^{2}, \mathbb{R}^{5}\right) \quad \text { weakly conformal }
$$

such that

$$
\forall h \in C_{0}^{\infty}\left(\mathbb{R}^{5}\right) \int_{D^{2}} \nabla v \nabla[X(v)] d x^{2}=0
$$

where

$$
X=-J_{0} \nabla h+2 h \partial_{\phi}
$$

Too few variations for hoping a regularity theory.

A Digression to "Target Harmonic Maps"

A Digression to "Target Harmonic Maps"

Definition [R. 2017]

A Digression to "Target Harmonic Maps"

Definition [R. 2017] u is target harmonic from D^{2} into \mathbb{R}^{m} if

A Digression to "Target Harmonic Maps"

Definition [R. 2017] u is target harmonic from D^{2} into \mathbb{R}^{m} if

$$
\int_{\Omega} \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

A Digression to "Target Harmonic Maps"

Definition [R. 2017] u is target harmonic from D^{2} into \mathbb{R}^{m} if

$$
\int_{\Omega} \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

A Digression to "Target Harmonic Maps"

Definition [R. 2017] u is target harmonic from D^{2} into \mathbb{R}^{m} if

$$
\int_{\Omega} \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

A Digression to "Target Harmonic Maps"

Definition [R. 2017] u is target harmonic from D^{2} into \mathbb{R}^{m} if

$$
\int_{\Omega} \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

Theorem [R. 2017] $W^{1,2}$ Target harmonic map are conformal harmonic in a classical sense and hence C^{∞}.

Parametrized Stationary Integer Varifolds

Parametrized Stationary Integer Varifolds

Definition

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m}

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

Theorem [R. Pub IHES 2017] Every non trivial minmax operation for the area of surfaces is realized by a PSIV

Parametrized Stationary Integer Varifolds

Definition u is a PSIV into \mathbb{R}^{m} if $u \in W^{1,2}\left(D^{2}, \mathbb{R}^{m}\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

Theorem [R. Pub IHES 2017] Every non trivial minmax operation for the area of surfaces is realized by a PSIV

Theorem [Pigati, R. Duke 2020] Every PSIV is a smooth branched immersion equipped with a smooth multiplicity Q

Parametrized Legendrian Stationary Integer Varifolds

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0
$$

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0 \quad \text { and } \quad u^{*} \alpha=0
$$

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0 \quad \text { and } \quad u^{*} \alpha=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0 \quad \text { and } \quad u^{*} \alpha=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ hamiltonian s.t.

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0 \quad \text { and } \quad u^{*} \alpha=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ hamiltonian s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0 \quad \text { and } \quad u^{*} \alpha=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ hamiltonian s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

then $((\Sigma, h), u, Q)$ is called Parametrized Legendrian Stationary Integer Varifolds

Parametrized Legendrian Stationary Integer Varifolds

Definition [R. 2023] Let u from (Σ, h) into $\left(N^{5}, \alpha\right)$

$$
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0 \quad \text { and } \quad u^{*} \alpha=0
$$

there exists $Q \in L^{\infty}\left(\Sigma, \mathbb{N}^{*}\right)$ s.t.

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

for a.e. Ω and every $X \in C^{\infty}\left(\mathbb{R}^{m}, \mathbb{R}^{m}\right)$ hamiltonian s.t.

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset
$$

then $((\Sigma, h), u, Q)$ is called Parametrized Legendrian Stationary Integer Varifolds

Theorem [R. 2023] Every non trivial minmax operation for the area of surfaces within Legendrian maps is realized by a PLSIV and $u \in C^{0}\left(\Sigma, N^{5}\right)$.

To Conclude...

[^0]
To Conclude...

Conjecture : Every Parametrized Legendrian Stationary Integer Varifolds is a smooth branched immersion away from isolated Schoen-Wolfson cones and equipped with a smooth multiplicity Q

$$
\begin{gathered}
u \in W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{R}^{5}\right) \quad, \quad Q \in L^{\infty}\left(\mathbb{C}, \mathbb{N}^{*}\right) \\
u^{*}\left(-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}\right)=0,
\end{gathered}
$$

To Conclude...

Conjecture : Every Parametrized Legendrian Stationary Integer Varifolds is a smooth branched immersion away from isolated Schoen-Wolfson cones and equipped with a smooth multiplicity Q

$$
\begin{gathered}
u \in W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{R}^{5}\right) \quad, \quad Q \in L^{\infty}\left(\mathbb{C}, \mathbb{N}^{*}\right), \\
u^{*}\left(-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}\right)=0, \\
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0,
\end{gathered}
$$

To Conclude...

Conjecture : Every Parametrized Legendrian Stationary Integer Varifolds is a smooth branched immersion away from isolated Schoen-Wolfson cones and equipped with a smooth multiplicity Q

$$
\begin{gathered}
u \in W_{l o c}^{1,2}\left(\mathbb{C}, \mathbb{R}^{5}\right) \quad, \quad Q \in L^{\infty}\left(\mathbb{C}, \mathbb{N}^{*}\right), \\
u^{*}\left(-d \varphi+y_{1} d y_{2}-y_{2} d y_{1}+y_{3} d y_{4}-y_{4} d y_{3}\right)=0, \\
\left|\partial_{x_{1}} u\right|^{2}=\left|\partial_{x_{2}} u\right|^{2} \quad \text { and } \quad \partial_{x_{1}} u \cdot \partial_{x_{2}} u=0,
\end{gathered}
$$

- for a.e. Ω

$$
\int_{\Omega} Q \nabla u \cdot \nabla[X(u)] d x^{2}=0
$$

where

$$
u(\partial \Omega) \cap \operatorname{Supp}(X)=\emptyset \quad \text { and } \quad X=-J_{0} \nabla h+2 h \partial_{\phi}
$$

[^0]:

