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Harmonic map heat flow

Gradient flow of the Dirichlet energy

E (u) :=
1

2

∫
R2

|∇u(x)|2 dx ,

u : R2 → S2

solves the heat equation (Eells, Sampson ’64):

ut = ∆u + |∇u|2u = T (u)

u(0, ·) = u0(·)

Tension: T (u) = ΠTu∆u projection onto the tangent plane Tu

Energy monotone:

E (u(0))− E (u(t)) =

∫ t

0
∥∂s(s, ·)∥22 ds

Existence, regularity, energy concentration and singularities in finite
time: (Struwe ’85). Harmonic maps are stationary solutions to
HMHF.
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Struwe’s heat flow

Let M,N be general Riemannian manifolds, dimM = 2.

Theorem (Struwe ’85)

Initial data u0 ∈ Ḣ1(M;N ), there exists unique global HMHF
energy evolution on [0,∞)× S2 which is smooth up to finitely
many points (xℓ,Tℓ) characterized by the condition

lim sup
t→Tℓ−

ER(u(t, ·), xℓ) > ε0 > 0

for all 0 < R ≤ R0.

Local compactness in Ḣ2(M;N ) if energy does not concentrate,
and

∫
P |∇u|4 dtdx <∞ where P is a parabolic cylinder.

Energy concentration the only obstruction to local Ḣ2 compactness
of a Palais-Smale sequence relative to energy and its L2-gradient.
Harmonic sphere bubbles off at any singular time.
Chang, Ding, Ye ’92: Finite time blowup.
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Qing’s bubbling theorem

Jie Qing ’95 characterized singularity formation in Struwe’s HMHF
R2 → S2 via a bubble decomposition along a carefully chosen
sequence of times approaching one of the singular times Tℓ.

Theorem (Qing ’95)

Let (x0,T0) be a singularity of u : [0,∞)× R2 → S2, HMHF
solution. There exist tn → T0−, harmonic spheres ωk : R2 → S2

lim
t→T0−

ER(u(t, ·), x0) = ER(u(T0, ·), x0) +
p∑

k=1

E (ωk)

u(tn, ·) = u(T0, ·) +
p∑

k=1

(
ωk

( · − akn
λkn

)
− ωk(∞)

)
+ oW 1,2(BR)(1)

R > 0 small, λkn → 0, akn → x0. Bubbles asymptotically
orthogonal.

Proved via bubbling for a Palais-Smale sequence.
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Asymptotic orthogonality of the bubbles

For all k ̸= ℓ, n → ∞

λkn
λℓn

+
λℓn
λkn

+
|akn − aℓn|2

λknλ
ℓ
n

→ ∞ (1)
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Bubbles on bubbles (from Qing’s paper)
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Harmonic maps

Theorem

u : R2 → S2 weak non-constant solution of ∆u + u|∇u|2 = 0 of
finite energy. Then u : S2 → S2 smooth harmonic map (Hélein,
Sacks-Uhlenbeck), nonzero degree. Conformal modulo orientation
(Eells-Wood). Cauchy-Riemann system

∂1u ∓ u × ∂2u = 0 ⇐⇒ ∂2u ± u × ∂1u = 0

holds, u unique minimizer of energy in its homotopy class,
E (u) = 4π| deg(u)|. There exist P,Q ∈ C[z ] without common
linear factor satisfying

max(deg(P), deg(Q)) = | deg(u)| ≥ 1

and such that u = P
Q for deg(u) > 0, or ū = P

Q for deg(u) < 0.
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Key steps in the proof

Hélein’s regularity theorem (false in Rd , d ≥ 3). Div, curl
structure, Hardy space compensated compactness (Coifman,
Lions, Meyer, Semmes ’92): continuity of weak solution.
Then by elliptic regularity ∇u ∈ Lp, u ∈ C∞(R2)

Hopf quadratic differential

φ dz2 = ⟨∂zu, ∂zu⟩ dz2 =
(
|∂xu|2 − |∂yu|2 − 2i⟨ux , uy ⟩) dz2

Harmonic map: ∂z̄φ = 0 holomorphic on S2, constant.
Vanishes at z = ∞ so conformality follows:

|∂xu|2 − |∂yu|2 − 2i⟨ux , uy ⟩ = 0

Bogomolnyi identity:

E(u) = 1

2

∫
R2

|∂1u − u × ∂2u|2 +
∫
R2

∂1u · u × ∂2u
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Elliptic compactness lemma: bubbling in energy and L∞

un : R2 → S2 ⊂ R3 with lim supn→∞ E (un) <∞, and

lim
n→∞

ρn∥T (un)∥L2 = 0

for some ρn ∈ (0,∞). For arbitrary yn ∈ R2, ∃ Rn → ∞ with

un − ω0

( · − yn
ρn

)
−

M∑
j=1

(
ωj

( · − bj ,n
µj ,n

)
− ωj(∞)

)
→ 0

in energy and uniformly on D(yn,Rnρn) ⊃ D(bj ,n, µj ,n)

harmonic maps ωj , nonconstant if j ≥ 1

orthogonality of scales as in (1)

separation of D(bj ,n, µj ,n) from ∂D(yn,Rnρn)

quantization of energy: E (un;D(yn,Rnρn)) = 4πK + o(1)

Qing ’95, Ding-Tian ’95, Wang ’96, Qing-Tian ’97, Lin-Wang ’98
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Disks in the bubble tree

D(bj ,n, µj ,n)

D(yn,Rnρn)
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Local Palais-Smale sequences for the heat flow

Smooth HMHF u : [0,T )× S2 → S2, singularity at t = T . Energy
dissipation ∫ T

0
∥T (u)(t)∥22 dt <∞ (2)

If T = ∞, then ∃ tn → ∞ with
√
tn∥T (u(tn))∥2 → 0

If T <∞, then ∃ tn → T− with
√
T − tn∥T (u(tn))∥2 → 0

Elliptic compactness applies at these parabolic scales. Rescale

If T = ∞, then un(y) := u(tn, yn +
√
tn y) is Palais-Smale

If T <∞, then un(y) := u(tn, yn +
√
T − tn y) is

Palais-Smale

Bubbling for HMHF locally at parabolic scales along a time
sequence tn determined by L2 integrability (2).
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Open problems

If T <∞, is the body map u(T , ·) continuous?
If T = ∞, are the points of energy concentration unique?

Uniqueness of harmonic bubbles? Counterexamples by
Topping if target manifold not S2 (nonanalytic)

Continuous in time bubbling (soliton resolution)?

Progress by Topping, ‘97, ‘04 for maps S2 → S2.

Theorem (Topping, ‘97, ‘04)

If T = ∞ and if all the concentrating bubbles in the sequential
decomposition have the same orientation, then the points of
energy concentration {xℓ} ⊂ S2 are unique. Moreover, the body
map is unique, i.e., there exists a harmonic map ω∞ : S2 → S2
such that u(t)⇀ ω∞ as t → ∞, weakly in Ḣ1 and strongly in
C k
loc(S2 \ {xℓ}).
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Soliton resolution in the equivariant case

Consider k-equivariant maps u : R2 → S2, i.e.,

u(t, re iθ) = (sinψ(t, r) cos kθ, sinψ(t, r) sin kθ, cosψ(t, r))

Harmonic maps given by ψ(t, r) = mπ ± Q(r/λ) for m ∈ Z,
λ > 0, and Q(r) = 2 arctan(rk).

Theorem (Jendrej-Lawrie ’22)

Let ψ(t, r) solve the HMHF. Suppose T = ∞. Then, there exist
m ∈ Z, N ∈ N and C 1 functions 0 < λ1(t) < · · · < λN(t) such
that,

lim
t→T

∥ψ(t, ·)−mπ −
N∑
j=1

±(Q(·/λj(t))− π)∥E = 0

and limt→T
∑
λj(t)/λj+1(t) = 0. Similar when T <∞.

Note: λN+1(t) :=
√
t, and subsequent equivariant bubbles always

have opposite orientations as maps R2 → S2.
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Comments

Van der Hout (’03): same result in the case T <∞ by
showing there are no non-trivial equivariant bubble towers in
finite time. In the case T = ∞, non-trivial bubble towers can
occur; see for example Del Pino, Musso, Wei (’21) for a
construction for the closely related energy critical heat
equation.

Finite time blow up solutions with one bubble (including a
stable regime) were discovered by Raphaël-Schweyer (’13, ’14)
for k = 1. See also Guan, Gustafson, Tsai (’09) and
Gustafson, Nakanishi, Tsai (’10) who proved asymptotic
stability of Q for k ≥ 3, and Davila, Del Pino, Wei (’20) for
blow up outside of equivariant symmetry.

Remainder of the talk: discuss a continuous in time bubble
decomposition in the general case, i.e., for maps R2 → S2
without symmetry assumptions (as in Jendrej-Lawrie ‘22), and
without assumptions on the orientations of the bubbles (as in
Topping ‘97, ‘04).
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Multi-bubble configuration, centers, scales

Centers and scales of harmonic maps: ω : R2 → S2 ⊂ R3 positive
energy, γ0 ∈ (0, 2π), scale of ω

λ(ω; γ0) := inf{λ ∈ (0,∞) | ∃ a ∈ R2 s.t. E (ω;D(a, λ)) ≥ E (ω)− γ0}.

Center of ω: fix a = a(ω; γ0) ∈ R2 with

E (ω;D(a(ω; γ0), λ(ω; γ0))) ≥ E (ω)− γ0.

M-bubble configuration Ω = (ω0, ω1, . . . , ωM)

Q(Ω; x) = ω0 +
M∑
j=1

(ωj(x)− ωj(∞))

where ω0 = const ∈ S2 , ωj : R2 → S2, j ≥ 1 non-constant
harmonic maps, ωj(∞) := lim|x |→∞ ωj(x). Constant maps: M = 0.
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Distance to a multi-bubble configuration

Smooth map u : R2 → S2, multi-bubble Q(Ω), disk D(y ; ρ) ⊂ R2,
auxiliary scales ν⃗ = (ν, ν1, . . . , νM), ξ⃗ = (ξ, ξ1, . . . , ξM).

Distance d(u,Q(Ω);D(y , ρ); ν⃗, ξ⃗) ≪ 1 means

closeness in energy to multi-bubble on the large disk:

E
(
u −Q(Ω);D(y , ρ)

)
≪ 1

near constancy on the exterior neck region:

E (u;D(y , ν) \ D(y , ξ)) + ∥u − ω0∥L∞(D(y ,ν)\D(y ,ξ)) ≪ 1

large exterior neck: ξ ≪ ρ≪ ν

orthogonality of bubbles scales/centers: λ(ωj) ≪ λ(ωk) or

λ(ωj) ≫ λ(ωk) or |a(ωj)− a(ωk)| ≫ λ(ωj)

separation from exterior neck:

ξj ≪ λ(ωj) ≪ dist(a(ωj), ∂D(y , ξ))
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L∞ control on the bubbles, removal of sub-bubbles



uniform closeness of u, ωj after removal of interior bubbles:

∥u − ωj∥L∞(D∗
j )

≪ 1

Swiss cheese (holes are of the same size):

D∗
j := D(a(ωj), νj) \

⋃′
k D(a(ωk), ξj).

separation from boundaries:

ξj ≪ dist(a(ωk), ∂D(a(ωj), νj)), λ(ωj) ≪ νj

Local multi-bubble proximity function:

δ(u;D(y , ρ)) := inf
Ω,ν⃗,ξ⃗

d(u,Q(Ω);D(y , ρ); ν⃗, ξ⃗)

Infimum taken over all multi-bubble configurations, and scales ν⃗, ξ⃗
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Exterior neck region

D(y , ν) D(y , ρ) D(y , ξ)
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Swiss cheese structure
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Continuous time bubbling

Theorem (Jendrej, Lawrie, S. ’23)

u(t) : [0,T+)× R2 → S2 smooth HMHF solution, maximal
T+ = T+(u0) ∈ (0,∞]. If T+ <∞, then ∀ y ∈ R2,

lim
t→T+

δ
(
u(t);D(y ,

√
T+ − t)

)
= 0.

Arbitrary tn → T+ and D(yn,Rnρn) ⊂ D(y ,
√
T+ − t), Rn → ∞,

assume energy evacuates from necks of disks. Then,

lim
n→∞

δ
(
u(tn);D(yn, ρn)

)
= 0.

Analogous statement on D(y ,
√
t) if T+ = ∞.

Solution remains close to multi-bubble configurations at parabolic
scales, and on all smaller disks whose boundaries do not intersect
bubbles, for all times up to T+.
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Comments on the theorem

Analogous result when T+ = ∞
Does not give the uniqueness of bubbles.

How to think about the theorem: non-existence of bubble
collisions that destroy multi-bubble structure.

As a corollary, we obtain a sequential bubble decomposition as
in Qing along every time sequence tn → T+ after passing to a
subsequence (not just along Palais-Smale sequences)
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Comments on the proof

Proof by contradiction: u(t) cannot come close to, and then
move away from multi-bubble configurations (MBCs) infinitely
many times. Reminiscent of invariant manifold theory in
dynamical systems, theory of ω-limit sets.

However: linearized operator here has no spectral gap, no
stable/unstable manifolds

By sequential soliton resolution (bubbling along sequence of
times) we know that we approach MBCs infinitely many times.

If theorem fails, δ
(
u(tn);D(yn, ρn)

)
> η > 0 for tn → T+−.

By energy dissipation and compactness lemma exist σn with
δ
(
u(σn);D(yn, ρn)

)
→ 0 where 0 < tn − σn ≪ ρ2n

Notions of collision intervals and minimal collision energy
needed to lead this to a contradiction. This was essential for
soliton resolution for wave maps by Jendrej, Lawrie ’21.
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Propagation estimates: local energy

Local energy propagation (Struwe ’85): 0 < t1 < t2 < T+,∫
R2

|∇u(t2, x)|2ϕ(x)2 dx ≤
∫
R2

|∇u(t1, x)|2ϕ(x)2 dx + CE (u0)
t2 − t1
R2∫

R2

|∇u(t2, x)|2ϕ(x)2 dx ≥
∫
R2

|∇u(t1, x)|2ϕ(x)2 dx

−C
(
E (u0)

(t2 − t1)

R2
+ |E (u(t1))− E (u(t2))|

)
ϕ cut-off adapted to D(x0,R).

Integrate HMHF by parts against utϕ
2. Nonlinear term drops

out, normal vector field.

Controls energy flow on parabolic regions.

Energy evacuates from boundaries of parabolic regions. No
self-similar energy concentration both in finite (Topping) and
infinite times.
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Tao’s L2tL
∞
x parabolic Strichartz estimate

Lemma: Solution of ∂tv −∆v = F , v(0) = v0 satisfies

∥v∥L2(I ;L∞(R2)) ≤ C0

(
∥v0∥L2(R2) + ∥F∥L1(I ;L2(R2))

)
With (Tf )(t) := et∆f one has T ∗F =

∫∞
0 es∆F (s) ds. From

(TT ∗F )(t) =

∫ ∞

0
e(t+s)∆F (s) ds

conclude

∥(TT ∗F )(t)∥∞ ≲
∫ ∞

0
(t + s)−1∥F (s)∥1 ds

∥TT ∗F∥L2((0,∞),L∞(R2)) ≲ ∥F∥L2((0,∞),L1(R2))

⟨TT ∗F ,F ⟩ = ∥T ∗F∥22 ≲ ∥F∥2L2((0,∞),L1(R2))
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Propagation estimates: pointwise bounds

Lemma: On a Swiss cheese region with L ≥ 0 congruent,
well-separated holes, assume

∥un,0 − ω∥L∞(D(0,4Rn)\
⋃L

ℓ=1 D(xℓ,4−1εn))

+ E
(
un,0 − ω;D(0, 4Rn) \

L⋃
ℓ=1

D(xℓ, 4
−1εn)

)
→ 0.

Then, if τn ≪ ε2n (or τn ≪ R2
n if L = 0),

∥un(τn)− ω∥L∞(D(0,Rn)\
⋃L

ℓ=1 D(xℓ,εn))
→ 0.

Contraction of heat flow on L∞

Tao’s parabolic Strichartz estimate

Struwe’s small energy local
∫
(|∇u|4 + |∆u|2) dtdx bound

Jendrej, Lawrie, S. Continuous time bubbling for HMHF



Minimal collision energy

Definition: K ≥ 1 minimal with the following properties.
∃ yn ∈ R2, ρn, εn ∈ (0,∞), σn, τn ∈ (0,T+) and η > 0, with
εn → 0, 0 < σn < τn < T+, σn, τn → T+, so that

1 δ(u(σn);D(yn, ρn)) ≤ εn;

2 δ(u(τn);D(yn, ρn)) ≥ η;

3 the interval In := [σn, τn] satisfies |In| ≤ εnρ
2
n;

4 E (u(σn);D(yn, ρn)) → 4Kπ as n → ∞;

We call σn bubbling times, and τn ejection times.

Lemma: If theorem fails, then K ≥ 1 well-defined with collision
intervals [σn, tn].

Based on energy dissipation and localized sequential bubbling. For
K > 0 need propagation estimates, both in energy and L∞.
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Lengths of collision intervals

Key Lemma: Let K ≥ 1 minimal collision energy, In := [σn, τn]
associated collision intervals. ∃ ε > 0 such that if sn ∈ In satisfies

δ(u(sn);D(yn, ρn)) ≤ ε

Then,

τn − sn ≥ ε max
j∈{1,...,M}

λ(ωj)
2 =: ελ2max,n. (3)

where scales λ(ωj) correspond to any MBC Q(ω) for which

ε ≤ d(u(sn),Q(ω);D(yn, ρn); ν⃗, ξ⃗) ≤ 2ε. (4)

Proof Sketch: If lemma fails, ∃ σ̃n ∈ In with τn − σ̃n ≪ λ2max,n

and for which δ(u(σ̃n);D(yn, ρn)) → 0 and δ(u(τn);D(yn, ρn)) ≥ η
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Key lemma: proof sketch

λmax,n

E ≤ 4π(K − 1) + o(1)
multi-bubble configuration

λmax,n

E ≤ 4π(K − 1) + o(1)
NOT multi-bubble configuration

t = σ̃n t = τn

By propagation estimates, multi-bubble structure is preserved
at scale λmax,n on the interval [σ̃n, τn].

Hence, it is lost at a smaller scale (pink disks, radius√
τn − sn ≪ ρ̃n ≪ λmax,n), contradicting minimality of K
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Main theorem: proof sketch

Use key lemma: fix ε > 0 and Jn := [sn, τn] ⊂ In so that

τn − sn ≥ ελ2max,n, δ(u(t);D(yn, ρn)) ≥ ε, ∀t ∈ Jn

(“no return property” on Jn).

Then,

λmax,n∥T (u(t))∥2 ≥ c0 > 0 for all t ∈ Jn

Otherwise, bubbling at scale λmax,n at some tn ∈ Jn by elliptic
compactness lemma, contradicting no-return property of Jn.

Contradiction with the energy identity:

∞ =
∑
n

∫ τn

sn

c0λ
−2
max,n dt ≤

∑
n

∫ τn

sn

∥T (u(t))∥2L2 dt

≤
∫ T+

0
∥T (u(t))∥2L2 dt <∞
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