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SIMONS COLLABORATION ON WAVE TURBULENCE

This collaboration is a joint effort of several groups of mathematicians and
physicist, with theoretical, experimental, and numerical expertise, who are
working together on an interdisciplinary set of problems in Wave Turbulence
Theory.

Tristan Buckmaster, Oliver Blhler, Laurent Chevillard, Pierre-Philippe Cortet,
Thierry Dauxois, Eric Falcon, Erwan Faou, Isabelle Gallagher, Pierre Germain,
Zaher Hani, Alexandru lonescu, Giorgio Krstulovic, Nicolas Mordant, Andrea
Nahmod, Sergey Nazarenko, Miguel Onorato, Laure Saint Raymond, Jalal
Shatah, Gigliola Staffilani, Eric Vanden-Eijnden



WAVE TURBULENCE THEORY (WTT

WAVES, WEAKLY NONLINEAR DISPERSIVE.
TURBULENCE, THE PRESENCE OF ENERGY CASCADES BETWEEN SCALES.
THEORY OF NONLINEAR INTERACTING RANDOM WAVE (OBSERVED PHYSICALLY OR EXP.)




WAVE TURBULENCE THEORY (WTT)

(Oru = iL(30x)u+ uN(u), xeD

Lu(x,0) = up(x) = O(1).

Weakly nonlinear: u -strength of the nonlinear interactions.
Dispersive: | 0:0;L(k) |-nondegenerate

Random waves: ug-decomposed into waves, and each is randomize by an
iid RV



WAVE KINETIC EQUATION

1) WKE was derived to describe evolution of the wave spectrum.

2) Kolmogorov—Zakharov (KZ) spectra: these are power law solutions that are
analogous to the Kolmogorov spectrum of hydrodynamic turbulence
describing energy cascade.

3) KZ solutions put WT into the domain of general Turbulence: strongly non-
equilibrium statistical systems.

FIGURE: A TYPICAL MAP OF AVERAGED WAVE HEIGHT OBTAINED BY INTEGRATING THE WKE USING WAVE FORECASTING MODELS.



EXAMPLES

def
NONLINEAR SCHRODINGER EQUATIONS (NLS) wk = L(k) = |k|?

iy + Au+ plul*Mu =0, x e T¢

u(x,0) = up(x) = O(1),

The Gross-Pitaevskii equation
Kelvin wave cascade & vortex filaments

Krstulovic , Miller, and Polanco

u=Age 't +5u  wy = \/2A%k2 + k4

Muller, Krstulovic
Phys. Rev. B 102, 134513 (2020)



EXAMPLES

Gravity and capillary surface waves of irrotational flow of an inviscid (ideal)
incompressible and homogeneous fluid of infinite depth.

1
H= — Ewk\uk\2 ZM§2534ukluk2uk3uk4 + ... ], Wi = ‘k’2,

Capillary waves 17 cm Wave |e ngth 10 cm Gravity waves

Nicolas Mordant, Eric Falcon Experiments in Surface Gravity—Capillary Wave Turbulence
ANNUAL REVIEW OF FLUID MECHANICS VoOL. 54:1-25



WAVE TURBULENCE EXPERIMENTS

Internal waves in stratified
and/or rotating fluids

Gravity-wave turbulence
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13m diameter, 100 tons of water,
2 tons of salt, rotation up to 2 rpm

Internal/inertial waves:

Grenoble (N. Mordant), Lyon (T. Dauxois), Orsay (P.P. Cortet), Paris (E. Falcon)



WAVE TURBULENCE EXPERIMENTS

Experiment to study wave turbulence in shallow water

Random forcing JONSWAP (Joint North Sea Wave Project) spectrum at a peak
"high" frequency (1 Hz) at the crossover deep/shallow water (weak turbulence)

Nicolas Mordant, Eric Falcon



WAVE TURBULENCE EXPERIMENTS

Experiment to study wave turbulence in shallow water

Random forcing JONSWAP (Joint North Sea Wave Project) spectrum at a peak
"high" frequency (1 Hz) at the crossover deep/shallow water (weak turbulence)

Nicolas Mordant, Eric Falcon



WAVE TURBULENCE EXPERIMENTS

Experiment to study wave turbulence in shallow water

Random forcing but at a peak frequency of forcing 0.2 Hz (shallow water
regime) and a mix of dispersive waves and solitons




WAVE TURBULENCE EXPERIMENTS

Experiment to study wave turbulence in shallow water

Random forcing but at a peak frequency of forcing 0.2 Hz (shallow water
regime) and a mix of dispersive waves and solitons




HEURISTIC DERIVATION OF WKE

Start with homogenous waves onT§

1 ik-x

u(x, t) = — ui(t)e™ uk(0) = Prgk 8k iid Gaussian
Lz ez

Orly = — Wy Uy -I— Z kukl U, U, Sk = ki + ko — ks — k

—lwy t

Factor the linear flow u, = e Ak

= —i§2t
&tak— Ld Z 6(Sk)M3:ay, ax, ax, e
Ky ka, ks

(2 = Wy, + Wk, — Wi, — Wk



HEURISTIC DERIVATION OF WKE

, f
Expected value of the wave action nx Z E (|a,|?)

8tnk— Ld Z 6(SK)M3EE (ay, ak,ar,ax) e 't + C.C. def 1 — 4

|1d

ki,k2,k3 L
8,5/4 — %l6
&tl6 — %lg



HEURISTIC DERIVATION OF WKE

Solve on a time interval [0,Af]

2 (QuAt/2)
(£2/2)°

(1)~ n(0) = 122 S 5(80T Sin L Ot DY),

2 (& 1 1 &
s W3 (%o - S ) [
i=0 'K |

=2 =0
L — oo converts the Riemann sum into an integral,

sin® (2, At/2)

(01/2) dkidkydks + O(u*At)
k

m(A) — n(0) = cypi? f 5(S0)T



HEURISTIC DERIVATION OF WKE— NLS M;7; = 1

sin® (2, At/2)

At > 1 — >
(£2¢/2)

—> 2#At5(ﬂk)

ne(At) — ng(0) = ;—;,LﬂAtf5(5k)5((2k)f§dk1dk2dk3 + O(u*At)

5 o 2T
Assume u“At « 1 and defining Tkin = e get

67'”/( — J5(Sk)5(0k)zdk1dk2dk3, T =



WKE (4-WAVES SYSTEM)

3
) | | ni iy dkods

i=0
=Col(n, k)

Energy conservation — f nwrdk = 0

d
Wave action conservation p f”kdk =0



WKE (4-WAVES SYSTEM)

T+
— n, —
Rayleigh-Jeans spectra k P
51 oS 1
Thermodynamic equilibrium — = —  zero flux
i—o ki i3 Mk

Are there equilibrium solutions with non zero flux? Simplify the problem
by looking for Isotropic solutions

NLS in 3-d:  f(p,t) = 4mp°ni(t), p = ||

of (p, t . _
(&’t ) = 27rfm|n (P, p1. P2, P3)(P P1P2P3) 15(P% + P% — P% — P2)

2 2 2 2
x fh ff3 (P—f + 3 -7 - %”) dp1dp2dps



KOLMOGOROV ZAKHAROV SPECTRA FOR THE NLS

Isotropic WKE 0:f, = 4mp*Col(f, p)
Energy conservation Ot (whp) = —0,Q(f, p) R energy flux
Wave action conservation Otfp = —0,P(f, p) P wave action flux

Are there stationary solutions where either P or @ are not zero?



KOLMOGOROV ZAKHAROV SPECTRA FOR THE NLS

C C
n = — =
Ansatz k k2o

wOé

Col(n, k) = 47> C2k* %I (a)

(@) = f [min (1, g1, 42, 43)]" (a7 + 5 — 4§ — 1)

(q192q3) "6 (g1 + g2 — g3 — 1) dg1dgodgs

Evaluate /(«) using Zakharov's (singular) transformation.

(o) — Iz7 (@), (o) = Iz7(a)?



KOLMOGOROV ZAKHAROV SPECTRA FOR THE NLS

Zakharov's transformation gives two possibilities

a=7/6 and

o =17/6 Q(k) = 8" C3| k|70 yerlo),

a=3/2 P(3/2) = o

YING ZHU, BORIS SEMISALOV, GIORGIO KRSTULOVIC, AND SERGEY NAZARENKO
PHYS. REV. LETT. 130, 133001 — PUBLISHED 27 MARCH 2023

a = 3/2

Inverse cascade

Direct cascade



WTT AND GRAVITY WAVES

@nk

E — COI(”, k) + Fpump(k) — Fdis(k)
Gravity waves system is characterized by a dual cascade behavior

DC 1
KZ spectra n, -~ ~ W energy cascade downscale
1
Second KZ spectra nf(c ~ VL the wave action is cascading upscale
10:20 \\
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ALEXANDER O. KOROTKEVICH PRL

INVERSE CASCADE SPECTRUM OF GRAVITY WAVES IN THE PRESENCE OF A CONDENSATE: A DIRECT NUMERICAL SIMULATION



WTT AND GRAVITY WAVES
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INVERSE CASCADE SPECTRUM OF GRAVITY WAVES IN THE PRESENCE OF A CONDENSATE: A DIRECT NUMERICAL SIMULATION
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WTT AND GRAVITY WAVES

2

nk2nk3(nk1 — nk)5((2)}k o dkzdkg
1=KT(q

ank ki k
ot YT f T

ony k, k3 °
=4 | 6(Q)miy e, Vi 4 (ke — ko) ‘Tk;kl (ks — k3) - Ving b dkodks
0 0 on
i — (2 - — | D,=*£ = |k|, D, ~ p*
Isotropic case &t( TpNn,) p ( b &p) . p = k|, p p
. . C
Isotropic wave action flux n(k) = W

A. Korotkevich, S. Nazarenko, Y. Pan, and J. Shatah:
Nonlocal gravity wave turbulence in presence of condensate.



RIGOROUS DERIVATION OF WKE

—i (2t
&tak — Ld Z e aklakzak35(5k)
ki,ko, k3

The waves ki, k2, k3, k are resonant if

szk1+wk2—wk3—wk20

] = —1
6tak — L—'L; Z aklakzak35(5k) Ld Z € Qtaklakzak35(5k)
2=0 (2+#0

lterate Duhamel’s formula: first term grows in time. The second term oscillates



RANGE OF PARAMETERS
1) Weakly nonlinear y << 1. 2) Large domain L > 1.

3) Longtime intervals Ar > 1

The range of parameters where WKE gives a good description.
1) Linear time scale Tj, = -~ = O(1)

2) Nonlinear time scale T, = (’)(%)

3) Resonant time scale T, = O(L?)

4) Kinetic time scale Ty, = (’)(%)

7_/in < 7_nl < 7_kin < Tres

1
[ — o0 : z<,u<<1, TZF, ,uzﬁ, O<a<l,



DERIVATION OF WKE

1. Developing a series by iterating Duhamel’s formula (integrate by parts in
time) requires keeping track of how many terms and the size of each term
(as a function of L).

Can be done by very difficult combinatorial, probabilistic and humber
theoretic arguments.

2. Converting the sum into on integral: Requires Fourier analysis and number
theory.

To get the full range of parameters when this is possible requires deep
results in number theory.

3. Controlling the remainder.
This require hard PDE analysis and optimal estimates on the iterates.

This program was carried out by Y. Deng and Z. Hani for the NLS.



RIGOROUS RESULTS

PERIODIC SETTING

BUCKMASTER—GERMAIN—HANI-SHATAH

DENG—HANI, COLLOT—GERMAIN

DENG—HANI

STAFFILANI—TRAN (STOCHASTIC FORCING), MA (DISSIPATION)

RELATED RESULTS

ERDOS—SALMHOFER-YAU (LINEAR SCHRODINGER EQUATION)
LUKKARINEN—SPOHN (GIBBS MEASURE)

DENG—HANI (NLS ON THE PERIODIC BOX Ti’ WITH d > 3)

THERE EXISTS 0 < 1 FIXED, SUCH THAT FOR L LARGE ENOUGH

E|di (£)]2 — n(——, k)

UNIFORMLY IN (£, k) FOR
tE[O,(STk,'n] Mz—a,0<04<1



THE ITERATES: FEYNMAN'’S TREES

] y
Ora = L—'Ij Z e a3 ak,0(Sk)
ki,ko, k3

Laplace transform

i » -
sZ(ak)(s) = ax(0) + d e STt
ki ko ks 0
Integrate by parts
v
ax + ! Ak, A1, Ak, 0 (Sk) +
KT s TRk TASK

1

ak35(5k)
@ +
dk
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TREE PAIRINGS: REGULAR VS SELF-PAIRING VS DEGENERATE

REGULAR ®o—0O M

SELF INTERACTING np/ I \/. :

DEGENERATE



TREE PAIRINGS

&—O (Regular)

+ O—A (Degenerate)

(Regular) (Self-interacting or degenerate)



TREE PAIRINGS




REMARKS

1. Wave turbulence regimes are proven to exist naturally, experimentally,
and mathematically.

a. Gravity wave turbulence
b. Capillary wave turbulence

2. Range of applicability is work in progress

3. Extensions: Many situations are still unclear (interaction with

finite- amplitude waves)

4. Fertile area to develop new analytical techniques for solving PDEs



INHOMOGENEOUS TURBULENCE IN R?

INHOMOGENEOUS WAVES,

e > 0 IS THE SCALE OF THE SPECTRAL WIDTH OF WAVE PACKETS.

1 Ik-x
RANDOM DATA:  Uo(X) = I > dlex)gne™™, g« 110, Gaussians
2

WAVE ACTION DENSITY

W(x,(, t) = W) = | e ™ YE(u(x +

DERIVE WKE For W (z, &, 1)



HOMOGENOUS VS NON HOMOGENOUS

Homogenous Inhomogenous

Pairing rule: A,(7) is paired with A, (f) ~ Pairing rule: A +1/2,1) is paired
with A, (¢ — /2, 1)

Self interacting trees can be bounded  Self interacting trees Can not

And contribute to the WKE be bounded. We have divergence of
self-interacting trees.

Cancelation of irregular chains where  No cancelation of irregular chains
each term considered separately can be
unbounded

RELATED WORK: AMPATZOGLOU—COLLOT—GERMAIN (QUADRATIC NONLINEARITY)
HANNANI—ROSENZWEIG—STAFFILANI—TRAN (STOCHASTIC FORCING)



MODEL EQUATION

WOULD LIKE TO HAVE A MODEL WHERE

1.  WE CAN RIGOROUSLY FORMULATE AND TEST THE THEORETICAL FOUNDATIONS OF
INHOMOGENEOUS WTT.

2. SIMPLE TREE PAIRING STRUCTURE THAT ELIMINATES SELF-INTERACTIONS.

3. EXACTLY SOLVABLE USING PERTURBATION METHODS.

WICK NONLINEAR SCHRODINGER EQUATION (WNLS) H. Zhu, Z. Hani, and J. S.

10ty +Au+Au@GQuOu=0



WNLS

{gk} are Gaussian random variables with zero mean.

o probability space: o-algebra generated by {8k}

P, = {Set of polynomials in {gx} of degree < p.} (Closure in L*(</))

HP = P;_—lﬂPP
L*(d) = P HP
p=0

Tp . orthogonal projection on H*

XOY =mpq(XY), if XeHP, YeH9



WNLS

10;u+Au+Au@QuOu=0

1 .
10suP + —AuP = —\ Z uP* ©Q uP2 O uP?, peNp.

pP1+pP2+pP3=p

Well prepared data: narrow wave packets and phase randomization

1 k-x
U(O,X) o m Z ¢(€X, k)e%k 8k
keZ¢



CORRELATIONS

Wave kinetic equation

(&t —|‘ 2/( ) VX) Wk —

[ >0, pu=-—, €=-—F, a=>b

2J 5(2) | | Widkidkodks, keR7,

i 1<j<3

p
E|np3k}2(t/ﬂ21)/) — Wi (t,y), Ny, = Z Mg

lim lim sup sup
P=X L= 14|< T kezd

H. Zhu, Z. Hani, and J. Shatah

q=0

E‘npak‘z(t/ﬁ‘2' ) — Wil(t, ')lLoo -0



SECOND MICRO-LOCALIZATION

Wigner transform of ['1,A

EW[M,Ak(t/1?)] (v, ¢) = Exc(t,y)

(51; + V,w - VX)E/(,C = ZJ
Dy

s@)(| T Bygdc)dk, (k) e R,

2¢ 1<j<3

WNLS > WNLS periodic

Integrate in ¢ a<b<w .
WKE 2 > WKE > WK semi-homogeneous

—> WK inhomogeneous



THANK YOU FOR YOUR ATTENTION.



