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3. Flock Centering:

attempt to stay close to nearby flockmates
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Discrete models of collective behavior describe dynamics of a number of agents:

ẋi = vi ,

v̇i = si ([v]i − vi ), (xi , vi ) ∈ Ω× Rn.

Agents adjust their directions to environmentally averaged velocity [v]i with a

strength si .

Emergence is formation of global patterns resulting from local interactions.
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Cucker-Smale model

• Cucker-Smale alignment model, 2007:
ẋi = vi ,

v̇i =
1

N

N∑
j=1

ϕ(xi − xj)(vj − vi ),
(xi , vi ) ∈ Ω× Rn

where

si =
1

N

∑
j

ϕ(xi − xj), [v]i =

∑
j ϕ(xi − xj)vj∑
j ϕ(xi − xj)

and ϕ is a radially decreasing communication kernel.
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• Sufficiently strong global communication ⇒ Unconditional alignment.

Local kernel Long-range kernel

r0

φ(r)

φ(r) ∼ 1
rβ

Theorem (Cucker, Smale (2007); Ha, Tadmor (2008); Ha, Liu (2009))

Suppose

ϕ(r) =
H

(1 + r 2)
β
2

.

if β ⩽ 1, then any solution aligns and flocks exponentially fast:

max
i

|vi − v̄| ⩽ Ce−δt , sup
i,j

|xi − xj | ⩽ D̄ <∞.

– kinetic version due to Carrillo, Fornasier, Rosado, Toscani (2010);

– macroscopic version due to Tan, Tadmor (2014).
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CS in applications

– L. Perea, P. Elosegui, and G. Gomez. Extension of the Cucker-Smale control

law to space flight formations. Journal of Guidance, Control, and Dynamics,

32:526 – 536, 2009.

– M.Bongini, M.Fornasier and D.Kalise, (Un)conditional consensus emergence

under perturbed and decentralized feedback controls, Discr. Contin. Dyn. Syst.

Ser. A 35 (2015) 4071–4094.

– Y.-P. Choi, D. Kalise, J. Peszek and A. A. Peters, A collisionless singular

Cucker–Smale model with decentralized formation control, SIAM J. Appl. Dyn.

Syst. 18 (2019), no. 4, 1954–1981.

– J.-A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse, An analytical framework

for consensus-based global optimization method, Math. Models Methods Appl.

Sci. 28 (2018) 1037–1066.

– Zhiping Mao, Zhen Li, George Em Karniadakis, Nonlocal flocking dynamics:

Learning the fractional order of PDEs from particle simulations. Commun.

Appl. Math. Comput. 1 (2019), no. 4, 597–619.
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“Local communication ⇒ Flocking” commonly requires propagation of

connectivity.

b
b

b

b

b

b

b

b

b

b

xj

xi

r0

r0

r0

r0

> r0

Theorem (Morales, Peszek, Tadmor (2019))

If the flock remains r0-connected at all times, then it aligns. If the kernel is

local, ϕ(r) ∼ Λ1r<r0 but strong, Λ ≫ 1, then any initially r0-connected data

results in aligned outcome.

Theorem (Tadmor, Shu (2019))

Under quadratic confinement force F = −U(x), U(r) = r 2, the condition on

ϕ relaxes to ϕ ≳ 1
r2
.
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Let us assume purely local communication:

ϕ(x) ⩾ λ1|x|⩽r0 .

Attempted approaches:

– microscopic level: generic alignment conjecture.

– kinetic level: alignment = problem of relaxation for kinetic models;

hypocoercivity method.

– macroscopic level: hydrodynamic connectivity; how low can the density ρ be

to ensure collective outcome?
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Generic Alignment Conjecture on Tn

Let us assume only local communication: “locked states”

ϕ(x) ⩾ λ1|x|⩽r0

Kronecker, 1800’s: The Euclidean line x = tx0 + v0, where

x = (x1, x2, . . . , xN), v = (v1, v2, . . . , vN)

densely fills a k-dimensional subtorus of TnN where

k = dimQ

nN∑
j=1

Qvj0.

Generic Alignment Conjecture: For almost every initial data

(x0, v0) ∈ TnN × RnN solutions to the Cucker-Smale system align

max
i,j

|vi − vj | → 0.
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Agent-based results

Dietert, RS (2021) The conjecture is true for n = 1.

RS (2023) The conjecture is true for the sticky particle model.

ϕ(x) =

{
∞, |x | ⩽ r0;

0, |x | > r0.
(1)

RS (2023) The conjecture is true for N = 2 and any n ∈ N. In fact, for any N,

for almost every initial data at least 2 agents will align. Moreover, the

ensemble dynamics contracts volumes to 0:

det∇St(x, v) = exp

−
∫ t

0

∑
i ̸=j

ϕ(xi − xj) ds

 → 0.
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Large crowd dynamics

S.-Y. Ha, E. Tadmor (2008); S.-Y. Ha , J.-G. Liu (2009): mean-field limit

µN =
1

N

N∑
i=1

δvi ⊗ δxi → f

∂t f + v · ∇x f = sρ∇v ((v − [u]ρ)f ), (Vlasov-Alignment)

where ρ and u are the macroscopic variables

ρ(x , t) =

∫
Rn

f (x , v , t) dv , ρu =

∫
Rn

vf (x , v , t) dv ,

and sρ and [u]ρ come from the model in question:

sρ = ρϕ = ρ ∗ ϕ, [u]ρ(x) =
(uρ)ϕ
ρϕ

(Cucker-Smale)

sρ = 1, [u]ρ(x) =
(uρ)ϕ
ρϕ

(Motsch-Tadmor)

sρ = 1, [u]ρ(x) =

(
(uρ)ϕ
ρϕ

)
ϕ

(new)

RS (2022) arxiv: Environmental Averaging.
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Euler Alignment system

The macroscopic variables satisfy the Euler-Alignment system
ρt +∇ · (ρu) = 0,

(ρu)t +∇x · (ρu ⊗ u +R) =

∫
Rn

ρ(x)ρ(y)(u(y)− u(x))ϕ(x − y) dy ,

where R is the Reynolds stress tensor,

R(x , t) =

∫
Rn

(v − u(x , t))⊗ (v − u(x , t))f (x , v , t) dv .

Kang, Vasseur (2014); Figalli, Kang, (2019); RS (2020): hydrodynamic limit in

monokinetic regime

f → ρ(x , t)δ(v − u(x , t))

This leads to pressureless EAS, R = 0.

Karper, Mellet, Trivisa, 2014-16: Maxwellian regime

f → ρ(x , t)

(2π)n/2
e−

|v−u(x,t)|2
2

This leads to isothermal pressure, R = ρI.
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Well-posedness of hydrodynamic models

– Carrillo, Choi, Tadmor, Tan (2014-2016). Pressureless EAS: g.w.p. under

critical threshold criterion, smooth kernel 1D:

e = ux + ϕ ∗ ρ ⩾ 0, et + (eu)x = 0.

– Tadmor, RS, (2016-2017); T. Do, A. Kiselev, L. Ryzhik, and C. Tan (2017):

singular fractional parabolic models, unconditional g.w.p. in 1D

ϕ(r) =
1

r 1+α
, 0 < α < 2.

(Caffarelli-Chen-Vasseur, Caffarelli-Silvestre regularization; alternatively,

modulus of continuity)

– He, Tadmor (2016) spectral dynamics in 2D, D. Lear, RS (2019-21)

unidirectional flows, Ch. Tan (2020) radial flows, Danchin, Mucha, Peszek,

Wroblewski (2019), RS (2019) small initial data, etc.

– Choi (2018) 1D isothermal EAS, small data; Constantin, Drivas, RS 2020

global well-posedness of non-vacuous solutions, entropy hierarchy.
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Hydrodynamic approach. Spectral Gap

Consider solution to pressureless EAS
ρt +∇ · (ρu) = 0,

(ρu)t +∇x · (ρu ⊗ u) =

∫
Rn

ρ(x)ρ(y)(u(y)− u(x))ϕ(x − y) dy ,

with ū =
∫
Ω
ρu dx = 0. Then alignment can be measured by the energy

E =
1

2

∫
Ω×Ω

ρ|u|2 dx .

d

dt
E = −1

2

∫
Ω×Ω

|u(x , t)− u(y , t)|2ρ(x , t)ρ(y , t)ϕ(x − y) dx dy := −(u,Lρu)ρ,

where Lρu = sρ(u − [u]ρ). Let

λ = inf
u∈L20(ρ)

(u,Lρu)ρ
(u, u)ρ

⩾ 0. (2)

Then
d

dt
E ⩽ −λE ⇒ E → 0 if

∫ ∞

0

λ(s) ds = ∞.

Tadmor (2021): λ ∼ ρ2−
ρ+

. So, provided ρ+ is under control we need ρ− ≳ 1√
t
.
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Low Energy Method

Let us rewrite the energy equality in a different way:

d

dt
E = (u, [u]ρ)ρsρ − (u, u)ρsρ := E1 − E0.

Need:

E0 − E1 ⩾ εE0 ≳ ερ−E .

So, then λ ∼ ερ−. Can we find a bound on ε independent of ρ+?

Let us

consider a hierarchy of energies

E0 = (u, u)ρsρ

E1 = (u, [u]ρ)ρsρ

E2 = ([u]ρ , [u]ρ)ρsρ

E3 = ([u]ρ ,
[
[u]ρ

]
ρ
)ρsρ . . .

It turns out:

E1 − E2 ⩾ εE1 ⇒ E0 − E1 ⩾ εE0.

KEY observation: estimates on the lower energy gap are independent of ρ+!
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For Cucker-Smale: supposing ϕ = ψ ∗ ψ, we have where ψ ⩾ 0, alignment

occurs provided

E1 − E2 =
1

2

∫
Ω2

ρψ(x)ρψ(y)

(
ρ

ρϕ

)
ψψ

(x , y)

∣∣∣∣ (uρ)ψρψ
(x)− (uρ)ψ

ρψ
(y)

∣∣∣∣2 dy dx ,

where

rψψ(x , y) =

∫
Ω

ψ(x − ξ)ψ(y − ξ)r(ξ) dξ,

This leads to the new estimate

λ ∼ ρ4−.

So, for alignment we need

ρ− ≳
1
4
√
t
.
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Topological diffusion

When communication has a limited range the interaction may be ”topological” rather

than ”metric”:

Topological versus Metric protocol

– A. Cavagna, A. Cimarelli, I. Giardina, A. Orlandi, G. Parisi, A. Procaccini, R. Santagati, E. Silvestri, F. Stefanini, and M. Viale, V.

Zdravkovic (2008) : StarFlag Project.

– J. Haskovec. Flocking dynamics and mean-field limit in the Cucker-Smale type model with topological interactions. Phys. D,

261(15):42–51, 2013.

– A. Blanchet and P. Degond. Topological interactions in a Boltzmann-type framework. J. Stat. Phys., 163:41–60, 2016.

– A. Blanchet and P. Degond. Kinetic models for topological nearest-neighbor interactions. J. Stat. Phys. volume 169: 929–950, 2017.
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– Tadmor, RS. Topologically based fractional diffusion and emergent dynamics with

short range interactions. SIAM J. Math. Anal., 52(6):5792–5839, 2020

x yΩ(x, y)

1. Every agent x has a finite influence range, B(x , r0).

2. Agent x influences agent y through communication domain Ω(x , y) = Ω(y , x).

3. The mass

d(x , y , t) =

∫
Ω(x,y)

ρ(z, t) dz.

determines the communication distance between x and y .

Based on the outlined principles, we make the following choice:

ϕρ(x , y) =
1

d(x , y , t)|x − y |α
1|x−y|<r0 .
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Topological Euler-Alignment system


ρt +∇ · (ρu) = 0,

ut + u · ∇u =

∫
Tn

ϕρ(x , y)(u(y , t)− u(x , t))ρ(y , t) dy .

Theorem (Tadmor, RS (2018))

Let (u, ρ) be a global smooth solution to the topological model on Tn and

ρ(x , t) ≳
1

t
, t → ∞. (3)

Then

|u(t)− ū|∞ ≲
1

(ln t)1/6
.

In 1D the lower bound (3) holds automatically.
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Well-posedness

RS, Tadmor. Topologically based fractional diffusion and emergent dynamics

with short-range interactions, SIMA. Vol. 52, No. 6, pp. 5792–5839 (2020);

Reynolds, RS. Local well-posedness of the topological Euler alignment models

of collective behavior, Nonlinearity, Volume 33, Number 10, 5176–5214 (2020).

Lear, Reynolds, RS. Global solutions to multi-dimensional topological Euler

alignment systems, Ann. PDE 8 (2022), no. 1, Paper No. 1, 43 pp.
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Fokker-Planck-Alignment model

Locked states are disrupted by stochastic noise

v̇i = si ([v ]i − vi ) +
√
2σsiẆi , (4)

where Wi ’s are independent Brownian motions in Rn. The mean-field limit of

solutions satisfies a Fokker-Planck-Alignment equation

f σt + v · ∇x f
σ = σsρ∆v f

σ + sρ∇v ((v − [uσ]ρ)f
σ).

So, the expected behavior as t → ∞ would be the same as for the linear

Fokker-Planck equation which is a relaxation to the global Maxwellian

f σ → µσ,ū =
1

(2πσ)n/2
e−

|v−ū|2
2σ ,

where ū is the mean velocity. If such a convergence holds true, then the

alignment of the original system can be recovered in the limit of vanishing noise

σ → 0:

lim
σ→0

lim
t→∞

f σ(t) = δv=ū ⊗ dx .

21



– Duan, Fornasier, and Toscani (2010): relaxation in the Cucker-Smale case

ft + v · ∇x f = σρϕ∆v f +∇v ((ρϕv − (uρ)ϕ)f ),

for perturbation data,

f = µσ,ū + g
√
µσ,ū, ∥g0∥Hk (Tn×Rn) ⩽ ε,

for some small ε > 0.

– Choi (2016): relaxation for purely local model

ft + v · ∇x f = σ∆v f +∇v ((v − u)f ),

in the perturbative settings also.

These results are inspired by techniques from collisional models (Landau,

Boltzmann) by Guo, Duan, and others.
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Kinetic Cucker-Smale. Main result

Consider IVP for FPA based on Cucker-Smale protocol

ft + v · ∇x f = σρϕ∆v f +∇v ((ρϕv − (uρ)ϕ)f ),

Theorem (RS, 2022)

Suppose f0 ∈ Hk
l , k, l ⩾ n + 3, and suppose ϕ = ψ ∗ ψ. Then there exists a

unique solution to FPA in Hk
l classical global solution to FPA, such that

ρ− > 0 uniformly for all t > t0 > 0, and f relaxes to the corresponding

Maxwellian at an exponential rate

∥f (t)− µσ,ū∥L1(Tn×Rn) ⩽ c1σ
−1/2e−c2σ

1/2t ,

for some c1 depending on the initial data, and c2 > 0 depending only on the

parameters of the system.
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Proof consists of several steps:

– global well-posedness in weighted Sobolev spaces;

– uniform gain of positivity, f ⩾ ae−b|v|2 , where a, b are time-independent for

t > t0.

– estimate on the spectral gap of [·]ρ: ε ∼ ρ3−. This is where we use ϕ = ψ ∗ψ.

– hypocoercivity implied by the uniform spectral gap.
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Hypocoercivity (Villani - Desvillette)

Assuming ū = 0 by Galilean invariance and σ = 1, consider h = f /µ:

∂th = −ρϕA∗Ah − Bh + A∗((uρ)ϕh),

where

A = ∇v , A∗ = v −∇v , B = v · ∇x .

We have the entropy

H =

∫
Tn×Rn

h log h dµ,

which obeys two forms of entropy law:

25



• non-dissipative
d

dt
H = −Ivv (h) + (u, [u]ρ)ρρϕ ,

where

Ivv (h) =

∫
Tn×Rn

|∇vh|2

h
dµ, (u, [u]ρ)ρρϕ =

∫
Ωn

(uρ)ϕuρ dx ,

• dissipative
d

dt
H ⩽ −(u, u)ρρϕ + (u, [u]ρ)ρρϕ .

We seek to find the spectral gap

−(u, u)ρρϕ + (u, [u]ρ)ρρϕ ⩽ −ε(u, u)ρρϕ .

Suppose for the moment that we control this gap uniformly for t > t0. Then

d

dt
H ≲ −Ivv (h)− (u, u)ρρϕ .
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• non-dissipative
d

dt
H = −Ivv (h) + (u, [u]ρ)ρρϕ ,

where

Ivv (h) =

∫
Tn×Rn

|∇vh|2

h
dµ, (u, [u]ρ)ρρϕ =

∫
Ωn
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Next: use the full Fischer information

I = Ivv + εIxv + Ixx ≳ H (log-Sobolev inequality),

Ixv (h) =

∫
Tn×Rn

∇xh · ∇vh

h
dµ, Ixx(h) =

∫
Tn×Rn

|∇xh|2

h
dµ.

Then one computes a la Villani-Desvillettes,

d

dt
I ⩽ c1Ivv − c2Ixx + c3(u, u)ρρϕ .

So,
d

dt
[c4H+ I] ⩽ −c5 [c4H+ I] .

In particular, by the Csiszár-Kullback inequality

∥f − µ∥21 ⩽ H ⩽ ce−ct .
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Spectral gap

E0 − E1 ⩾ εE0.

Instead we use the Low Energy Method and look for

E1 − E2 ⩾ εE1.

One can achieve this by using Bochner-positivity of the kernel:

(u, [u]ρ)ρρϕ =

∫
Ωn

(uρ)ϕuρ dx =

∫
Ωn

(uρ)2ψ dx ⩾ 0.

From the formula for E1 − E2 shown before, one gets

ε ⩾ ρ3−.
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Gain of positivity

– Villani, Desvillettes (2000) Space-homogeneous Fokker-Planck;

– Henderson, Snelson, Tarfulea, (2020) Gain of positivity for Boltzmann and

Landau;

– F. Anceschi, Y. Zhu (2021) provided a time-dependent gain for general FP

equations with bounded drift.

– J. Guerand, C. Imbert (2022) weak Harnack inequality for supersolutions.

Theorem

There exist time-independent constants a, b > 0 which depend only on H0

such that

f (t, x , v) ⩾ be−a|v|2 , ∀x ∈ Tn, v ∈ Rn, t > 1. (5)

Consequently,

ρ− ⩾ c(a, b).

Hence, the spectral gap is uniform in time and previous estimates apply. QED.
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THANK YOU!!!
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