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REYNOLD 3ZONE MODEL

1. Collision Avoidance:
avoid collisions with nearby flockmates

2. Velocity Matching: attempt
to match velocity with nearby flockmates

3. Flock Centering:

-t -

attempt to stay close to nearby flockmates

repulsion
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Discrete models of collective behavior describe dynamics of a number of agents:
Xj = Vi,
v, = S,'([V],' = V,‘)7 (X,',V,‘) e QxR".
Agents adjust their directions to environmentally averaged velocity [v]; with a
strength s;.

Emergence is formation of global patterns resulting from local interactions.
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Cucker-Smale model

e Cucker-Smale alignment model, 2007:
)'(,' = Vi,

0y (X,‘,V,’) cQ xR
Vi = Z x7)(vj — vi),

where

1 o) [l = 2O %)y
[SHIES N;‘ﬁ( 1 1)7 [ ]’ - Zj(b(xi_xj)

and ¢ is a radially decreasing communication kernel.



e Sufficiently strong global communication = Unconditional alignment.

Local kernel Long-range kernel

o(r) ~ &

Theorem (Cucker, Smale (2007); Ha, Tadmor (2008); Ha, Liu (2009))

Suppose
H

_(1+r2)§.

if B < 1, then any solution aligns and flocks exponentially fast:

¢(r)

t

max |vi — V| < Ce™®", sup|x; —xj| < D < oo.
; Hi

)

— kinetic version due to Carrillo, Fornasier, Rosado, Toscani (2010);

— macroscopic version due to Tan, Tadmor (2014).



CS in applications

— L. Perea, P. Elosegui, and G. Gomez. Extension of the Cucker-Smale control
law to space flight formations. Journal of Guidance, Control, and Dynamics,
32:526 — 536, 20009.

— M.Bongini, M.Fornasier and D.Kalise, (Un)conditional consensus emergence
under perturbed and decentralized feedback controls, Discr. Contin. Dyn. Syst.
Ser. A 35 (2015) 4071-4094.

— Y.-P. Choi, D. Kalise, J. Peszek and A. A. Peters, A collisionless singular
Cucker-Smale model with decentralized formation control, SIAM J. Appl. Dyn.
Syst. 18 (2019), no. 4, 1954-1981.

— J.-A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse, An analytical framework
for consensus-based global optimization method, Math. Models Methods Appl.
Sci. 28 (2018) 1037-1066.

— Zhiping Mao, Zhen Li, George Em Karniadakis, Nonlocal flocking dynamics:
Learning the fractional order of PDEs from particle simulations. Commun.
Appl. Math. Comput. 1 (2019), no. 4, 597-619.



“Local communication = Flocking” commonly requires propagation of
connectivity.
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“Local communication = Flocking” commonly requires propagation of
connectivity.
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Theorem (Morales, Peszek, Tadmor (2019))

If the flock remains ro-connected at all times, then it aligns. If the kernel is
local, ¢(r) ~ N1,<,, but strong, N > 1, then any initially ro-connected data
results in aligned outcome.

Theorem (Tadmor, Shu (2019))

Under quadratic confinement force F = —U(x), U(r) = r?, the condition on
¢ relaxes to ¢ > %
r



Let us assume purely local communication:

A(x) = M x<r-

Attempted approaches:
— microscopic level: generic alignment conjecture.

— kinetic level: alignment = problem of relaxation for kinetic models;

hypocoercivity method.

— macroscopic level: hydrodynamic connectivity; how low can the density p be
to ensure collective outcome?
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Let us assume only local communication: “locked states”
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sENERIC ALIGNMENT CONJECTURE ON T”

Let us assume only local communication: “locked states”

Kronecker, 1800's: The Euclidean line x = txg + vo, where
X=(X1,X2,...,X/\/)7 V=(V1,V2,...,VN)

densely fills a k-dimensional subtorus of T"N where

nN

k =dimg > Qv).

Jj=1

Generic Alignment Conjecture: For almost every initial data
(x0,v0) € T™ x R™ solutions to the Cucker-Smale system align

max |vi — vj| = 0.
1sJ



Agent-based results
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Agent-based results

Dietert, RS (2021) The conjecture is true for n = 1.
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Agent-based results

Dietert, RS (2021) The conjecture is true for n = 1.

RS (2023) The conjecture is true for the sticky particle model.
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Agent-based results

Dietert, RS (2021) The conjecture is true for n = 1.

RS (2023) The conjecture is true for the sticky particle model.

oo, |x| < r;
6(x) = { (1)

0, |X| > n.
RS (2023) The conjecture is true for N = 2 and any n € N. In fact, for any N,

for almost every initial data at least 2 agents will align. Moreover, the

ensemble dynamics contracts volumes to O:

t
det VSi(x,v) = exp —/ Z¢(x; —xj)ds » — 0.
0

i#

10



Large crowd dynamics

S.-Y. Ha, E. Tadmor (2008); S.-Y. Ha , J.-G. Liu (2009): mean-field limit

N
1
/LN:NZI(SW@éXI%f

Ocf + v - Vif =s,V((v — [u]p)f), (Vlasov-Alignment)
where p and u are the macroscopic variables
p(x,t) = f(x,v,t)dv, pu= / vf(x, v, t)dv,
R7 R7
and s, and [u], come from the model in question:
Sp = pp = p* o, [u]o(x) = % (Cucker-Smale)
sp =1, [u]p(x) = % (Motsch-Tadmor)

Po

s=1, [l (x) = (‘“p)¢)¢ (new)

11



Large crowd dynamics

S.-Y. Ha, E. Tadmor (2008); S.-Y. Ha , J.-G. Liu (2009): mean-field limit

N
1
/LN:NZI(SW@éXI%f

Oif + v - Vif =s,V,((v — [u],)f), (Vlasov-Alignment)
where p and u are the macroscopic variables
p(x,t) = f(x,v,t)dv, pu= / vf(x, v, t)dv,
R7 R7
and s, and [u], come from the model in question:
Sp = pp = p* o, [u]o(x) = (up)o (Cucker-Smale)
Po
sp =1, [u]p(x) = % (Motsch-Tadmor)
u
=1 1,0 = (422 (new)
P @

RS (2022) arxiv: Environmental Averaging.
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Euler Alignment system

The macroscopic variables satisfy the Euler-Alignment system
pe+V - (pu) =0,

(pu)e+ Vs (pu u+R) = [ p(p)(uly) - u)(x — y)dy,

R"

where R is the Reynolds stress tensor,
R(x,t) = / (v —u(x,t)) @ (v — u(x, t))f(x, v, t)dv.

Kang, Vasseur (2014); Figalli, Kang, (2019); RS (2020): hydrodynamic limit in
monokinetic regime
f — p(x, t)d(v — u(x, t))
This leads to pressureless EAS, R = 0.
Karper, Mellet, Trivisa, 2014-16: Maxwellian regime

plx,t) _lv=eteo?
(27‘(’)”/2

This leads to isothermal pressure, R = pl.
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Well-posedness of hydrodynamic models

— Carrillo, Choi, Tadmor, Tan (2014-2016). Pressureless EAS: g.w.p. under
critical threshold criterion, smooth kernel 1D:

e=ux+¢xp>=0, e+ (eu)x=0.

— Tadmor, RS, (2016-2017); T. Do, A. Kiselev, L. Ryzhik, and C. Tan (2017):
singular fractional parabolic models, unconditional g.w.p. in 1D

1
(Caffarelli-Chen-Vasseur, Caffarelli-Silvestre regularization; alternatively,

modulus of continuity)

— He, Tadmor (2016) spectral dynamics in 2D, D. Lear, RS (2019-21)
unidirectional flows, Ch. Tan (2020) radial flows, Danchin, Mucha, Peszek,
Wroblewski (2019), RS (2019) small initial data, etc.

— Choi (2018) 1D isothermal EAS, small data; Constantin, Drivas, RS 2020
global well-posedness of non-vacuous solutions, entropy hierarchy.
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Hydrodynamic approach. Spectral Gap

Consider solution to pressureless EAS
pt+ V- (pu) =0,
(pu)e+ Vs (pu ) = [ pply)(u(y) - a()olx ) dy.
RII

with & = fn pudx = 0. Then alignment can be measured by the energy

2= 1/ plul? dx.
2 QxQ
d 1

GE= =3 [ lux ) = ly, Ol 1l 900 ) dxdy o=~ Lyu)y,

where Lou =s,(u—[u] ). Let
A= inf Whetde o (2)
vetd(p) (U, u)p
Then d o
TES-XE > 5—>Oif/ A(s) ds = oo.
0
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Hydrodynamic approach. Spectral Gap

Consider solution to pressureless EAS

pe+ V- (pu) =0,
(pu)e+ V- (u ) = [ p(:dp()(uly) = a(x))x = ) .

with & = fQ pudx = 0. Then alignment can be measured by the energy

2= 1/ plul? dx.
2 QxQ
d 1

GE= =3 [ lux ) = ly, Ol 1l 900 ) dxdy o=~ Lyu)y,

where Lou =s,(u—[u] ). Let

A= inf Whetde o (2)
vetd(p) (U, u)p
Then d o
< = 5—>Oif/ A(s) ds = oo.
0

2
Tadmor (2021): A ~ Z—: So, provided p4 is under control we need p_— 2>

s
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Low Energy Method

Let us rewrite the energy equality in a different way:
d
Eg = (u7 [u]p)PSp - (u7 U)Psp = 51 - SO'

Need:
Eo—&& >2¢e& 2 ep- €.

So, then A ~ gp_. Can we find a bound on ¢ independent of p,?
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Need:
50 61 650 > E0= E.
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Low Energy Method

Let us rewrite the energy equality in a different way:

d
75 = (U, [u]p)PSp - (u7 U)Psp = 51 - SO'

Need:
50 61 650 > E0= E.

So, then A ~ ep_. Can we find a bound on ¢ independent of p.? Let us
consider a hierarchy of energies
( )Psp
= (u, [u],)ps,
= ([ul,  [u],)es,
= (ld], . [[41,] ),
It turns out:

E1—E>2e&r = E—& = ¢e&.
KEY observation: estimates on the lower energy gap are independent of p; !
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For Cucker-Smale: supposing ¢ = 1 * 1), we have where ¥ > 0, alignment
occurs provided

(up)df (X)— (up)d) (y) dy dx,

pw Py

&1-&6 = %/QZ pv(x)pu(y) (f’i)ww ()

where

o (%, y) = /Q W(x — ERply — E)r(€) de,

This leads to the new estimate
A~ ot
So, for alignment we need

-2

Sl
=
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Topological diffusion

When communication has a limited range the interaction may be "topological” rather
than "metric”:

Topological versus Metric protocol

? ? ?
? ?
W ¢ N ?
ot R ? ?
¥ 1
' : 1 ?
? ? SREE ?
— A. Cavagna, A. Cimarelli, I. Giardina, A. Orlandi, G. Parisi, A. Procaccini, R. Santagat Silvestri, F. Stefanini, and M. Viale, V

Zdravkovic (2008) : StarFlag Project.

- J. Hask Flocking dynamics and mean-field limit in the Cucker-Smale type model with topological interactions. Phys. D,

261(15):42-51, 2013.

— A Blanchet and P. Degond. Topological interactions in a Boltzmann-type framework. J. Stat. Phys., 163:41-60, 2016.

— A. Blanchet and P. Degond. Kinetic models for topological nearest-neighbor interactions. J. Stat. Phys. volume 169: 929-950, 2017.
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— Tadmor, RS. Topologically based fractional diffusion and emergent dynamics with
short range interactions. SIAM J. Math. Anal., 52(6):5792-5839, 2020

&
mCCD

1. Every agent x has a finite influence range, B(x, rp).

2. Agent x influences agent y through communication domain Q(x,y) = Q(y, x).

3. The mass
d(x,y, t):/ p(z,t)dz.
Qx.y)
determines the communication distance between x and y.

Based on the outlined principles, we make the following choice:
1

(0¥ = Gy O =y

Liyi<ro
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Topological Euler-Alignment system

pe+ V- (pu) =0,

U4 u-Vu= /T Go(x,y)(u(y, t) — u(x, t))p(y, t)dy.

19



Topological Euler-Alignment system

pe+ V- (pu) =0,
uetu-Vu= | ¢,(x,y)(uly, t) — u(x, t))p(y, t)dy.
'[rn
Theorem (Tadmor, RS (2018))
Let (u, p) be a global smooth solution to the topological model on T" and

o) 2

: t — 0. (3)

Then

1
lu(t) — bl S (ino)i/s’

In 1D the lower bound (3) holds automatically.
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Topological Euler-Alignment system

pe+ V- (pu) =0,

ug+u-Vu= - ¢p(X7y)(u(y7 t) - U(X7 t))p(y, t) dy.

Theorem (Tadmor, RS (2018))
Let (u, p) be a global smooth solution to the topological model on T" and
t — 0. (3)

1

g = =

Pt 2
Then

1
lu(t) — bl S (ino)i/s’

In 1D the lower bound (3) holds automatically.

N T wi Al _
' s — - ;;\\ Il/ —
/ \ —_— NN ! —_— = =
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Well-posedness

RS, Tadmor. Topologically based fractional diffusion and emergent dynamics
with short-range interactions, SIMA. Vol. 52, No. 6, pp. 5792-5839 (2020);

Reynolds, RS. Local well-posedness of the topological Euler alignment models
of collective behavior, Nonlinearity, Volume 33, Number 10, 5176-5214 (2020).

Lear, Reynolds, RS. Global solutions to multi-dimensional topological Euler
alignment systems, Ann. PDE 8 (2022), no. 1, Paper No. 1, 43 pp.
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Fokker-Planck-Alignment model

Locked states are disrupted by stochastic noise
Vi :S;([V]if V,')+\/20'S,'V.V,', (4)

where W;'s are independent Brownian motions in R". The mean-field limit of
solutions satisfies a Fokker-Planck-Alignment equation

7+ v Vif? =08, A0f7 +5,V,((v = [u7]))7).

So, the expected behavior as t — oo would be the same as for the linear
Fokker-Planck equation which is a relaxation to the global Maxwellian

1 _lv=a)?
2

72 hes = rgya®

where T is the mean velocity. If such a convergence holds true, then the
alignment of the original system can be recovered in the limit of vanishing noise
o—0:

lim lim f7(t) = dv=a ® dx.

o—0t—o0
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— Duan, Fornasier, and Toscani (2010): relaxation in the Cucker-Smale case
fo + v Vuf = opsAuf + Vi((pgv — (up)e)f),
for perturbation data,
f = po,a+ gv/lo,as llgoll ik (mn mny < €,

for some small € > 0.

— Choi (2016): relaxation for purely local model
fr+ v Vif =cA,f+V.,((v—uf),

in the perturbative settings also.

These results are inspired by techniques from collisional models (Landau,
Boltzmann) by Guo, Duan, and others.
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Kinetic Cucker-Smale. Main result

Consider IVP for FPA based on Cucker-Smale protocol

fo+ v Vuf = aps Avf + Vu((pev — (up)s)f),

Theorem (RS, 2022)

Suppose fy € Hf, k,| > n+ 3, and suppose ¢ = 1) x ). Then there exists a
unique solution to FPA in Hf classical global solution to FPA, such that
p— > 0 uniformly for all t > to > 0, and f relaxes to the corresponding
Maxwellian at an exponential rate

—1/2e—620'1/21.*7

I£(t) = poallirrnsmey < Q10

for some ci1 depending on the initial data, and c; > O depending only on the
parameters of the system.
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Proof consists of several steps:
— global well-posedness in weighted Sobolev spaces;
2
— uniform gain of positivity, f > ae ?IVI", where a, b are time-independent for

t > to.

— estimate on the spectral gap of [~]p: e ~ p>. This is where we use ¢ = 1) % 1.

— hypocoercivity implied by the uniform spectral gap.

24



Hypocoercivity (Villani - Desvillette)

Assuming & = 0 by Galilean invariance and o = 1, consider h = f /.
Oth = —psA"Ah — Bh+ A" ((up)sh),
where
A=V,, AA=v-V,, B=v- -V,
We have the entropy

H = hlog hdu,
T7 xR"

which obeys two forms of entropy law:

25



e non-dissipative

where

rn- [
n xRN

%H = _Ivv(h) + (U’ [U]p)pp¢7

V., h|?
% du, (u, [u]ﬂ)”% -

/ (up)yupdx,
Qn

26



e non-dissipative

%H = _Ivv(h) + (U’ [u]ﬁ)pp¢7

where

rn= [
77>< n

e dissipative
d

dt

2
VAP

o (), = [ (up)oupdx

H < —(u,u)pp, + (u, [u]p)p%'

26



e non-dissipative

d

EH = _IVV(h) + (U7 [u]p)PP¢7
where

V. h?
o= [ Flau @l = [ @oloupa,
Toxrn B an

e dissipative
d
a?—[ < —(u, u)ppy, + (U, [U]p)pp¢-

We seek to find the spectral gap
_(u7 U)PP(p + (u7 [u]p)PP¢ < _‘5(u7 u)ﬂmp‘

Suppose for the moment that we control this gap uniformly for t > t5. Then

d
&H S —Zw(h) - (u, U)pp¢-

26



Next: use the full Fischer information

IT=Zw+¢eTow+ZL« 2 H (log-Sobolev inequality),

~

. 2
va(h):/ Vb Vb, T (h) :/ [V=h” g,
TP xR" h T xR" h

Then one computes a la Villani-Desvillettes,

d
EI < CII\/V - CZIXX r C3(U, U)pp¢-
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Next: use the full Fischer information

IT=Zw+¢eTow+ZL« 2 H (log-Sobolev inequality),

~

. 2
va(h):/ Vb Vb, T (h) :/ [V=h” g,
TP xR" h T xR" h

Then one computes a la Villani-Desvillettes,

d
EI < CII\/V - CZIXX r C3(U, U)pp¢-

So,
d
9 [aH+I] < —cs[aH +T].

In particular, by the Csiszar-Kullback inequality

If — plli <H < ce™.
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Spectral gap

Eo — &1 = e&.

Instead we use the Low Energy Method and look for
&1 — & > &

One can achieve this by using Bochner-positivity of the kernel:

(w1, D = [ (wphouods = [ (up) x>0,
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Spectral gap

Eo — &1 = e&.

Instead we use the Low Energy Method and look for
&1 — & > &

One can achieve this by using Bochner-positivity of the kernel:

(w1, D = [ (wphouods = [ (up) x>0,

From the formula for & — & shown before, one gets

62,03_.
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Gain of positivity

— Villani, Desvillettes (2000) Space-homogeneous Fokker-Planck;

— Henderson, Snelson, Tarfulea, (2020) Gain of positivity for Boltzmann and
Landau;

— F. Anceschi, Y. Zhu (2021) provided a time-dependent gain for general FP
equations with bounded drift.

— J. Guerand, C. Imbert (2022) weak Harnack inequality for supersolutions.

Theorem

There exist time-independent constants a, b > 0 which depend only on Ho
such that
2
f(t,x,v) = be " wxeT" veR" t>1. (5)

Consequently,
p— = c(a, b).

Hence, the spectral gap is uniform in time and previous estimates apply. QED.
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THANK YOuU!!!
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