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Nonlinear dispersive problems:

i∂tu−A(Dx)u = N(u), u(0) = u0 ∈ Hs (QDE)

Linear characteristic set:

Σ = {τ + a(ξ) = 0}

Group velocity:

vξ = a′(ξ)

Dispersive models:

∇2a(ξ) ̸= 0

Smooth nonlinearity:

N(u) = N(u, ū)

May be as strong as A or stronger

Resonant/nonresonant interactions

relative to the linear A flow

relative to the linearized flow
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Several examples of dispersion relations

NLS: a(ξ) = ξ2

KdV: a(ξ) = ξ3

(Half-) wave: a(ξ) = |ξ|

Deep gravity waves a(ξ) = |ξ|
1
2

Capillary waves a(ξ) = |ξ|
3
2

Shallow gravity waves a(ξ) =
√
ξ tanh ξ

Shallow capillary waves: a(ξ) =
√
ξ3 tanh ξ
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The nonlinearity
a) Classified by strength:

semilinear (e.g. NLS3, KdV), Lipschitz dependence on data

quasilinear (e.g. water waves), continuous dependence on data

b) Classified by leading homogeneity:

quadratic,

N(u) = Q1(u, u) +Q2(u, ū) +Q3(ū, ū)

cubic, e.g.
N(u) = Q(u, ū, u)

higher order

c) Classified by leading order nonlinear effect (cubic case):

defocusing

focusing
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Two questions

1. Local well-posedness: Is the evolution (QDE) locally well-posed
in Hs ?

2. Global well-posedness: Are there global dispersive solutions for
(QDE) for small initial data in Hs ?
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Quasilinear local well-posedness

[Enhanced] Hadamard local well-posedness in Sobolev spaces

u(0) ∈ Hs

existence of solutions u in the class C(0, T ;Hs)

uniqueness of solutions, either directly for rough solutions, or as
unique limits of smooth solutions

continuous dependence in Hs, i.e. continuity of the data to
solution map

Hs ∋ u(0) → u ∈ C(0, T ;Hs)

weak Lipschitz dependence, i.e. for two Hs solutions u and v we
have the difference bound

∥u− v∥C(0,T ;L2) ≲ ∥u(0)− v(0)∥L2

higher regularity
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Local well-posedness
What is s ?

Classically true for large enough s by energy estimates
▶ for the full equation in Hs

▶ for the linearized equation in Hs0 for some s0 < s.

Scaling exponent sc gives universal threshold.

Aspirational goal: bring s as close as possible to sc.

Nonlinear wave interactions:

Strength of the nonlinearity (also related to scaling)

Resonant versus nonresonant interactions, null conditions
Role of dispersion

▶ Linear dispersive decay (e.g. Strichartz)
▶ Multilinear estimates (e.g. parallel vs. transversal interactions)

Making good choices:

Good variables (Alinhac)

Good quasilinear energies
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Global well-posedness
1 Classical: Conserved energy + LWP ⇒ GWP

▶ no dispersive decay information

2 Modern: Strichartz + energy ⇒ GWP+ scattering
▶ requires higher order nonlinearity or higher dimension, e.g. for

cubic nonlinearity d ≥ 4 (NLW) or d ≥ 3 (NLS) [subcritical d]

3 Contemporary:
Small, smooth and localized data ⇒ GWP with dispersive decay

▶ vector field methods
▶ scattering vs. modified scattering

4 Ongoing research:
Small, ����smooth and (((((localized data ⇒ GWP with dispersive decay

▶ focusing vs defocusing (cubic case)
▶ no vector field methods
▶ weaker notion of scattering
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Bony’s paradifferential formalism (expanded)

Full nonlinear equation:
ut +N(u) = 0

Linearized equation:
vt +DN(u)v = 0

Linear paradifferential equation:

wt + TDN(u)w = 0

Full equation in paradifferential formulation

ut + TDN(u)u = R(u)

Linearized equation in paradifferential formulation

vt + TDN(u)v = Rlin(u)v
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LWP key ideas

1 Energy estimates (Kato)

d

dt
Es(u) ≲ BEs(u)

▶ Es(u) quasilinear energy
▶ B control parameter, e.g. B ≈ ∥u∥Hs ; better B ≈ ∥u∥Wk,∞ .
▶ Also for the linearized equation in weaker topology

2 Strichartz estimates
∥u∥Lp

tW
k,∞ ≲ ∥u0∥Hs

▶ Allows one to estimate control parameter in energy estimates.
▶ Work with paradifferential equation, perturbative source term
▶ Main difficulty: variable coefficients, with low regularity

3 Bootstrap argument to combine energy + Strichartz
▶ best captured using Tao’s frequency envelopes, see Ifrim-T. primer
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Paradifferential Strichartz estimates
Easy for constant coefficients

▶ stationary phase methods

Valid for C2 coefficients
▶ wave packet parametrices Smith, T.
▶ Oscillatory integral parametrices

Strichartz estimates with loss of derivatives (T., Bahouri-Chemin)
▶ For each frequency λ, find “semiclassical” time scales δt ≈ λ−δ

where loss-less Strichartz holds.
▶ Add these bounds to get Strichartz with deriv. losses on unit time.

Strichartz estimates without loss of derivatives
▶ Construct more accurate, rough wave packet parametrices
▶ NLW (Smith-T. ’05), 2D gravity waves (Ai ’18),

1D NLS (Ifrim-T. ’23)
▶ use the fact that the coefficients solve an equation (Klainerman)
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Energy estimates, take 1
Quadratic energy estimates (Kato)

d

dt
Es(u) ≲ BEs(u)

Cubic energy estimates for problems with quadratic nonlinearities
and null structure

d

dt
Es,3(u) ≲ ABEs,3(u)

where

A ≈ ∥u∥Wk0,∞ (at scaling), B ≈ ∥u∥Wk1,∞ (above scaling)

▶ modified energy method Hunter-Ifrim-T. ’12-’14
▶ quasilinear adaptation of the normal form method
▶ scale invariant bound
▶ Also para-diagonalization method of Alazard-Delort ’13
▶ very useful for long time bounds. less for low regularity LWP
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Energy estimates, take 2
Cubic energy estimates for problems with quadratic nonlinearities
and null structure

d

dt
Es,3(u) ≲ ABEs,3(u)

A ≈ ∥u∥Wk0,∞ (at scaling), B ≈ ∥u∥Wk1,∞ (above scaling)

Balanced cubic energy estimates for problems with
quadratic/cubic nonlinearities and null structure

d

dt
Es,3

bal(u) ≲ A2
1/2E

s,3
bal(u)

where

A1/2 ≈ ∥u∥
W

k1/2,∞ , k1/2 =
k0 + k1

2

▶ introduced by Ai-Ifrim-T. ’19 for 2D gravity waves
▶ proved for hyperbolic minimal surface equation by Ai-Ifrim-T. ’21.
▶ very useful for low regularity well-posedness
▶ also for low regularity long time dynamics
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Gravity waves 2-D

Variables: α+W (α) = surface param, Q= velocity potential on top.
Holomorphic coordinates: W = PW , Q = PQ (negative freq)
Differentiated variables:

W = Wα (slope), R =
Qα

1 +Wα
(complex velocity)

Differentiated equation:
(∂t + b∂α)W +

1 +W

1 + W̄
Rα = G(W, R)

(∂t + b∂α)R− i
(1 + a)W

1 +W
= K(W, R)

(DWW)

where

b = 2ℜP
[

R

1 +W

]
, a = 2ℑP [RR̄α]

Taylor coefficient: a ≥ 0, necessary for well-posedness.
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2D Gravity waves at low regularity


(∂t + b∂α)W +

1 +W

1 + W̄
Rα = G(W, R)

(∂t + b∂α)R− i
(1 + a)W

1 +W
= K(W, R)

(DWW)

Sobolev spaces:

(W, R) ∈ Hs := Hs ×Hs+ 1
2

Critical Sobolev index:

sc =
1

2

Theorem (Albert Ai-Mihaela Ifrim- DT.’19)

The 2D gravity waves flow is locally well-posed in Hs for s ≥ 3
4 .
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Progression of LWP results: gravity waves 2D

s− sc

Wu (’97) Energy 4

Alazard-Burq-Zuily (’12) Energy
1

2
+ ϵ

Hunter-Ifrim-Tataru (’14) Cubic energy
1

2

Alazard-Burq-Zuily (’14) Energy + Strichartz w. loss
1

2
− 1

24
+ ϵ

Ai (’18) Energy + sharp Strichartz
3

8
+ ϵ

Ai-Ifrim-Tataru (’19) Balanced cubic energy
1

4

(in progress) (’21-23) Balanced cubic energy + Strichartz
1

8
(?)
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Hyperbolic minimal surfaces: nonlinear waves
with null condition

A time-like submanifold Σ ⊆ Rn+2 of Minkowski space, critical
point of ∫

Σ
dA

Euler-Lagrange equation:

− ∂

∂t

(
ut√

1− u2
t + |∇xu|2

)
+

n∑
i=1

∂

∂xi

(
uxi√

1− u2
t + |∇xu|2

)
= 0

Re-express using trace of Minkowski metric on Σ:

gαβ∂α∂βu = 0, gαβ = mαβ + ∂αu∂βu

aka. Born-Infeld in electromag., aka. zero mean curvature flow,
aka. relativistic membrane equation, aka. branes in string theory
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Starting point: LWP for generic NLW

Theorem (Smith-T. ’01)

Nonlinear wave equations are locally well-posed in Hs = Hs ×Hs−1 for

s > sc +
1

2
, n ≥ 3

s > sc +
3

4
, n = 2

independent work by Klainerman-Rodnianski in the special case of
Einstein equations

sharp result generically by Lindblad’s counterexample

Conjecture (T. ’02)

The above result can be improved for NLW which satisfy a nonlinear
null condition.
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LWP for nonlinear waves with null condition

Theorem (Albert Ai, Mihaela Ifrim, D.T. ’21)

The time-like minimal surface equation is locally well-posed in
Hs = Hs ×Hs−1 for

s ≥ sc +
1

4
, n ≥ 3

s ≥ sc +
3

8
, n = 2

improves the sharp generic result of Smith-T. by 1/4 derivatives if
n ≥ 3, and by 3/8 derivatives if n = 2.

First result proving the null condition LWP conjecture.

Prior ϵ-removal results by Klainerman-Rodnianski-Szeftel (GR)
and Ettinger (minimal surface)
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Progression of results: Nonlinear wave equation
3D

s− sc

Hughes-Kato-Marsden (’76) Energy 1 + ϵ

Bahouri-Chemin (’98-’99) Energy + Strichartz w. loss
3

4
to

7

10

Tataru (’98-’99) Energy + Strichartz w. loss
3

4
to

2

3

Klainerman-Rodnianski (’00) Energy + Strichartz w. loss
3−

√
3

2

Smith-Tataru (’01) Energy + sharp Strichartz
1

2
+ ϵ

Kl.-Rod.-Szeftel (’15) [GR] Energy + sharp Strichartz
1

2

Ai-Ifrim-Tataru (’21) [null] Balanced cubic energy + Strichartz w. loss
1

4
+ ϵ
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Key steps

1 Balanced energy bounds for the paradifferential equation
▶ first in L2 by modified energies
▶ then in all Hσ by paraconjugation argument

2 Balanced energy bounds for full equation in all Hσ

▶ variable coefficient iterated normal form correction

3 Balanced energy bounds for the linearized equation in Hσ0 .
▶ variable coefficient iterated normal form correction
▶ but loss of symmetry in the linearization

4 Small data lossless SE → large data SE with losses
▶ difficulty: limited use of scaling in inhomogeneous Sobolev spaces

5 Extensive bootstrap argument
▶ Combines balanced energies with Strichartz for a family of

regularized solutions
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GWP conjectures for 1D cubic problems

Conjecture (Non-localized data defocusing global
well-posedness, Ifrim-T. ’22)

1D dispersive problems with a cubic nonlinearity which is conservative
and defocusing and with small data have global dispersive solutions.

Conjecture (Non-localized data (focusing) long time
well-posedness conjecture, Ifrim-T. ’22)

1D dispersive problems with cubic nonlinearity which is conservative
and with ϵ-small data have long time ϵ−8 dispersive solutions.
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Heuristics: trilinear wave packet interactions

i∂tu−A(Dx)u = N(u)

Phase rotation symmetry: u → eiθu.
Cubic expansion with phase rotation symmetry:

i∂tu−A(Dx)u = C(u, ū, u) +Nnr(u)

Amplitude equation for (ξ, ξ, ξ) → ξ interactions:

iȦ = c(ξ, ξ, ξ)A|A|2,
always nonperturbative on large time scales.
Here c(ξ, ξ, ξ) ∈ R prevents blow-up (exponential growth).

Two assumptions on the symbol of C:
1 Conservative: c(ξ, ξ, ξ),∇c(ξ, ξ, ξ) ∈ R

→ Wave packet interactions do not increase energy

2 Focusing vs. defocusing:
→ determines what happens when wave packets get remodulated
→ determined by the sign of c(ξ, ξ, ξ) vs sthe sign of a′′.
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A semilinear result (defocusing case)

Theorem (Ifrim-T. ’22)

i∂tu+∆u = C(u, ū, u), u(0) = u0

Suppose the nonlinearity C is cubic, conservative and defocusing. Then
for small initial data ∥u0∥L2 ≤ ϵ ≪ 1

there exists a unique global solution u so that

∥u∥L∞L2 ≲ ϵ (Energy)

∥u(t)∥L6 ≲ ϵ
2
3 (Strichartz)

∥PAuPBu∥L2 ≲ d(vA, vB)
− 1

2 ϵ2 (bilinear L2)

First result of this type
no energy conservation is assumed
global dispersive bounds are obtained
work in progress: general dispersion relations

Quasilinear waves June 15, 2023 24 / 43



A special case: defocusing NLS3(R)

i∂t +∆u = u|u|2

Globally well-posed in L2.

Completely integrable ⇒ Conserved energies

Theorem

L2 solutions satisfy the Strichartz bound

∥u∥L6 ≲ ∥u0∥L2

and the bilinear L2 bound

∥∂x|u|2∥
cL2+Ḣ− 1

2
≲ ∥u0∥2L2 , c = ∥u0∥L2

Earlier dispersive bounds for H1 solutions by by Planchon-Vega.
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A semilinear result (focusing case)

Theorem (Ifrim-T. ’22)

i∂tu+∆u = C(u, ū, u), u(0) = u0

Suppose the nonlinearity C is cubic and conservative. Then for small
initial data

∥u0∥L2 ≤ ϵ ≪ 1

there exists a solution u in [0, ϵ−8] so that

∥u∥L∞[0,ϵ−8;L2] ≲ ϵ (Energy)

and also on ϵ−6 time intervals we have:

∥u(t)∥L6 ≲ ϵ
2
3 (Strichartz)

∥PAuPBu∥L2 ≲ d(vA, vB)
− 1

2 ϵ2 (bilinear L2)

Sharp result, because of the existence of small solitons.
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A quasilinear Schrödinger model


iut + g(u)∂2

xu = N(u, ∂xu), u : R× R → C

u(0, x) = u0(x)
(QNLS)

g = g(u, ū) smooth, real valued, g(0) = 1.

N = N(u, ū, ∂u, ∂ū) is smooth, complex valued, at most quadratic
in ∂u.


iut + g(u, ∂xu)∂

2
xu = N(u, ∂xu), u : R× R → C

u(0, x) = u0(x)
(DQNLS)
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Sharp local well-posedness

Theorem (Ifrim-T. ’23)

a) The cubic (QNLS) is locally well-posed in Hs for s > 1, and the
solutions satisfy

1 Uniform Hs bounds

2 Loss-less Strichartz estimates

3 Transversal bilinear L2 bounds.

b) The same result holds for the cubic (DQNLS) for s > 2.

Scaling index sc =
1
2 (resp. sc =

3
2)

Regular solutions with localized data Kenig-Ponce-Vega ’04
Rough solutions with s > 2 (resp s > 3) Marzuola-Metcalfe-T. ’14
Should be generically ill-posed below H1 (resp. H2):

▶ comparison with NLS3 below L2.

Other remarks:

difference between quadratic and cubic problems (Mizohata, Doi)
difference between small and large data, nontrapping [KPV], [MMT]
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Defocusing global well-posedness

Theorem (Ifrim-T. ’23)

a) Consider the cubic (QNLS) with phase rotation symmetry,
conservative and defocusing. Let s > 1. Then for small initial data

∥u0∥Hs ≤ ϵ ≪ 1

there exists a unique global solution u which satisfies

1 Uniform Hs bounds

2 Strichartz estimates with 1/6 derivative loss.

3 Transversal bilinear L2 bounds (loss-less).

First proof of the defocusing GWP conjecture in a quasilinear
setting.

Sharp result in terms of regularity

Global in time integrated decay bounds (“scattering” )
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Focusing long time well-posedness

Theorem (Ifrim-T. ’23)

a) Consider the cubic (QNLS) with phase rotation symmetry, and
conservative. Let s > 1. Then for small initial data

∥u0∥Hs ≤ ϵ ≪ 1

there exists a unique global solution u in [0, ϵ−8] which satisfies

1 Uniform Hs bounds

2 Strichartz estimates with 1/6 derivative loss on ϵ−6 time scale

3 Transversal bilinear L2 bounds (loss-less) on ϵ−6 timescale.

First quasilinear proof of the focusing long time WP conjecture.

Sharp result in terms of regularity.

Sharp result in terms of time scales (small solitons).
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Five key ideas

1 Bootstrap argument via frequency envelopes
▶ associated to a dyadic frequency decomposition

2 Energy estimates via density flux identities.
▶ carried out in a nonlocal setting, where both the densities and the

fluxes involve translation invariant multilinear forms.

3 Modified energies, akin to the I-method.
▶ we implement this at the level of density-flux identities, rather than

for energy functionals

4 Interaction Morawetz bounds.
▶ extended to the setting and language of nonlocal multilinear forms.

5 Strichartz estimates.
▶ via wave packet parametrices, after peeling off perturbative errors
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The Littlewood-Paley decomposition

Dichotomy for multilinear forms:

parallel interactions −→ rely on L6 Strichartz

transverse interactions −→ rely on bilinear L2

Dyadic frequency decomposition:

u =
∑
λ∈2N

uλ,

size of LP regions dictated by the Hamilton flow.

Goal:

estimate each uλ separately

estimate bilinear interactions

Quasilinear waves June 15, 2023 32 / 43



A collection of related equations
Full equation:

iut + g(u)∂2
xu = N(u, ∂xu). (QNLS)

Linearized equation:

ivt + g(u)∂2
xv = N lin(u)v. (QNLS-lin)

Paradifferential equation:

iwλt + ∂xg(u<λ)∂xwλ = fλ (QNLS-para)

Full equation in paradifferential form, long time analysis

iuλt + ∂xg(u<λ)∂
2
xuλ = Nnr

λ (u, ∂xu) + Cλ(u, ū, u) (QNLS)

Linearized equation in paradifferential form

ivλt + ∂xg(u<λ)∂
2
xvλ = N lin

λ (u)v. (QNLS-lin)
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Frequency envelopes
-introduced by Tao to track the time evolution of dyadic energies

Start with frequency envelope {cλ} ∈ ℓ2 for the initial data

∥u0λ∥Hs ≲ ϵcλ

Show that similar bounds carry over to solutions

Key assumption on c: slowly varying, to control nonlinear leakage.

cλ
cµ

≤
(
λ

µ
+

µ

λ

)δ

.

Bootstrap hypothesis:

(BOOT1) ∥uλ∥L∞L2 ≲ Cϵcλλ
−s

(BOOT2) ∥uλ(t)∥L6 ≲ Cϵcλλ
−s

(BOOT3) ∥∂x(uλūhµ)∥L2 ≲ C2ϵ2(λ+ µ)
1
2 cλcµλ

−sµ−s(1 + λh)

- bootstraping both Strichartz and bilinear: Ifrim-T., Benjamin-Ono
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Conservation laws in density flux form
Integral laws in linear/nonlinear case:

M =

∫
|u|2 dx, d

dt
M =

∫
C4
m(u, ū, u, ū) dx

Well chosen mass/momentum densities

M =

∫
M(u, ū) dx, P =

∫
P (u, ū) dx

Density flux identities in linear/nonlinear case:

∂tM(u, ū) = ∂x[gP (u, ū)] + C4
m(u, ū, u, ū)

∂tP (u, ū) = ∂x[gE(u, ū)] + C4
p(u, ū, u, ū)

Frequency localized density-flux identities:

∂tMλ(u, ū) = ∂x[g<λPλ(u, ū)] + C4
m,λ(u, ū, u, ū)

∂tPλ(u, ū) = ∂x[g<λEλ(u, ū)] + C4
p,λ(u, ū, u, ū)
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Energy corrections for long time results
♣ second generation I-method: correct energies for better conservation
(I-team:=Colliander-Keel-Stafillani-Takaoka-Tao)
♡ better strategy: correct densities and fluxes

Quartic energy correction

M ♯
λ(u, ū) = Mλ(u, ū) +B4

λ,m(u, ū, u, ū),

P ♯
λ(u, ū) = Pλ(u, ū) +B4

λ,p(u, ū, u, ū),

Density-flux identities:

∂tM
♯
λ = ∂x(Pλ +R4

λ,m) + F 4,nr
λ,m +R6

λ,m

∂tP
♯
λ = ∂x(Eλ +R4

λ,p) + F 4,nr
λ,p +R6

λ,p

▶ This requires solving a nontrivial division problem,

c4 = ∆4ξ2 · b4 +∆4ξ · r4 + (ξodd − ξeven)
2q4,nr

▶ Energy bounds follow by direct integration
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Bilinear L2 estimates
- cannot use linear theory, as (i) problem is quasilinear and
(ii) nonlinearity is nonperturbative
- Nonlinear idea: Interaction Morawetz

introduced by I-team ’03 for 3D NLS

one dimensional version by Planchon-Vega

Baby version: u, v ≥ 0 densities

∂tu = ∂xf, moves to the left f > 0

∂tv = ∂xg, moves to the right g < 0

Interaction functional:

I(u, v) =

∫
x<y

u(x)v(y) dxdt

dI

dt
=

∫
R
fv − ug dx > 0 (transversality bound)
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Dispersive Interaction Morawetz

“momentum is moving to the right faster than the mass”

1 Interaction Morawetz functional, diagonal case:

I(uλ, uλ) =

∫
x<y

M ♯
λ(x)P

♯
λ(y)−M ♯

λ(y)P
♯
λ(x) dxdy

Time differentiation:
d

dt
I(uλ, uλ) ≈ ∥∂x(uλūλ)∥2L2 + ∥uλ∥6L6 + Errors (6,8,10)

- used to prove the L6 Strichartz and diagonal bilinear L2.

2 Transversal Interaction Morawetz functional:

I(uλ, uµ) =

∫
x<y

M ♯
λ(x)P

♯
µ(y)−M ♯

µ(y)P
♯
λ(x) dxdy

Time differentiation:
d

dt
I(uλ, uµ) ≈ ∥∂x(uλūµ)∥2L2 + Errors (6,8,10)

- used to prove the off-diagonal bilinear L2 bound.
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Lossless Strichartz estimates
Established at the level of the paradifferential equation:

iwλt + ∂xg(u<λ)∂xwλ = fλ, w(0) = w0 (QNLS-para)

Main challenge: variable coefficient problem

SE with derivative loss: from sharp SE on semiclassical time scales
(Staffilani-T. ’02, Burq-Gerard-Tzvetkov ’06, etc.)

SE without loss on asymptotically flat spaces (Robbiano-Zuily ’06,
Hassell-Tao-Wunsch ’06, T. 07 )

All the above require at least C2 coefficients. Here, g − 1 ∈ L∞H1+ !

Key ideas:

flatten metric with change of coordinates

use equation for u

allow for a large class of source terms fλ
use bilinear L2 estimates to peel off rough parts of coefficients.

use wave packet parametrix (Marzuola-Metcalfe-T.)
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Summary

A common circle of ideas for both low reqularity well-posedness and
long time/global solutions in quasilinear dispersive pde’s:

1 Modified energy methods for problems with null condition:
▶ Modified energy method =⇒ cubic energies for long time solutions
▶ Balanced cubic energies =⇒ low regularity LWP
▶ Low reg. Strichartz using equation for coeff =⇒ LWP

2 Multilinear interaction methods in cubic 1D flows
▶ Defocusing GWP conjecture
▶ focusing long time well-posedness conjecture
▶ proved for both semilinear and quasilinear Schrödinger flows
▶ density flux identities =⇒ interaction estimates
▶ global solutions for nonlocalized data at LWP regularity
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Thank you for your attention !
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Linear dispersion in 1D

1 Fundamental solution:

K(t, x) ≈ 1√
ta′′(ξv)

eitϕ(v), v = x/t

a′(ξv) = v, ϕ′(v) = ξv (Legendre)

A1: t−
1
2 decay (for localized or L1 data)

2 Translation invariant bounds:

∥eitAu0∥S ≲ ∥u0∥L2 (Strichartz)
↙↓↘

L∞L2 L6 L4L∞

∥uAuB∥L2 ≲ |vA − vB|−
1
2 ∥uA0∥L2∥uB0∥L2 ( bilinear L2)

A2: L6 + transversal L2 bounds (for L2 data)
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