
The Quartic Integrability and Long Time Existence of
Water Waves in 2d

Sijue Wu

University of Michigan, Ann Arbor, USA

Partially supported by National Science Foundation

(Abel Symposium) June 15, 2023 1 / 34



The gravity water wave equations

The gravity water wave equations

We assume that

the air density is 0, the fluid density is 1. (0,−g) is the gravity.

the fluid is inviscid, incompressible, irrotational,

the surface tension is zero.

Let Ω(t) be the fluid domain, ∂Ω(t) be the interface at time t.

The motion of the fluid is described by
vt + (v · ∇)v = (0,−g)−∇P in Ω(t)

div v = 0, curl v = 0, in Ω(t)

P = 0, on ∂Ω(t)

(1, v) is tangent to (t, ∂Ω(t))

(1)

v is the fluid velocity, P is the fluid pressure.

(Abel Symposium) June 15, 2023 2 / 34



The gravity water wave equations

When surface tension is zero, the motion can be subject to the Taylor
instability

Taylor sign condition:

− ∂P

∂n
≥ 0; (2)

on the interface ∂Ω(t). n is the unit outward normal to the fluid
domain Ω(t).

G. I. Taylor (1949)

Strong Taylor sign condition:

− ∂P

∂n
≥ c0 > 0. (3)
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The gravity water wave equations

History

Newton, Stokes, Levi-Civita, G.I.Taylor.....
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Recent history on the wellposedness of the water wave equation

Local wellposedness in Sobolev spaces

Nalimov (1974), Yoshihara (1982), W. Craig (1985): 2D, local
wellposedness for small Sobolev data;

S. Wu (1997, 99): 2D and 3D, Local wellposedness for arbitrary data
in Sobolev spaces Hs , for s ≥ 4.
Proved that the strong Taylor sign condition always holds, i.e.

−∂P
∂n

≥ c0 > 0 (4)

for C 1,γ , γ > 0 interfaces.

Christodoulou & Lindblad (2000), Iguchi(2001), Ogawa & Tani
(2002), Ambrose & Masmoudi(2005), D. Lannes (2005), Lindblad
(2005), Coutand & Shkoller (2007), P. Zhang & Z. Zhang (2007),
Shatah & Zeng (2008)
Local wellposedness with additional effects: nonzero surface tension,
finite depth, nonzero vorticity, assuming the strong Taylor sign
condition holds.
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Recent history on the wellposedness of the water wave equation

Global behavior for small, smooth and sufficiently localized
data: – Gravity-WW

S. Wu (2009), S. Wu (2011): almost global for 2-D, global
well-posedness for 3-D;

Germain, Masmoudi & Shatah (2012): global well-posedness for 3-D

Ionescu & Pusateri (2015), Alazard & Delort (2015): global existence
and modified scattering for 2-D;

Hunter, Ifrim & Tataru (2016), Ifrim & Tataru (2016), Ai, Ifrim &
Tataru (2019, 2020): lowered the regularity threshold;
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Recent history on the wellposedness of the water wave equation

main ideas: 1. after suitable change of variables, the water wave
equation has no quadratic nonlinear terms; 2. use the dispersive decay
property for sufficiently localized solutions to get extended lifespan.

If the data is smooth and of size ϵ, and non-localized, the solution
exists on time of order O(ϵ−2).

The main mechanism is that there are no 3-waves resonant
interactions.

Question:

Is it possible to further remove the cubic nonlinearities of the gravity-WW
using a normal form transformation?
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The Hamiltonian approach

The Hamiltonian point of view, the periodic case

Zakharov (1968): formulated 2d water wave equations as a
Hamiltonian system

Dyachenko & Zakharov (1994): no 3-wave interactions, all 4-wave
interaction coefficients vanish on the non-trivial resonant manifold

Craig & Wolfolk (1995): formal derivation of the Birkhoff normal
form transformation of order 4

Craig & Sulem (2016): studied mapping properties

Berti, Feola & Pusateri (2018): existence for time of order O(ϵ−3) for
periodic small, smooth data of size ϵ.
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The Hamiltonian approach

Dyachenko & Zakharov (1994):

No 3-wave resonant interactions;

After the Birkhoff normal form procedure, the Hamiltonian

H ◦ Φ = H(2) + H(4) + . . . .

There are two types of 4-wave resonant interactions:

the trivial ones,
the Benjamin-Feir resonances,
there is no cancelations on the trivial ones,
the coefficients in H(4) vanish on the Benjamin-Feir resonances.

Berti, Feola, Pusateri (2018): bounded, invertible Birkhoff normal
forms; non-symplectic, non-explicit;

For the whole line case, one also need to deal with near resonances.
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The Hamiltonian approach

The computations of Dyachenko & Zakharov, Craig & Wolfolk, Berti,
Feola & Pusateri are all carried out in the Fourier space using tools
such as the Birkhoff normal forms from dynamical system.

Question: how does this fact manifest, explicitly and naturally, in the
physical space?
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Existing work:

How do we solve the water wave equation (1)?

A usual approach is to reduce from (1) to an equation on the
interface, and study the interface equation.

Recover v from its value on the interface ∂Ω(t) by solving
∆v = 0, in Ω(t);

We consider the 2d case. Use the Riemann mapping variable.

We describe the approach in Wu (1997, 2009, 2018)

(Abel Symposium) June 15, 2023 11 / 34



2-D water waves Wu (1997), Invent. Math., Wu (1999) JAMS

The surface equation in Lagrangian coordinates

We identify (x , y) = x + iy ;

The free surface
∂Ω(t) : z = z(α, t),

α ∈ R; α is the Lagrangian coordinate.

zt = zt(α, t) velocity, ztt = ztt(α, t) acceleration,

the gravity (0,−g) = (0,−1) = −i .

−∇P = −∂P
∂n n := iazα,

n = izα
|zα| , a = −∂P

∂n
1

|zα| ;

z̄t boundary value of the holomorphic function v̄.
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2-D water waves Wu (1997), Invent. Math., Wu (1999) JAMS


vt + (v · ∇)v = (0,−1)−∇P in Ω(t)

div v = 0, curl v = 0, in Ω(t)

P = 0, on ∂Ω(t)

(5)

Equation of the free surface:{
ztt + i = iazα

z̄t = Hz̄t
(6)

where H is the Hilbert transform,

Hf (α) =
1

πi

∫
zβ(β, t)

z(α, t)− z(β, t)
f (β) dβ
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2-D water waves Wu (1997), Invent. Math., Wu (1999) JAMS

The surface equation in the Riemann mapping framework

Let
Ψ = Ψ(·, t) : P− → Ω(t)

be the Riemann mapping satisfying limz ′→∞Ψz ′(z
′, t) = 1; here P− is the

lower half plane.
Let

Z (α′; t) := Ψ(α′; t) – interface;

Z (h(α, t), t) = z(α, t), b = ht ◦ h−1;

h(α, t) = α′;

Zt := DtZ = v(Z (α′; t); t) – velocity;

Ztt := DtZt – acceleration;

Dt := ∂t + b∂α′ – the material derivative;

∂α′Z := Z,α′ , Ztt,α′ = ∂α′{Ztt}, etc.
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2-D water waves Wu (1997), Invent. Math., Wu (1999) JAMS

Surface equation in Riemann mapping coordinate

Equation of the free surface:
Ztt + i =

iA1

Z̄,α′
, (Ztt = DtZt = (∂t + b∂α)Zt)

(I −H)Z̄t = 0, (I −H)
( 1

Z,α′
− 1

)
= 0

(7)

A1 = 1− Im[Zt ,H]Z̄t,α′ ≥ 1,

b := ht ◦ h−1 = Re(I −H)
Zt

Z,α′
.

(8)

Zt - velocity,
1

Z,α′
- fluid domain,

−|Z,α′ | ∂P∂n = A1 ≥ 1;

Hf (α′) =
1

πi

∫
1

α′ − β′
f (β′) dβ′.
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2-D water waves Wu (1997), Invent. Math., Wu (1999) JAMS

The quasilinear equation in Riemann mapping coordinate:

Taking one time derivative (material derivative) to (6), we get a
quasilinear equation:

(∂2t + ia∂α)z̄t = −iat z̄α
(
=

at
a
(z̄tt − i)

)
.

In Riemann mapping variable it is:

(
D2
t + i

A1

|Z,α′ |2
∂α′

)
Z̄t =

at
a

◦ h−1(Z̄tt − i) (9)

where
at
a

◦ h−1 = quadratic (10)

PZ̄t = quadratic, lower order terms.
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Long time behavior

The normal form transformation in Wu (2009)

Let ϕ be the velocity potential, i.e. v = ∇ϕ,
Let ψ = ϕ(z(α, t), t)

Λ = (I − H)ψ, Π = (I − H)(z − z̄) satisfy equations:

(∂2t − ia∂α)Λ = cubic , (∂2t − ia∂α)Π = cubic ,

a coordinate change given by

κ = 2ℜz − h

removes the quadratic nonlinearities on the left hand side:

(∂2t − i∂α)(Λ ◦ κ−1) = cubic , (∂2t − i∂α)(Π ◦ κ−1) = cubic .

The basic energy functional: for θ holomorphic,

E (θ, t) =

∫
1

a
|∂tθ|2 + i∂αθθ̄ dα.
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Long time behavior

d

dt
E (∂jΛ, t) = quartic, same for ∂jΠ.

Existence of solution for time of order O(ϵ−2) for data of size ϵ.

A further use of the method of vector fields yields the almost global
existence result in Wu (2009).

Similar quartic estimate played key roles in Ionescu & Pusateri
(2015), Alazard & Delort (2015), Hunter, Ifrim & Tataru (2016)......;

The mechanism behind is the absence of 3-wave interactions.
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Long time behavior

Question:

Is it possible to construct a sequence of energy functionals Ej(t), so that

d

dt
Ej(t) = quintic?

The construction works for both the whole line and the periodic cases.
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The main results on the structure of the equation

Results on the structure of the water wave equation

Begin with reconstructing a quartic energy functional sequence.

Define: PH = 1
2(I +H), PA = 1

2(I −H)

Begin with
Q := (I +H)(ψ ◦ h−1),(

DtPHDt+i
1

|Z,α′ |2
∂α′

)
Q = i PA

(
Zt

(
1− 1

Z,α′

))
+Z̄t

( 1

Z̄,α′
−1

))
. (11)

Let
Θ(0) := Q, Θ(j) := (PHDt)

jQ, (12)(
DtPHDt + i

1

|Z,α′ |2
∂α′

)
Θ(j) =: G (j). (13)

PHG
(0) = 0.

Derive a formula for PH(G
(j)), – it is cubic with symmetric structures.
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The main results on the structure of the equation

Proposition (energy identity)

Let Θ1, Θ2 be holomorphic, Define

E (t) = ℜ(
∫

i ∂α′Θ2PHDtΘ1 dα
′ −

∫
i ∂α′Θ1PHDtΘ2 dα

′). (14)

Then

d

dt
E (t) = ℜ(

∫
i ∂α′Θ2(PHG1) dα

′ −
∫

i ∂α′Θ1(PHG2) dα
′). (15)

where Gk := (DtPHDt + i 1
|Z,α′ |2∂α′)Θk , for k = 1, 2.
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The main results on the structure of the equation

Let

Ej(t) = ℜ(
∫

i ∂α′Θ(j+1)Θ(j+1) dα′ −
∫

i ∂α′Θ(j)Θ(j+2) dα′). (16)

From (15),

d

dt
Ej(t) = ℜ(

∫
i ∂α′Θ(j+1)PHG (j) dα′ −

∫
i ∂α′Θ(j)PHG (j+1) dα′);

2
(
PHG

(l+1) − PHDtPHG
(l)
)

= PH

( 1

Z̄,α′

(
< Z̄t , i

1

Z̄,α′
,Dα′Θ(l) > + < −i

1

Z,α′
,Zt ,Dα′Θ(l) >

))
,

< f , g , h >= 1
πi

∫ (f (α′)−f (β′))(g(α′)−g(β′))(h(α′)−h(β′))
(α′−β′)2

dβ′.

d
dtEj(t) is quartic in terms of only the derivatives of 1

Z,α′
and Zt ;
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The main results on the structure of the equation

Removing the quartic terms

−i
1

Z,α′
+ i = Z̄tt + quadratic, Dα′Θ(k) = Dk

t Z̄t + quadratic

Derive an energy identity which moves the Dt derivatives from factors
to factors:

Provided Pf , Pg , Ph, Pq are quadratic,

d

dt

∫∫
f̄ Dt(g h̄ q)− (Dt f̄ ) g h̄ q

(α′ − β′)2
dα′dβ′

= 2

∫∫
f̄ Dt(g h̄)Dtq + f̄ Dt(g Dt h̄) q

(α′ − β′)2
dα′dβ′ + quintic ,

(17)
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The main results on the structure of the equation

Let θ = Z̄t(α
′, t)− Z̄t(β

′, t),

let Dt = ∂t + b(α′, t)∂α′ + b(β′, t)∂β′ ,

C2,j =
1

4π

j−1∑
k=0

(−1)k
∫∫

(D j
tZtDt − D j+1

t Zt)θD
k
t θ̄D

j−k−1
t θ

(α′ − β′)2
dβ′ dα′

+
1

4π
(−1)j

∫∫
D j
tZt

θDj
t θ̄ θ

(α′ − β′)2
dβ′ dα′.

(18)
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The main results on the structure of the equation

C1,j =
1

2π

j−1∑
l=0

l∑
k=0

∫∫
(D j

tZtDt − D j+1
t Zt)D

l−k
t (Dk

t θ θ̄D
j−l−1
t θ)

(α′ − β′)2
dβ′ dα′

+
1

4π

j−2∑
l=0

j−l−2∑
k=0

(−1)k
∫∫

(D j
tZtDt − D j+1

t Zt)D
1+l
t θDk

t θ̄D
j−l−2−k
t θ

(α′ − β′)2
dβ′ dα′

− 1

8π

j−2∑
l=0

j−l−2∑
k=0

(−1)k
∫∫

(θDt −Dtθ)D
j−l−1
t θ̄Dj−k−1

t θDk+l+1
t θ̄

(α′ − β′)2
dβ′ dα′

+
1

2π

j−1∑
l=0

∫∫
D j
tZt

Dj−l−1
t θ θ̄D1+l

t θ

(α′ − β′)2
dβ′ dα′,

(19)
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The main results on the structure of the equation

Main result on the quartic integrability of WWE

Theorem

Let

Ej(t) = Ej(t)−ℜ(
∫

i∂α′Θ(j)PHG (j) dα′ + C1,j(t) + C2,j(t)). (20)

Then
d

dt
Ej(t) = quintic (21)

with desirable structures.

Ej(t) controls only the spatial derivatives of 1
Z,α′

and Zt , waves with

large steepness and velocity can be small in Ej(t) for j ≥ 2;
d
dtEj(t) is quintic in terms of the spatial derivatives of 1

Z,α′
and Zt .
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scaling law

Scaling law

If (Z̄t ,Z ) is a solution of (7)-(8), then

(Z̄λ
t ,Z

λ) := (λ−1/2Z̄t(λα
′, λ1/2t), λ−1Z (λα′, λ1/2t)) (22)

is also a solution of (7)-(8).

Scaling invariant norms:

∥ 1

Z,α′
− 1∥Ḣ1/2(R), ∥Z̄t,α′∥L2(R),

∥ 1

Z,α′
− 1∥L∞(R).
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The main result on long time existence

Let

L(t) =∥ 1

Z,α′
(t)∥Ḣ1/2(R) + ∥Z̄t,α′(t)∥L2(R)

+ ∥∂α′
1

Z,α′
(t)∥Ḣ1/2(R) + ∥∂2α′Z̄t(t)∥L2(R).

(23)

Theorem

1. Let J ≥ 2. Assume that the initial data(
Z̄t(0),

1
Z,α′

(0)
)
∈ ∩ 1

2
≤s≤JḢ

s(R)× Ḣs− 1
2 (R). Then there are constants

m0 > 0, and ε0 > 0, such that for all 0 < ε ≤ ε0, if the data satisfies

L(0) ≤ ε, ∥ 1

Z,α′
(0)− 1∥L∞ < 1, E1(0)E3(0) ≤ m2

0, (24)

then the lifespan of the unique classical solution for the 2d water wave
equation (1) is at least of order O(ε−3). During this time, the solution is
as regular as the initial data and L(t) remains small.
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The main result on long time existence

Theorem (continued)

If instead of (24) the data satisfies

∥ 1

Z,α′
(0)∥Ḣ1/2(R) + ∥Z̄t,α′(0)∥L2(R) ≤ ε,

∥ 1

Z,α′
(0)− 1∥L∞ < 1, E1(0)E3(0) ≤ m2

0,

(25)

then the lifespan of the unique classical solution for the 2d water wave
equation (1) is at least of order O(ε−5/2). During this time, the solution is
as regular as the initial data.

Remark: ∥ 1
Z,α′

(0)∥Ḣ1/2(R) + ∥Z̄t,α′(0)∥L2(R) is scaling invariant.
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The main result on long time existence

Remarks

E1(t) ≈ ∥ 1
Z,α′

(t)− 1∥2L2(R) + ∥Z̄t(t)∥2Ḣ1/2(R),

E3(t) ≈ ∥ 1
Z,α′

(t)∥2
Ḣ1(R) + ∥Z̄t,α′(t)∥2

Ḣ1/2(R),

E1(t)E3(t) is scaling invariant,

Sobolev embedding: ∥ 1
Z,α′

(t)− 1∥2L∞ ≤ c0E1(t)E3(t),

E1(t)E3(t) remains controlled for time of order O(ε−3),

If ∥ 1
Z,α′

(0)− 1∥L∞ ≤ 1− 2δ, then ∥ 1
Z,α′

(t)− 1∥L∞ ≤ 1− δ for time of

order O(ε−3).

m0 > 0 need not be small, 0 < δ < 1 is arbitrary.
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The main result on long time existence

Remarks

Part 2 of the Theorem is a consequence of part 1 by a scaling
argument.

The rescaled data (Z̄ ε
t (0),Z

ε(0)) satisfies

∥∂α′
1

Z ε
,α′

(0)∥Ḣ1/2+∥∂2α′Z̄ ε
t (0)∥L2 = ε∥∂α′

1

Z,α′
(0)∥Ḣ1/2+ε∥∂2α′Z̄t(0)∥L2 .

The rescaled solution (Z̄ ε
t (t),Z

ε(t)) has lifespan of order O(ε−3)
implies that the solution (Z̄t(t),Z (t)) has lifespan of order O(ε−5/2).

The lifespan of the solution is in fact of order O(ε−3+ 1
2J−2 ), under the

assumption of part 2.

The interface Z = Z (α′, t) is a graph during the lifespan of the
solution.
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The main result on long time existence

Main ideas

Use the quintic energy functionals Ej(t),

Ej(t) ≈ ∥ 1

Z,α′
(t)− 1∥2

Ḣ
j−1
2 (R)

+ ∥Z̄t(t)∥2
Ḣ

j
2 (R)

d

dt
Ej(t) = O(ϵ5), for 2 ≤ j ≤ 4

d

dt
(E1(t)E3(t)) = O(ϵ3)E1(t)E3(t),

provided

L(t) ≤ ϵ, ∥ 1

Z,α′
(t)− 1∥L∞ ≤ 1− δ;

0 < ϵ ≤ ϵ0(δ).

(Abel Symposium) June 15, 2023 32 / 34



The main result on long time existence

Some further Remarks:

Similar calculations apply to a variety of free boundary problems, and
for some we can derive higher order integrability, of quartic or cubic
orders...

A recent work of Deng, Ionescu, Pusateri (2022): quartic integrability,
and longer time existence by using dispersive property.
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The main result on long time existence

Thank you!
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