software and applications

TMS Workshop on

Foundations of Numerical Differential Geometry, May 7, 2024
Nicolas Boumal - chair of continuous optimization
Institute of Mathematics, EPFL




Step 0 in optimization

[t starts with a set S and a f:S - R. We want to compute:
T/

These fully specify the problem.

Any additional on S and f may (and should) be exploited

for but is not part of the problem.



Classical unconstrained optimization

The search space is a ,e.g., S =R™
min f(x)
We can choose to turn R™ into a {u,v) =u'v.
If f is differentiable, we have a ogradf and Hessf.
We can build with them: gradient descent, Newton's...

(gradf (x),v) = Df(x)[v] = 1timf(x + tv) — f(x)

-0

t
Hessf (x)[v] = D(gradf)(x)[v] = }:1_r)r(1) gradf (x + tvt) — gradf (x)



Optimization on manifolds
We target applications where S = M is a
min f (x)

We can choose to turn M into a

If f is differentiable, we have a and
We can build with them: gradient descent, Newton’s...



Manopt provides manifolds, solvers, tools

is a family of toolboxes for Riemannian optimization.

Go to manopt.org, pymanopt.org or manoptjl.org for code and help.

Manopt | #Home ATutorial & Download: @ Forum L About i Contact

example for ||r9£l||lzl1 x ' Ax: Welcome to Manopt!

Toolboxes for optimization on manifolds and matrices
Optimization on manifolds is a powerful paradigm to address nonlinear optimization problems.

- With Manopt, it is easy to deal with various types of constra and symmetries which al naturally in
problem.M = spherefactory(n); e
These tools are

Is are also perfectly suited for unconstrained optimization wi

problem.cost = @ (x) x'*A*x;

problem.egrad = @(x) 2*A*x; .

With Bamdev Mishra, Lead by J. Townsend, Lead by
P-A. Absil & R. Sepulchre N. Koep & S. Weichwald Ronny Bergmann

X = trustregions (problem) ;



http://www.manopt.org/
https://www.pymanopt.org/
https://www.manoptjl.org/

Example 1: Max-Cut

Input:

An undirected graph.

Output:
Vertex labels (+1, —1)
so that as many edges

as possible connect
different labels.




Goemans Williamson 1995, Burer Monteiro Zhang 2001, Journée Bach Absil Sepulchre 2010

Max-Cut

Input:

min Eaijxixj s.t. x; € {+1}
An undirected graph: X1 Xn =

adjacency matrix A. /
Output: Relax the dimension: _\

Vertex labels x; € {+1, —1}
so that as many edges

Let x; be unit-norm in RP.

as possible connect
different labels.
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Max-Cut via relaxation to spheres in

4

With adjacency matrix A € R™*", want: data = load('graph20.mat');
A = data.A; n = data.n;

min Zaijxl-Tx]- s.t. |lx;|| = 1 Vi

X1,---XnER = 2

Lj
problem.M = obliquefactory(p, n);
problem.cost = @(X) sum((X*A) .* X, 'all');
problem.egrad = @ (X) 2*X*A;

problem.ehess = @ (X, Xdot) 2*Xdot*A;

The manifold is a

M = {x € R":||x|| = 1}"

X = trustregions (problem) ;

= {X e R ||X.;|| = 1 vi}
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Fifty years

MANAGEMENT SCIENCE
Vol. 18, No. 11, July, 1972
Printed in U.8.A.

Proposed by Luenberger in 1 9 7 2 _ THE GRADIENT PROJECTION METHOD ALONG GEODESICS*}

DAVID G. LUENBERGER

Stanford Unaversity

SIAM J. MATRIX ANAL. APPL. () 1998 Society for Industrial and Applied Mathematics
ol. o. 2, pp. 303-353

Practical since the 1990s

THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY
CONSTRAINTS*

With numerical linear algebra. ALAN EDELMANT, TOMAS A. ARIAS*, AND STEVEN T. SMITHS

OPTIMIZATION ALGORITHMS

Popularized in the 2010s Stuiibizas
by Absil, Mahony & Sepulchre’s book. '_

Becoming mainstream now.




How do manifolds arise in optimization?

Linear spaces Symmetry

Orthonormality

Lifts/parameterizations

Positivity

Rank Products



How do you

and those other tools

TMS Workshop on

Foundations of Differential Geometry



What do we need?

min f (x) ,
X y /:f}:
Euclidean optimization Riemannian optimizati\(;\ri\\ \
Basic step: Xp41 = X + Xk+1 = Ry (51) (retraction)
Gradient descent: = —agradf (x;) same, with Riemannian gradient
Newton’s method:  Hessf (x;)[s,] = —gradf (x;) and Riemannian Hessian.

(Fancier algorithms involve more substantial differences, especially in analysis.)



These are the foundations.

Connections Riemannian

D . Vector fields
V, o metric (u, v),

Tangent

Retractions bundle TM

What is What is
a smooth function? a tangent vector?

This crash course:
What is Riemannian submanifolds
a smooth set? of linear spaces.



Xg —p ) _ szn;/
Submanifolds of R"

locally defined by (good) equations: Example: the unit S™"~1in R"
M = {x € R™: } h(x) =xTx—1
at x is ker Dh(x) Dh(x)[v]=v 'x+xTv
Interpretations: T,S" '={veR%:xTv =0}

1. Linearize h(x + v) = h(x) + Dh(x)[v]

2. Curves:c(0) =x = c'(0) € T,M Any smooth f on R" is still smooth if you

_ ~ ~ restrict it to S™~1. All smooth f are so.
: f = flp smooth iff f smooth ...

:Df(x)[v] = (f e ¢)'(0) = Df(x)[v] Differentiate as usual, only on T, S™ 1.

N Sn—l



Retractions, gradients and Hessians

A “smoothly” generates a curve Example on a sphere:

o0 = firle) R = e

such that ¢(0) = x and ¢'(0) = v.
onR"™: (u,v)=u'v
The of f: M - R

Same inner product on each tangent space.
at x is a tangent vector: '

Let f(x) = %xTAx. Then gradf (x) = Ax.
gradf (x) = Proj, ( )
So gradf(x) = (I, — xx")

Hessf (x)[v] = Proj,(Dgradf (x)[v]) Hessf (x)[v] = Proj,(Av — (x T Ax)v)



In code, a manifold is a bunch of functions

Example: stripped down and simplified spherefactory

function M = spherefactory(n)
M.name = @ () sprintf ('Sphere S57%d', n-1);

M.dim = @() n-1;

M.inner = @(x, u, v) u'*v; M.log = @logarithm;
M.norm = Q@(x, u) norm(u); M.hash = @(x) ['z' hashmd5 (x)];
M.dist = @(x, y) real(Z2*asin(.5*norm(x - y))); M.rand = Q() normalize(randn(n, 1));
function M = spherefactory(n)
M.inner = (@(x, u, v) u'*v;
M.proj = (@d(x, u) u - x*(x'*u);
M.egrad2rgrad = M.proj;
M.ehess2rhess = (@ (x, egrad, ehess, u)
M.proj (x, ehess - (x'*egrad) *u) ;
M.retr = Q(x, u) (x+u)/norm(x+u) ;

M.exp = (@exponential;
M.retr = Q(x, u) (x+u)/norm(x+u);

M.invretr = @inverse retraction;



Example 2: Synchronization

See this paper: arxiv.org/abs/2312.10794

p(t) = "
max f(X) = Zijcp(xl-ij)
lxill = = llxpll =1

Let’s go to Matlab.

A MATHEMATICAL PERSPECTIVE ON TRANSFORMERS

BORJAN GESHKOVSKI, CYRIL LETROUIT, YURY POLYANSKIY,
AND PHILIPPE RIGOLLET

Remark 3.7. Let us briefly skﬂ‘( h the pm'fide version of the Wasserstein gradient

flow (3.8). When pu(t) =+ Z , the interaction energy (3.5) takes the form
In’ i=1j=1

where X = (x1,...,1,) € (S“r Y. Denoting by Vx the gradient associated to the

standard Riemannian metric on (ST1)", we get the dynamics

(3.11) X(t) =nVxEg(X(1)).

Indeed, the gradient on (ST1)" is simply V = (0;. ..., O, ) where 0; is the gradient

in S acting on the i-th copy in (ST1)". Therefore

1 :
0iEp(X (1)) = 5”2 Z xi(t) ( PeiDeit) gy i(t )) - ;J-'-;.(f)
o )


https://arxiv.org/abs/2312.10794

LI =

Software, book, lectures, slides

Manopt software packages

manopt.org  pymanopt.org  manoptjl.org

Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++
Julia by Ronny Bergmann++ 5 g;mgﬁggo
Python by James Townsend, Niklas Koep on Smooth

Manifolds

and Sebastian Weichwald++

Book (pdf, lecture material, videos) and tutorial slides

nicolasboumal.net/book
nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.


https://www.manopt.org/
https://www.pymanopt.org/
https://www.manoptjl.org/
https://www.nicolasboumal.net/book
https://www.nicolasboumal.net/SIAMOP23
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