Riemannian optimization software and applications

TMS Workshop on

Foundations of Numerical Differential Geometry, May 7, 2024

Nicolas Boumal – chair of continuous optimization Institute of Mathematics, EPFL

Step 0 in optimization

It starts with a set S and a function $f: S \to \mathbf{R}$. We want to compute:

$$\min_{x \in S} f(x)$$

These bare objects fully specify the problem.

Any additional structure on S and f may (and should) be exploited for algorithmic purposes but is not part of the problem.

Classical unconstrained optimization

The search space is a linear space, e.g., $S = \mathbb{R}^n$:

$$\min_{x \in \mathbf{R}^n} f(x)$$

We can *choose* to turn \mathbf{R}^n into a Euclidean space: $\langle u, v \rangle = u^{\mathsf{T}} v$.

If f is differentiable, we have a gradient grad f and Hessian Hess f.

We can build algorithms with them: gradient descent, Newton's...

$$\langle \operatorname{grad} f(x), v \rangle = \operatorname{D} f(x)[v] = \lim_{t \to 0} \frac{f(x + tv) - f(x)}{t}$$

$$\operatorname{Hess} f(x)[v] = \operatorname{D}(\operatorname{grad} f)(x)[v] = \lim_{t \to 0} \frac{\operatorname{grad} f(x + tv) - \operatorname{grad} f(x)}{t}$$

Optimization on manifolds

We target applications where $S = \mathcal{M}$ is a smooth manifold:

$$\min_{x \in \mathcal{M}} f(x)$$

We can *choose* to turn \mathcal{M} into a Riemannian manifold.

If f is differentiable, we have a Riemannian gradient and Hessian.

We can build algorithms with them: gradient descent, Newton's...

Manopt provides manifolds, solvers, tools

Manopt is a family of toolboxes for Riemannian optimization.

Go to manopt.org, pymanopt.org or manoptjl.org for code and help.

Matlab example for $\min_{\|x\|=1} x^{\mathsf{T}} A x$:

```
problem.M = spherefactory(n);
problem.cost = @(x) x'*A*x;
problem.egrad = @(x) 2*A*x;
x = trustregions(problem);
```


With Bamdev Mishra, P.-A. Absil & R. Sepulchre

Lead by J. Townsend, N. Koep & S. Weichwald

Lead by Ronny Bergmann

Example 1: Max-Cut

Input:

An undirected graph.

Output:

Vertex labels (+1, -1) so that as many edges as possible connect different labels.

Max-Cut

Input:

An undirected graph: adjacency matrix *A*.

Output:

Vertex labels $x_i \in \{+1, -1\}$ so that as many edges as possible connect different labels.

$$\min_{x_1,\dots,x_n} \sum_{ij} a_{ij} x_i x_j \quad \text{s.t.} \quad x_i \in \{\pm 1\}$$

Relax the dimension:

Let x_i be unit-norm in \mathbf{R}^p .

Max-Cut via relaxation to spheres in Manopt

With adjacency matrix $A \in \mathbb{R}^{n \times n}$, want:

$$\min_{x_1,\dots,x_n \in \mathbb{R}^p} \sum_{ij} a_{ij} x_i^\top x_j \quad \text{s.t.} \quad ||x_i|| = 1 \ \forall i$$

The manifold is a product of *n* spheres:

$$\mathcal{M} = \{x \in \mathbf{R}^p : ||x|| = 1\}^n$$
$$\equiv \{X \in \mathbf{R}^{p \times n} : ||X_{:,i}|| = 1 \ \forall i\}$$

Called the oblique manifold.


```
data = load('graph20.mat');
A = data.A; n = data.n;

p = 2;
problem.M = obliquefactory(p, n);
problem.cost = @(X) sum((X*A) .* X, 'all');
problem.egrad = @(X) 2*X*A;
```

problem.ehess = @(X, Xdot) 2*Xdot*A;

X = trustregions(problem);

```
s = sign(X'*randn(p, 1));
%random rounding
```


Fifty years

Proposed by Luenberger in 1972.

Practical since the 1990s with numerical linear algebra.

Popularized in the 2010s by Absil, Mahony & Sepulchre's book.

Becoming mainstream now.

MANAGEMENT SCIENCE Vol. 18, No. 11, July, 1972 Printed in U.S.A.

THE GRADIENT PROJECTION METHOD ALONG GEODESICS*†

DAVID G. LUENBERGER

Stauford University

SIAM J. MATRIX ANAL. APPL. Vol. 20, No. 2, pp. 303-353 © 1998 Society for Industrial and Applied Mathematics

THE GEOMETRY OF ALGORITHMS WITH ORTHOGONALITY CONSTRAINTS*

ALAN EDELMAN[†], TOMÁS A. ARIAS[‡], AND STEVEN T. SMITH[§]

How do manifolds arise in optimization?

Linear spaces

 \mathbb{R}^n , $\mathbb{R}^{n \times m}$

Symmetry

Quotient manifolds

Orthonormality

Spheres, Stiefel, rotations, Grassmann

Lifts/parameterizations

arXiv:2207.03512, with E. Levin & J. Kileel

Positivity

Simplex, positive definite matrices

Rank

Matrices, tensors

Products

 $\mathcal{M} \times \mathcal{N}$

How do you "put" a manifold

and those other tools

in a computer?

TMS Workshop on

Foundations of Numerical Differential Geometry

What do we need?

$$\min_{x} f(x)$$

Euclidean optimization

Riemannian optimization

Basic step:

$$x_{k+1} = x_k + \underline{s_k}$$

$$x_{k+1} = R_{x_k}(s_k)$$

(retraction)

Gradient descent:

$$s_k = -\alpha_k \operatorname{grad} f(x_k)$$

same, with Riemannian gradient

Newton's method:

$$\operatorname{Hess} f(x_k)[s_k] = -\operatorname{grad} f(x_k)$$

and Riemannian Hessian.

(Fancier algorithms involve more substantial differences, especially in analysis.)

Hessf

These are the foundations.

What is a smooth set?

This crash course:

Riemannian submanifolds of linear spaces.

Submanifolds of \mathbf{R}^n

Set locally defined by (good) equations:

$$\mathcal{M} = \{ x \in \mathbf{R}^n : h(x) = 0 \}$$

Tangent space at x is ker Dh(x)

Interpretations:

- 1. Linearize $h(x + v) \approx h(x) + Dh(x)[v]$
- 2. Curves: $c(0) = x \implies c'(0) \in T_x \mathcal{M}$

Functions: $f = \bar{f}|_{\mathcal{M}}$ smooth iff \bar{f} smooth

Derivative:
$$Df(x)[v] = (f \circ c)'(0) = D\overline{f}(x)[v]$$

Example: the unit sphere S^{n-1} in \mathbb{R}^n

$$h(x) = x^{\mathsf{T}}x - 1$$

$$Dh(x)[v] = v^{\mathsf{T}}x + x^{\mathsf{T}}v$$

$$T_{x}S^{n-1} = \{ v \in \mathbf{R}^{n} : x^{\mathsf{T}}v = 0 \}$$

Any smooth \bar{f} on \mathbb{R}^n is still smooth if you restrict it to \mathbb{S}^{n-1} . All smooth f are so.

Differentiate as usual, only on $T_x S^{n-1}$.

Retractions, gradients and Hessians

A retraction "smoothly" generates a curve

$$c(t) = R_{\chi}(tv)$$

such that c(0) = x and c'(0) = v.

The Riemannian gradient of $f: \mathcal{M} \to \mathbf{R}$ at x is a tangent vector:

$$\operatorname{grad} f(x) = \operatorname{Proj}_{x} \left(\operatorname{grad} \overline{f}(x) \right)$$

Example on a sphere:

$$R_{x}(tv) = \frac{x + tv}{\|x + tv\|}$$

Inner product on \mathbf{R}^n : $\langle u, v \rangle = u^{\mathsf{T}} v$

Same inner product on each tangent space.

Let
$$\bar{f}(x) = \frac{1}{2}x^{T}Ax$$
. Then grad $\bar{f}(x) = Ax$.

So grad
$$f(x) = (I_n - xx^T)Ax$$

$$\operatorname{Hess} f(x)[v] = \operatorname{Proj}_{x}(Av - (x^{\mathsf{T}}Ax)v)$$

In code, a manifold is a bunch of functions

Example: stripped down and simplified spherefactory

```
function M = spherefactory(n)
                                                M.exp = @exponential;
                                                M.retr = @(x, u) (x+u) / norm(x+u);
     M.name = @() sprintf('Sphere S^%d', n-1);
                                                M.invretr = @inverse retraction;
     M.dim = @() n-1;
     M.inner = @(x, u, v) u'*v;
                                                M.log = @logarithm;
     M.norm = Q(x, u) norm(u);
                                                M.hash = Q(x) ['z' hashmd5(x)];
     M.dist = @(x, y) real(2*asin(.5*norm(x - y)));
                                                M.rand = @() normalize(randn(n, 1));
function M = spherefactory(n)
  M.inner = @(x, u, v) u'*v;
  M.proj = @(x, u) u - x*(x'*u);
  M.egrad2rgrad = M.proj;
  M.ehess2rhess = @(x, egrad, ehess, u) ...
                            M.proj(x, ehess - (x'*egrad)*u);
  M.retr = 0(x, u) (x+u) / norm(x+u);
```

Example 2: Synchronization

See this paper: arxiv.org/abs/2312.10794

$$\varphi(t) = e^{\beta t}$$

$$\max f(X) = \sum_{ij} \varphi(x_i^{\mathsf{T}} x_j)$$

$$||x_1|| = \dots = ||x_n|| = 1$$

Let's go to Matlab.

A MATHEMATICAL PERSPECTIVE ON TRANSFORMERS

BORJAN GESHKOVSKI, CYRIL LETROUIT, YURY POLYANSKIY, AND PHILIPPE RIGOLLET

Remark 3.7. Let us briefly sketch the particle version of the Wasserstein gradient flow (3.8). When $\mu(t) = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i(t)}$, the interaction energy (3.5) takes the form

$$\mathsf{E}_{\beta}(X) = \frac{1}{2\beta n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} e^{\beta \langle x_i, x_j \rangle}$$

where $X = (x_1, ..., x_n) \in (\mathbb{S}^{d-1})^n$. Denoting by ∇_X the gradient associated to the standard Riemannian metric on $(\mathbb{S}^{d-1})^n$, we get the dynamics

(3.11)
$$\dot{X}(t) = n\nabla_X \mathsf{E}_\beta(X(t)).$$

Indeed, the gradient on $(\mathbb{S}^{d-1})^n$ is simply $\nabla = (\partial_1, \dots, \partial_n)$ where ∂_i is the gradient in \mathbb{S}^{d-1} acting on the *i*-th copy in $(\mathbb{S}^{d-1})^n$. Therefore

$$\partial_i \mathsf{E}_{\beta}(X(t)) = \frac{1}{\beta n^2} \sum_{j=1}^n \mathbf{P}_{x_i(t)} \left(e^{\beta \langle x_i(t), x_j(t) \rangle} \beta x_j(t) \right) = \frac{1}{n} \dot{x}_i(t)$$

Software, book, lectures, slides

Manopt software packages

manopt.org pymanopt.org manoptjl.org

Matlab with Bamdev Mishra, P.-A. Absil, R. Sepulchre++

Julia by Ronny Bergmann++

🤚 Python by James Townsend, Niklas Koep

and Sebastian Weichwald++

Book (pdf, lecture material, videos) and tutorial slides nicolasboumal.net/book nicolasboumal.net/SIAMOP23

Many thanks to Cambridge University Press, who agreed for me to keep the preprint freely available online.