Proper cocycles and extensions of L_p -bounded Fourier multipliers

Runlian Xia

Abstract

One of Haagerup's results gives a transference method from Fourier multipliers on a lattice of a locally compact group to the whole group. For a lattice $\Gamma < G$, any bounded function m on Γ which gives rise to a completely bounded Fourier multiplier on the group von Neumann algebra $\mathcal{L}(\Gamma)$ can be transferred to a function \tilde{m} on G with

$$||T_{\tilde{m}}||_{cb,\mathcal{L}(G)\to\mathcal{L}(G)} \le ||T_m||_{cb,\mathcal{L}(\Gamma)\to\mathcal{L}(\Gamma)},$$

where $T_{\tilde{m}}, T_m$ are Fourier multipliers associated with \tilde{m} and m that are defined on the group von Neumann algebras $\mathcal{L}(G)$ and $\mathcal{L}(\Gamma)$, respectively. In this talk, we will present generalisations of Haagerup's result to the non-commutative L_p -spaces for any $1 . As an application, we obtained new <math>L_p$ -bounded Fourier multipliers on $\mathrm{SL}(2,\mathbb{R})$ from the Hilbert transform on its lattice $\mathrm{SL}(2,\mathbb{Z})$.

Joint work with Simeng Wang and Gan Yao.