How To Do Science

In Theory & In Practice - 1

Jonathan Wright
The Scientific Method
- an ongoing project

Francis Bacon

- Science is a unique way of understanding the world
 - Rooted in the origins of Western intellectual thought
 - Ancient Greek philosophers (e.g. pre-socratic, Socrates, Plato, Aristotle)
 - The existence of objective reality & avoiding subjectivity
 - mathematics, argument & evidence (not belief, superstition or prophets)

- Baconian unbiased description – the first step
 - Objective & repeatable observations
 - the descriptive result is independent from the observer
 - Looking for patterns in observations – a very human characteristic
Popperian hypothesis refutation = The Scientific Method

- Progress through theories that survive critical tests
- Unambiguous hypothesis - tested using falsifiable predictions
 - ultimately requires controlled experimentation
- Predictive power in terms of future events
 - the demonstrable success of science (e.g. useful technology)

The non-scientific method of advocacy

- Seeking evidence that supports a theory, explanation or agenda
- Looks like science, but it is not science (e.g. politically motivated ‘science’)
- Confusion arises when science becomes merely advocacy
Asking Questions in Biology

• Description vs hypothesis testing
 • Natural history of species, structures, genotypes, etc
 - cataloguing what is there, what variation exists
 • Hypothesis testing in order to understand biological systems
 - explanations for what is there, how it works & why

• ‘How’ versus ‘why’ questions
 • How does the biology work the way it does?
 - “Proximate” explanations of the mechanism
 (e.g. behaviour produced because of hormones)
 • Why has the biology evolved the way it has?
 - “Ultimate” explanations via adaptation
 (e.g. behaviour produced because it results in more offspring)
Reductionism & Choice of a Hypothesis

• **Holistic science is just not possible**
 • ‘Science’ – asking the biggest question possible that you can still find an answer to (D. Adams: Hitchhiker's Guide to the Galaxy)
 • Problems need breaking down into smaller answerable questions, and then we can integrate the answers at a later date
 • Phenotypes are conveniently divided into quasi-independent ‘traits’, & at different levels from molecules to life histories to ecosystems

• **Not every question is a good scientific hypothesis**
 • Each question, however small, has to fit into a wider framework (e.g. biology within chemistry, chemistry within physics, so psychology within biology?)
 • A coherent series of mutually compatible scientific questions - the importance of reviewing the literature at the start of every study
Evolution

THE Theory of Biology

• Biology is about evolved systems
 • Biology as a science requires theory, by definition
 • All aspects of biology evolved, from molecules to ecosystems
 • Evolution is not just for ecologists!

• The theory of evolution—simple, but with powerful implications
 • (i) things vary, (ii) things are inherited, (iii) things with a reproductive advantage will be selected for
 • All of biology is a series of attempts to refute this theory…?
 • How does your hypothesis relate to the rest of your field, the rests of biology & the theory of evolution?
Mathematics in Biology

• Formulating theory is an area of study in itself
 • Mathematics - an unambiguous language for theory
 • Mathematical theory provides clear testable predictions
 • Mathematical modelling - a neat area to get involved in…

• Statistics – unambiguous mathematical comparisons
 • Test if observations are different from chance frequencies
 - i.e. everything is probabilities, so did the theory predict correctly?
 • For biology the unit of analysis is often the individual organism
 - i.e. independent genomes when testing evolutionary hypotheses, but
 perhaps the social group, the population, the species, or the community?
Testing Theoretical Predictions

• **Unbiased data collection**…
 - Question-driven vs system-driven research

• **Descriptive studies**
 - Within species studies – patterns consistent with theory?
 - Across species comparative studies (need to control for phylogeny)
 - But... “correlation is not causation!”

• **Experimental studies** (and the beauty of experimental design)
 - Testing the direction of causes & effects
 - Control treatments, within- vs between-subjects designs
 - Laboratory studies – controlled, but artificial conditions
 - Field studies – natural, but lots of noise in any measurement
Cycles of Research in Biology

• The sequence of events in biological research
 • Observational natural history (e.g. Linnaeus, gene sequencing)
 • Formulation of theory to explain observations (e.g. Darwinian evolution)
 • Collection of data to refute theory, if possible (e.g. altruism)
 • Reformulation of theory, if necessary (e.g. Hamiltonian kin selection)
 • Critical experimental test of theory (e.g. kin discrimination studies)

• Science = Data-Theory-Data-Theory Cycles
 • New theories open up new data opportunities…
 • New data stimulate new theories…
 • The aim here is understanding and each answer just stimulates more & better questions…
How To Do Science
In Theory & In Practice - 2

see also – BI3052
Study Design in Biology
(Mon & Wed 14-17, U33, weeks 38-47)

Jonathan Wright
How Science is Actually Done

• Learning by doing…
 • Practical experience is the only way to learn – hence your masters project
 • Constantly striving to ensure objectivity in your own research
 • Recognising ethical conflicts of interest – e.g. financial, political, etc.

• A training in the scientific method
 • Not just in order to become a researcher (if you decide you want to…)
 • Everyone in society should understand the scientific process
 • The ability to properly interpret scientific evidence - e.g. statistical results

• The social aspect
 • Science is mostly a cooperative, social & international activity
 • The problem of personal feelings & individual egos…
 • Seeking advice from others & giving constructive criticism
Asking Scientific Questions & Knowledge of Previous Research
(see lectures by Trond Amundsen and Thorsten Hamann on Weds and Jo Kristen Breivik Forthun on Thurs)

- Framing your scientific question
 - The precise question is often more important than the answer
 - D. Adams: Hitchhiker’s Guide to the Galaxy
 - Fitting in with the wider aims of your supervisor & research group…

- The scientific literature (on-line & in print)
 - A massive resource to search through…
 - Always work within the context of previous scientific research
 - issues of plagiarism & correct citation

- Engaging with the work of others, & vice versa
 - Choice of courses, special pensum & wider reading
 - Masters seminars, study groups, etc…
How to Actually Do Science
(see Trond Amundsen and Christophe Pelabon on Weds)

• Data collection
 • Independent samples & unbiased data collection design
 • Experimental design & unambiguous conclusions
 • Statistical power – ability to refute not confirm hypotheses

• Statistics – the real heart of doing science ("don’t panic")
 • A few basic principles (e.g. types of data, variances, p-values, normality)
 • A personal repertoire of tests – a circle of light in a darkened room
 • Separating issues with statistical programs (R!) from statistics…

• Reaching appropriate conclusions
 • Problems like pseudoreplication come only with the conclusion
 • Making sure you answer the question that was first asked a priori
Safety & Ethics

(see HSE Course on Tues, Jon Wright and Thorsten Hamann on Weds, and Claus Bech on Thurs)

• Health & Safety
 • Dangerous science is usually bad (and unrepeatable) science
 • Duties of care & collective responsibilities

• Ethics in Science
 • Personally policing oneself against intentional & unintentional acts
 • Rules, regulations & policing each other against transgressions
 • The accredited university, plus other ethical & legal standards

• Animal welfare & environmental ethics
 • All biological research has welfare & ethical implications
 • Scientific gains vs harmful effects – an objective assessment
 • Regulatory frameworks and national & international standards, but also personal choices & responsibilities…
Masters Project Proposals
(see the group discussions, etc.)

- Designing your project
 - Choosing a topic – what is your aim in obtaining a masters?
 - Designing an appropriately sized task for a masters project
 - Working with your supervisor(s) & other researchers

- Writing your proposal
 - A good introduction to thinking & reading about the topic
 - Often a collaborative exercise with your supervisor
 - Essentially a first draft of your thesis introduction & methods

- Evaluation of masters projects proposals
 - The study committee within each research area
 - Assessing the quality & viability of the masters project proposal
 - Comments & replies to comments from the study committee
The Masters Thesis
(see Claus Bech and Christophe Pelabon on Thurs)

• **Scientific Writing**
 • Not just for scientists, but a useful skill for everyone
 • Experience useful when then reading the scientific literature
 • Skills in the presentation and interpretation of results

• **Publishing & Presenting**
 • Ownership of data & time-lines for publication
 • Authorship & the value of scientific publication
 • Public speaking, constructive criticism & oral interaction

• **The Mark**
 • Hopefully the mark is not the be all and end all…
 • Course & thesis marks - gateways to future research opportunities
 • Excellence, elitism & perfectionism in science