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Abstract

The paper examines several simple dynamic probit models in terms of their usefulness in
forecasting wind drought, defined as 5 or more hours of wind speed less than 3.5 m/sec during
the busiest periods of the day for the demand for electricity. Dynamic probit models work
well in terms of their ability to forecast and are robust by comparison with an approach
based on modelling counts. There seems little advantage to moving to modelling counts
unless there is added advantage to market participants in knowing the actual prediction for
the number of hours of low wind. Future research should focus on the problem of identifying
the first day in a series of days with slow winds, and the first day of reasonable wind after
a spell of drought. Both the probit and count models could be improved in this regard.
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1 Introduction

The Australian National Electricity Market (NEM) is one of the world’s largest deregulated
electricity markets with a transmission network to final users of around 750,000 kms. Based on
this infrastructure, the trading between and around 300 registered generators with total installed
capacity of approximately 48,000 MW and nine million customers operates as a pooled market
under the supervision of the Australian Energy Market Operator (AEMO). Thermal, coal-fired
generators have traditionally provided base-load generation for the grid, operating continuously
with some ramping of production to meet daily consumer patterns of demand. Collectively,
these generators produce approximately 70 terawatt hours (TWh), or 70,000 gigawatt hours
(GWh), of energy each year which is close to one-third of total NEM consumption.

Over the 20-year plan period, AEMO anticipates the retirement of a substantial portion of
the NEM’s conventional generation fleet. A significant number of coal-fired generators in the
NEM have either advised that they are closing or will reach the expected end of their technical
life during this period. As coal generation retires, however, there is an increasing need for
renewable wind and solar resources both in the context of emissions policy and due to their
falling costs of production. Almost 80% of all currently announced, proposed, advanced, or
committed projects in the NEM are wind or solar generators. Around 5 GW of new solar and
wind generation projects are in an advanced stage or are committed to become operational
in the next two years, displacing the energy contribution provided by both gas and coal-fired
generation. Beyond committed and advanced developments in the next decade, renewable
energy targets set at state level such as the Queensland Renewable Energy Target (QRET) and
Victorian (VRET), influence the magnitude and location of new renewable energy infrastructure
and influence the transmission requirements to enable these developments.

In this new era of reliance on renewable energy, and in particular wind energy, accurate forecast-
ing of the power output from wind turbines is essential. Highly accurate site-specific weather
forecasts are a vital component in achieving this objective if Australian wind farms are to
maximise their production of renewable energy into the national energy market. It has been
estimated that inaccurate short-term forecasts relating to wind and solar generation have cost
Australia’s renewable energy sector about $5 million in the past decade.1 The existing fore-
casting systems for wind and solar are designed for longer-term time horizons and have led to
multiple issues over the years. These shortcomings highlight the need for reliable short-term
forecasts to provide confidence to both renewable generators and the entire industry.

There are three strands of literature on modelling wind speed. The first of these focusses on the
statistical distribution of wind speed in terms of fitting the parameters of the Weibull distribu-
tion (Conradsen et al., 1984; Carrillo et al., 2014) or using extreme value analysis to investigate
the probability of very high wind speeds (Cook, 1982; Coles and Walshaw, 1994; Simiu and

1See
https://reneweconomy.com.au/five-minute-forecasting-to-boost-solar-and-wind-and-battery-investments-35982
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Heckert, 1996). A second area of emphasis is the prediction and modelling of wind intensity
and its volatility with a view to pricing wind-based options (Benth and Benth, 2009; Campo-
rin and Preś, 2012). The third strand of the literature is directly concerned with forecasting
wind speed, for surveys see Lei et al. (2009); Chang (2014), which suggest that ARIMA time
series modelling, spatial modelling and artificial intelligence-based methods are the methods of
choice. There is evidence that the latter class including ANNs, support vector machines and
other computer intensive hybrid models are increasingly the methods of choice.

At present in the Australian context, little is known about the actual representativeness of
time series data relating to wind, beyond average wind speeds and associated power feed-in.
In particular, the frequency and duration of extreme events such as long periods of low wind
speeds and low renewable feed-in have not yet been analysed in detail. Consequently, rather
than looking at forecasting wind speed directly, this paper is concerned primarily with the
absence of wind or “wind drought”. There are several reasons why the ability to forecast wind
drought is important to energy market participants.

(i) From a market operator’s perspective, wind drought implies the need to schedule alterna-
tive generation sources to guarantee power supply. Long phases of no or little wind power
are a potential threat to future energy systems with a high proportion of renewables.
Accurate day-ahead forecasting would facilitate the maintenance of supply.

(ii) Individual market players need to manage generation losses due to turbine stoppage and
the cost of storing unnecessary fuel for quick-start gas-fired peaking plants to provide
readily accessible capacity in the event of turbine outages.

(iii) From a purely operational perspective, maintenance teams need to perform their activi-
ties in conditions of low wind speed for safety reasons. For this purpose wind forecasts
are directly useful, not only for isolating seasonal wind drought for routine scheduled
maintenance, but also on an ad hoc basis for non-scheduled essential maintenance.

The occurrence and duration of phases with low or no wind and their consequences for energy
system models has not yet been the subject of much research. Recent work by Plötz and
Michaelis (2014) analyzed phases of low wind power feed-in and low residual load in Germany
for the period 2006–2012. They used extreme value theory applied to these phases of low power
and concluded that periods of wind power feed-in below eight percent of installed power lasting
one week occurs once every two years, while a period of more than ten days occurred once
every ten years. As interesting as these conclusions are, they do not provide much help from an
operational point of view.

This paper looks at wind drought on a daily basis and seeks to provide one-day-ahead forecasts
of the probability of wind drought. The fundamental underlying philosophy of the work is to
explore whether using only simply dynamic models allows wind drought to be forecast with any
degree of accuracy. A simple dynamic Probit model is proposed and wind direction, temperature
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and air pressure are the only meteorological variables used to provide day-ahead forecasts of
wind drought for the Cairns weather station in northern Queensland, Australia. This site is
chosen specifically because of it proximity to the Mount Emerald Wind Farm, which is a 180
MW wind power station currently in operation.2

2 The Data

The raw data used in this paper were obtained from the Australian Bureau of Meteorology
and comprise daily observations on wind speed together with a number of other meteorological
variables including various measures of temperature and air pressure for the Cairns weather
station in Queensland, Australia (Latitude: -16.8736. Longitude: 145.7458.). This station is
chosen primarily because it is located near to proposed major wind farm developments such as
Mount Emerald.

To comply with the Systeme Internationale d’Unites (SI) wind speed is expressed in metres per
second (m/s). Using this unit of measurement, the commonly used descriptive scale for wind
speed is as follows: < 5m/s is very slow wind; 5 − 10m/s is rather slow wind; 10 − 20m/s is
considerable wind; 20 − 30m/s is very windy with caution advised; and > 30m/s is extreme
wind which is dangerous. At very slow wind speeds, there is insufficient torque exerted by the
wind on the turbine blades to make them rotate. The speed at which the turbine first starts to
rotate and generate power is called the cut-in speed and is typically between 3− 4m/s.

The definition of wind drought adopted in this paper is essentially ad hoc. The wind speed of
3.5m/s will be adopted as be the wind speed below which power output from wind turbines
is negligible. In addition, in the NEM there are three tariff periods in each 24 hour period,
namely the overnight off-peak period (22:00 - 07:00), the shoulder period (07:00 - 14:00) and
the peak period (14:00 - 22:00). The lack of wind power generation in off-peak periods is likely
to be of little consequence to the grid. The distribution of the actual daily counts of hours for
which wind speed is less than 3.5m/s is shown in Figure 6. After the large peak at 0 hours
per day of slow wind, the distribution tails off, but at a slower rate than would be observed in
exponential decay. After 5 hours per day the distribution flattens out before tailing off after 10
hours. Consequently, a wind drought will be defined to occur if 5 or more hours of the 15 hours
during the shoulder and peak periods on any given day experience an hourly average wind speed
of less than 3.5m/s.

2The power station is located approximately 49 km south west of Cairns.
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Figure 1: The distribution of the daily counts of the number of hours in the shoulder and peak
tariff periods for which wind speed is less than 3.5 m/sec (maximum is 15 hours).

Only three other meteorological variables will be used in this study to model wind speed, namely,
air temperature (measured in degrees Celsius), station level air pressure (measured in hecto-
Pascals) and wind direction measured in compass degrees, 0◦ − 360◦. Both temperature and
pressure are expected to have a negative effect on wind drought, or in other words, a positive
effect on wind speed. In terms of temperature, warm air is less dense than cold air, so warm air
rises creating a low pressure area. At ground level wind blows horizontally from high pressure to
low pressure areas and so the effects of temperature and pressure are likely to be interdependent.
There may also be diurnal and seasonal elements to temperature. Because of the sun’s warming
effect, winds are usually stronger during daylight hours, and around the globe, winds are usually
stronger in the winter.

Wind direction is also an important element of wind speed. The rotation of the Earth on its axis
causes winds and creates so-called prevailing winds. Prevailing winds tend to be stronger than
wind coming from other directions. Because it is measured in compass degrees, wind direction
is an example of a circular statistic and must therefore be treated with care. Although it is
also a continuous variable, it would make no sense to use its value (in terms of degrees of a
circle) without recognizing the innate nature of the measurement.3 From hourly data on wind
direction, mean daily wind direction, θ is computed as

θ = tan−1

(∑24
i=1 sin θi∑24
i=1 cos θi

)
.

The daily time series is then divided into 8 compass directions and the resultant distribution is
tabulated in Table 1. It is clear that the prevailing wind at Cairns is South South East (SSE)
with the wind coming from that direction 70% of the time.

3For instance, the simple average of a wind direction of 10◦ and 350◦ is 180◦, representing almost precisely
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Table 1: Mean daily wind direction for the Cairns weather station in northern Queensland.

Direction Frequency Percent Cumulative
NNE 575 4.69 4.69
ENE 554 4.52 9.20
ESE 1689 13.77 22.97
SSE 8295 67.60 90.57
SSW 197 1.61 92.18
WSW 67 0.55 92.72
WNW 233 1.90 94.62
NNW 660 5.38 100.00

The months from May to October are dominated by the sub-tropical ridge, with Cairns under
the influence of the south east trade stream. The prevailing winds are East to Southeasterly
with strongest winds (cyclones excluded) usually occurring during April and August. During
the summer months, North to Northeasterly sea breezes dominate the winds along the coast.

3 Dynamic Probit Models

Let yt be an index defined as 1 if there is a wind drought, as defined previously, and zero
otherwise:

yt =

1, if wind drought

0, otherwise.

The question arises as to why the recurrent events, in this case instances of wind drought, are
being summarized in this way. In other words, why not use the data on wind speed directly
rather than working with some summary of its behaviour? Harding and Pagan (2016) provide
a number of reasons for this choice, some of which are appropriate in the current context.

1. The choice of a binary indicator emphasizes a feature of the original data that is not
immediately obvious and also focusses attention on the frequency and length of time
spent in the wind drought state.

2. This choice reduces the dimensionality of the problem and isolates the characteristics
that a model seeking to interpret the data needs to incorporate. In this case the added
complexity of the behaviour of wind speed in off-peak periods is avoided.

3. Large and short-lived movements in the original data have no effect upon the constructed
pattern of wind drought and irrelevant features, such as sudden and extreme gusts of
wind, do not confound the models purpose of predicting the absence of wind.

the opposite direction.
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4. This use of the data is meaningful to decision makers in the form of an operator in the
energy market as well as individual generators and retailers. It is clear that there is a
general interest in whether or not it is possible to predict yt+1 given information at time t.
Predicting regressions have long been of interest and the setup here mimics the proposals
for early warning systems of financial crisis, see for example, Candelon et al. (2009).

The Probit model assumes that the probability of yt = 1 conditional on an information set It

follows a cumulative normal distribution:

P (yt = 1 | It) = Φ(πt), πt = x′tβ

where πt is a latent index, xt is a vector of explanatory variables and Φ is the cumulative
standard normal distribution function.

In a much of the literature the yt are taken to be independently distributed. The autocorrelation
and partial autocorrelation functions of the constructed wind drought variable are show in
Figure 2. The pattern of autocorrelations is strongly suggestive of a low-order autoregressive
behaviour. This kind of pattern is often observed in constructed binary variables which take
their value from an underlying time series (Pagan and Harding,Reference missing ). An
important implications of this observation is that simple statical models for binary data, which
rely on the assumption that the observations are independently and identically distributed, are
likely to be misspecified. Care must therefore be exercised in the modelling to ensure that this
dependence in the constructed indicator is adequately accounted for.
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Figure 2: The autocorrelation and partial autocorrelation functions of wind drought.

To capture the dynamics, there has been a tendency to include yt−1 to produce extra dynamics,
see for example, Dueker (1997) and Candelon et al. (2009) in the business cycle literature.
Harding and Pagan (2011) point out that this approach is flawed in the case of business cycles
because yt−1 is often a function of both yt and yt−2 and therefore cannot be treated as pre-
determined.4 These considerations present no difficulty in the current context, and so yt−1 can
be legitimately included in a dynamic Probit approach to give a model of the form

P (yt = 1 | It) = Φ(πt), πt =

q∑
j=1

δjyt−j + x′tβ .

Kauppi and Saikkonen (2008) extend this specification to a general autoregressive dynamic
Probit model of form

P (yt = 1 | It) = Φ(πt),

πt =

p∑
j=1

αjπt−j +

q∑
j=1

δjyt−j + x′tβ + yt−dx
′
tγ,

(1)

which allows for dynamics in both the generating mechanism, the index, the explanatory vari-
ables, and interaction terms. The inclusion of interaction terms goes some way to inducing

4This relationship is due to the requirement that a recession be defined as two quarters of negative growth.
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the extra dependence by allowing the coefficients of the Probit model to be stochastic and to
evolve. This proposal is due to Bellégo and Ferrara (2009) and may be expected to introduce
some extra non-linear dependence.

4 Estimation Results

Four variations of the general dynamic probit specification in (1) are estimated over the period
1 January 1987 to 31 December 2017. The meteorological regressors are limited to a very small
set, so the results are completely transparent in terms of interpretability. These regressors are

xit =


x1t

x2t

x3t

x4t

 =


temperaturet−1

pressuret−1

differencet−1

wind speedt−1


where x3t is the difference between the daily maximum and daily minimum wind speeds and x4t

is the lagged value of the actual count variable from which the drought indicator is constructed.
There may be an argument to the effect that all the meteorological variables are jointly deter-
mined. Consequently only lagged variables are used to guard against an anticipative regression
where variables are used before they are observed. This convention also means that testing for
weak exogeneity is not required. In addition, as the interest here is primarily in terms of one-
step-ahead forecasts, there is no scope for feedback effects to distort the results and therefore
the question of strong exogeneity is not addressed. Further define two sets of dummy variables,
namely, Dd

it being a set of 8 dummy variables for wind direction as in Table 1, and Dm
it a set of

12 monthly dummy variables.

The models estimated here are as follows, where the symbol # is shorthand for the interaction
between two variables.

πt = α0 + δ1yt−1 +
7∑

i=2

θiD
d
it +

12∑
i=2

ωiD
m
it (Model 1)

πt = α0 + δ1yt−1 +
7∑

i=2

θiD
d
it +

12∑
i=2

ωiD
m
it +

4∑
i=1

βixit (Model 2)

πt = α0 + δ1yt−1 +

7∑
i=2

θiD
d
it#x4t +

12∑
i=2

ωiD
m
it +

4∑
i=1

βixit (Model 3)

πt = α0 + δ1ht−1 +
7∑

i=2

θiD
d
it#x4t +

12∑
i=2

ωiD
m
it +

4∑
i=1

βixit. (Model 4)

Model 1 is the simplest possible dynamic Probit model which includes only the lagged dependent
variable and the deterministic dummy variables for wind direction and month of the year. Model
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2 extends Model 1 by including meteorological regressors. Model 3 deals with the issue of the
prevailing wind direction by interacting lagged wind speed with wind direction. Define ht as the
time series of counts with distribution illustrated in Figure 6. Model 4 uses the lagged counts
to capture dynamic effects rather than simply including the lagged binary dependent variable
as in Models 1 to 3.

A number of features of the results reported in Table 2 are worth emphasizing. The most of
important of these is the statistical significance of the term capturing the dynamics. In Models
1–3 the lagged binary dependent variable, yt−1, is always significant and positive reflecting
the positive autocorrelation illustrated in Figure 2. Moreover, broadly speaking the coefficient
estimate on yt−1 is the same as the first order partial autocorrelation coefficient indicating that
the regressors are roughly orthogonal. In Model 4 the lagged count variable, ht−1, which takes
the place of yt−1 is also significant. The summary statistics indicate that Model 4 is to be
preferred suggesting the lagged count variable, with its slight increase in variability, is a useful
addition to the model.
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Table 2: Estimating the dynamic Probit models over the period 1 January 1987 to 31
December 2017. Coefficient estimates alone are reported. Statistical significance based
on robust standard errors are denoted: ∗ (p<0.05), ∗∗ (p<0.01) and ∗∗∗ (p<0.001).

Variable Model 1 Model 2 Model 3 Model 4

Constant 1.131∗∗∗ 49.577∗∗∗ 40.520∗∗∗ 32.722∗∗∗

yt−1 1.329∗∗∗ 0.253∗∗∗ 0.270∗∗∗

ht−1 0.107∗∗∗

tempt−1 −0.064∗∗∗ −0.063∗∗∗ −0.055∗∗∗

presst−1 −0.044∗∗∗ −0.036∗∗∗ −0.030∗∗∗

wvt−1 −0.530∗∗∗ 0.031 0.256∗∗∗

difft−1 −0.057∗∗∗ −0.068∗∗∗ −0.065∗∗∗

NNE
ENE −0.874∗∗∗ −0.830∗∗∗

ESE −1.631∗∗∗ −1.530∗∗∗

SSE −2.159∗∗∗ −1.891∗∗∗

SSW −1.150∗∗∗ −1.005∗∗∗

WSW 0.293 0.483

WNW −0.732∗∗∗ −0.612∗∗∗

NNW −0.803∗∗∗ −0.750∗∗∗

Jan
Feb 0.111 0.096 0.101 0.104

Mar 0.014 0.134 0.123 0.111

Apr −0.160∗ 0.045 0.028 0.003

May −0.157∗ −0.025 −0.050 −0.068

Jun −0.135 −0.071 −0.103 −0.104

Jul −0.160∗ −0.071 −0.105 −0.104

Aug −0.149∗ −0.093 −0.141 −0.137

Sep −0.229∗∗ −0.142 −0.193∗ −0.170

Oct −0.340∗∗∗ −0.197∗ −0.242∗∗ −0.223∗

Nov −0.336∗∗∗ −0.272∗∗∗ −0.304∗∗∗ −0.280∗∗∗

Dec −0.298∗∗∗ −0.251∗∗∗ −0.262∗∗∗ −0.232∗∗

NNE#wvt−1 0.000 0.000

ENE#wvt−1 −0.285∗∗∗ −0.292∗∗∗

ESE#wvt−1 −0.510∗∗∗ −0.530∗∗∗

SSE#wvt−1 −0.613∗∗∗ −0.637∗∗∗

SSW#wvt−1 −0.392∗∗∗ −0.424∗∗∗

WSW#wvt−1 0.053 0.031

WNW#wvt−1 −0.245∗∗∗ −0.257∗∗∗

NNW#wvt−1 −0.257∗∗∗ −0.267∗∗∗

R2
m 0.350 0.416 0.421 0.430

R2
c 0.518 0.554 0.560 0.563

aic 9884.035 8871.496 8801.552 8667.024

bic 10030.727 9047.526 8977.582 8843.054
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Turning now to the effects of the vector of explanatory variables, the coefficient estimates on
temperature and station level pressure are negative and significant. The negative coefficient
on air pressure is expected as wind flows from areas of high pressure to areas of low pressure
implying that high pressure is associated with low wind speeds. The temperature effect is less
obvious as higher temperatures usually mean increasing wind flow in order to fill the void as the
hot air rises. The negative coefficient estimate may however be due to the fact that temperature
is playing the role of the month dummy variables and capturing the generally known fact that
wind speeds are usually higher in the winter months. This intuition is supported by the fact that
the monthly dummy variables, with a few exceptions, become largely irrelevant once temperature
is introduced into the model. The difference between the maximum and minimum recorded
speed on a given day has a significant negative effect indicating that the lower the maximum
wind speed on the previous day the higher the probability of a wind drought. Interestingly, the
effect of interacting the lagged wind speed variable with direction provides a significant step up
in the explanatory power of the model. The behaviour of lagged wind speed while significant
in many cases is slightly perverse when the interaction terms are included and so should be
excluded.

While it may be that the effects of temperature and pressure on wind speed may be highly
interactive and nonlinear, these relationships are not pursued here. Although the linear model
may be overly simplistic it has the advantage of being transparent and easily interpretable. It
addition it performs relatively well for such a simple specification as shown in Table 2 which
reports the estimated coefficients of Models 1 - 4 and some goodness of fit statistics. The
McFadden R2 is the ratio of the unrestricted log-likelihood function to the log-likelihood function
of a restricted model in which the latter contains only an intercept and the adjusted version
includes a correction for the number of estimated parameters. The count R2 represents the
proportion of correct predictions (classifications into drought or non-drought days) from the
model and the adjusted count statistic is the proportion of correct guesses beyond the number
that would be assigned by simply choosing the largest class.

5 Sensitivity and Forecasting

An important advantages of an estimated Probit model is that it provides predicted probabilities
associated with the state of the binary dependent variable. As the point of the current exercise
is to make predictions about wind drought using the model, it is therefore important that at
the very least the model does relatively well in classifying the binary outcomes correctly. The
standard procedure is to classify predictions using a cutoff probability of 0.5, so that ŷt = 1,
when predicted probability of a drought obtained from the model is greater than 0.5. The
probability of correctly predicting a wind drought (yt = 1) using the model is known as the
model’s sensitivity. On the other hand, the probability of correctly predicting the alternative
(yt = 0) is known as the specificity of the model.

12



Ideally, we would like to maximize both sensitivity and specificity. For a given model, lowering
the probability cutoff point is one way of improving the sensitivity of the model, but this
improvement comes with a cost because specificity is necessarily reduced. Consequently, there
is a trade-off between sensitivity and specificity when manipulating the probability cutoff. Figure
6 illustrates the trade-off between sensitivity and specificity based on the parameter estimates
of Model 4. The plot suggests that using a probability cutoff of 0.5 gives increased specificity
at the cost of sensitivity. The plots of specificity and sensitivity intersect at 0.38 indicating
that the optimal balance between these factors in this particular model may require the use of
a cutoff probability significantly less than 0.5.
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Figure 3: Sensitivity versus specificity.

Table 3 provides the formal results for the classification of events based on cutoffs of 0.5 (top
panel) and 0.38 (bottom panel). From the top panel of Table 3 it may be deduced that 100 ×
(3369 + 5992)/11323 = 82.678% of the outcomes are correctly classified by Model 4. The
sensitivity of the estimated model is 100 × 3369/4489 = 75.05% and the specificity is 100 ×
5592/6834 = 87.68%. The quantitative results of changing the cutoff probability to 38% are
reported in the bottom panel of Table 3. The result is an increase in sensitivity from 75.05% to
82.22%, while the specificity is reduced from 87.68% to 82.48%, indicating a much better balance
between these factors. Overall it seems that a good balance between sensitivity and specificity
is important as missing a drought or falsely predicting a drought both have consequences in
terms of costs.
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Table 3: The classifications of wind drought (yt = 1) and no wind drought (yt = 0) obtained
from Model 4 with cutoff of 0.5 (top panel) and 0.38 (bottom panel), respectively.

True
Drought Non-drought Total

Categorized
Drought 3369 842 4211

Non-drought 1120 5992 7112
Total 4489 6834 11323

True
Drought Non-drought Total

Categorized
Drought 3691 1197 4888

Non-drought 798 5637 6435
Total 4489 6834 11323

The real indication of the quality of the simple dynamic Probit models estimated here relates to
their ability to predict wind droughts. Consequently, the models are estimated over the period
1 January 1987 to 31 December 2017, and these estimates are then used to provide a dynamic
one-step-ahead forecast for the period 1 January 2018 to the end of the sample on 18 August
2018 as plotted in Figure 4. The grey shaded areas are actual wind droughts (yt = 1), the solid
lines are the forecast probabilities of wind drought and the dashed line is the cutoff probability
of 0.38 used in Model 4 and which is superimposed on all the graphs for consistency. Note,
however, that it is probably correct to expect the optimal cutoff probability for each model to
be different.

There are a number of interesting observations. The first is that the predicted probabilities
from the simple benchmark model are not as dynamic as those from Models 2 and 4. For the
most part the predictions represent the unconditional probabilities of a wind drought. The fact
that the probabilities do not fall very far in non-drought periods is problematic as there are
a number of instances when false positives are found, but these are not close to a period of
drought. This feature of the model is particularly troubling. The predicted probabilities from
Models 2 and 4 are far more dynamic. These richer model specifications seem to pay dividends
in late January, mid April, mid June and late July, where periods of wind drought that are
completely missed by the benchmark model are identified. Interestingly, there does not seem to
be much to choose between Models 2 and 4 despite the fact that the goodness of fit statistics
indicating a strong preference for Model 4.
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Figure 4: Comparison of one-step-ahead forecasts for Models 1, 2 and 4. The models are
estimated over the period 1 January 1987 to 31 December 2017 and these estimates are then
used to provide dynamic one-step-ahead forecasts for 1 January 2018 to the end of the sample
on 18 August 2018. Grey shaded areas denote actual wind droughts (yt = 1), the solid lines are
the forecast probabilities of wind drought and the dashed line is the cutoff probability of 0.38
used in Model 4.

Finally, and most importantly, the results indicate a common problem with predictions obtained
from dynamic Probit models, namely, that the predicted probabilities result in failure to predict
the first occurrence of an event and tend to miss the transition out of a period of repeated events.
Consider for example the 24 January 2018; a wind drought occurs but Model 4’s predicted
probability is 0.21. Given the memory in the model, the predicted probability on 25 January
is 0.41 indicating a drought at the cutoff of 0.38. This tendency to miss the first occurrence
is endemic to models of this kind (see for example Christensen et al. (2012) in the context of
forecasting spikes in electricity prices.) Similarly, dynamic Probit models find it difficult to
accurately date the exit point from a string of events. This is particularly evident in March
2018 where two occurrences of non-drought are missed. Major improvements to these simple
models will follow if a first trigger for an event can be found. Similarly, a way to override the
memory in the process and turn off the probability of an event in a timely fashion will also
substantially improve the overall performance of the model.
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6 Robustness

For all the reasons given previously, the discretised random variable, wind drought, is used
as the major object of the econometric investigation in this paper. Despite this focus, the
original time series of counts of the number of hours per day of wind speed less than 3.5m/s
is still available. A useful robustness check of the estimated models is therefore to model these
counts directly. Regression models for counts, like other limited or discrete independent variable
models, are nonlinear and so dealing with the time series memory in the counts is a difficult
problem. Consequently, the approach adopted here is straightforward and is designed simply as
a robustness check and makes no claim to be a comprehensive treatment of time series models
for count data.

Given a set of regressors, xt, for a dependent variable of counts yt, the natural stochastic models
for counts are either the standard Poisson regression model given by

Pr[Y = yt] =
e−x′

tβ(x′tβ)
yt

yt!
,

or the negative binomial regression model

Pr[Y = yt] =
e−vtx′

tβ(vtx
′
tβ)

yt

Γ(yt + 1)
,

where Γ(·) is the Gamma function and vt is an unobserved disturbance with a Γ(α−1, α) dis-
tribution with α > 0. The Poisson model is a special case of the negative binomial model
corresponding to the restriction α = 0. The negative binomial regression model is appropriate
if the time series of counts has a variance which is too large to be consistent with a Poisson
distribution, a case known as over-dispersion. Figure 5, which shows the unconditional Pois-
son and negative binomial distributions with parameters estimated from the actual count data,
indicates that the negative binomial is likely to be the better choice.
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Figure 5: The unconditional distribution of the daily hourly counts of wind drought during the
shoulder and peak periods. Superimposed are the best fitting unconditional negative binomial
and Poisson distributions.

This simple model is, of course, inappropriate because as has been established previously that
the time series of counts has memory (see Figure 2). The simple expedient of adding a lagged
dependent variable, yt−1, as an additional regressor is problematic. Note that

µt = exp(x′tβ − ϕyt−1)

⇒ logµt − logµt−1 = x′tβ − x′t−1β + ϕ yt−1 − ϕ yt−2.

Taking expectations of this expression for the growth rate of the mean gives

E[logµt − logµt−1] = ϕ(yt − yt−1),

which implies a non-zero growth rate for the conditional mean. Rather than explore more
complex time series models for counts, the robustness checks here will adopt the proposal of
Zeger and Qaqish (1988) and use

µt = exp
(
x′tβ − ϕ log(0.5 + yt−1)

)
,

as the specification of the conditional mean. The small correction to yt−1 is necessary to deal
with zero counts. An additional robustness check will use the negative binomial distribution
instead of the Poisson distribution in specifying the count model.

The results of the estimation of the Poisson and negative binomial dynamic counts models
over the period 1 January 1987 to 31 December 1017 are reported in Table ??. The general
specification implied by Model 4 of Sections 4, 5 looks to be appropriate, and there is little to
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choose between both models in terms of coefficient estimates. It is apparent, however, that the
negative binomial specification is to be preferred. The over-dispersion parameter α is estimated
as logα to enforce the restriction that α > 0. The test of the hypothesis that α = 0 is rejected
at the 1% level, indicating that the negative binomial specification is to be preferred, and this
conclusion is also supported by the information criteria. Given the plots in Figure 5, this result
is not unexpected.
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Table 4: Poisson and negative binomial count regression based on the Zeger and Qaqish (1988)
specification for the conditional mean and using the Model 4 specification. Only coefficient
estimates are reported. Statistical significance based on robust standard errors are indicated as
follows: * denotes (p<0.05), ** denotes (p<0.01) and *** denotes (p<0.001).

Variable Poisson Negative Binomial

Constant 19.157∗∗∗ 27.192∗∗∗

log(max(0.5, ht−1)) 0.387∗∗∗ 0.336∗∗∗

tempt−1 −0.014∗∗∗ −0.021∗∗∗

presst−1 −0.017∗∗∗ −0.024∗∗∗

difft−1 −0.036∗∗∗ −0.034∗∗∗

NNE#wvt−1 −0.048∗∗∗ −0.092∗∗∗

ENE#wvt−1 −0.077∗∗∗ −0.118∗∗∗

ESE#wvt−1 −0.133∗∗∗ −0.175∗∗∗

SSE#wvt−1 −0.217∗∗∗ −0.270∗∗∗

SSW#wvt−1 −0.060∗∗∗ −0.102∗∗∗

WSW#wvt−1 −0.006 −0.046

WNW#wvt−1 −0.079∗∗∗ −0.119∗∗∗

NNW#wvt−1 −0.086∗∗∗ −0.129∗∗∗

Jan
Feb 0.033 0.037

Mar 0.048∗ 0.052

Apr 0.034 0.022

May 0.048 0.027

Jun 0.036 0.025

Jul 0.012 0.029

Aug 0.035 0.049

Sep −0.022 −0.005

Oct −0.060∗ −0.060

Nov −0.065∗∗ −0.074∗

Dec −0.087∗∗∗ −0.097∗∗

logα −1.452∗∗∗

AIC 50996.255 48824.743

BIC 51172.285 49008.108

The real test of the dynamic count model, however, is in the forecasting performance of the
model. The estimated negative binomial model is used to produce one-step-ahead forecasts
of counts for the period 1 January 2018 to 20 August 2018. The actual and predicted values
together with a shaded area to indicate the definition of wind drought are shown in Figure
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6. Also shown is a horizontal line at 5 hours indicating the cutoff for the definition of a wind
drought as adopted previously.
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Figure 6: Actual and predicted values obtained from the negative binomial regression model
using the specification in Model 4. The predictions are for the period 1 January 2018 to 18
August 2018. The areas shaded grey represent periods of wind drought as defined in the paper.

If a classification exercise based on the definition of a wind drought as defined previously (number
of hours ≥ 5 in the shoulder and peak periods), then the negative binomial model returns a
sensitivity of 71.06 and a specificity of 88.80. The sensitivity of this approach is well below that
of the dynamic Probit model, but this loss of predictive accuracy in classifying periods of wind
drought should be balanced against the additional information provided by a count model. For
example, predicting 4 hours of low wind if 6 actually eventuate is a misspecifiction in terms
of the definition, but there is valuable information in the forecast nonetheless. From a purely
metric driven perspective, however, the usefulness of the binary dependent variable models are
confirmed and additional work to sharpen their prediction is a potentially useful avenue for
future research.

7 Conclusion

This paper has examined a series of simple dynamic Probit models in terms of their usefulness
in forecasting wind drought. Wind drought for the purpose of this paper is defined as 5 or
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more hours of wind speed less than 3.5m/s during the busiest periods of the day in terms of
the demand for electricity. The dynamic Probit models work well in terms of their ability to
forecast and are robust by comparison with an approach based on modelling counts. There
seems little advantage in moving to modelling counts unless there is an added advantage to
market participants in knowing the actual prediction for the number of hours of low wind.
Future research should focus on the problem of identifying the first day in a series of days with
slow winds and the first day of reasonable wind after a spell of drought. Both the Probit and
count models could be improved in this regard.
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