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Abstract 

Recent research shows that thicker labor markets display better assortative matching. Our 

contribution addresses identification challenges and heterogeneity of effects, in particular 

with respect to education. Using a rich administrative worker-firm dataset for Norway, labor 

market size is shown to be of relevance for assortative matching mainly for the college 

educated. Among these, the pattern is most pronounced for workers of intermediate ages, 

with education related to business and administration, men, and service sector workers. 

Results are robust to instrumentation of population size using historical mines and sample 

adjustment to mitigate limited mobility bias. 
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1. Introduction 
 

Urban scholars have become increasingly aware of how skills create opportunities for workers 

to benefit from thicker labor markets. Many studies show that the urban wage premium is 

increasing with the level of education of workers. Bacolod et al. (2009) offer an overview 

understanding of allocation of skills across cities and the impact of agglomeration on wages.  

The observed wage premium is partly explained by the urban concentration of college-

educated workers. Moretti (2004) analyzes the social return to education and finds that the 

number of college educated stimulates the productivity of a region. Baum-Snow and Pavan 

(2012) apply a structural model and find advantages for college-educated workers living in 

large cities. Carlsen et al. (2016) show that college-educated workers are positively selected 

into cities and they benefit more from working in cities even when sorting is accounted for. 

Combes and Gobillon (2015) survey methodological issues and recent studies relevant for 

sorting. 

 

While the evidence of productivity effects from urban scale is convincing, the analyses of the 

sources of agglomeration economies are scarcer. One of the main channels of agglomeration 

effects is the advantage of large labor markets for the matching of workers and firms. A strand 

of this literature investigates the frequency of job change in labor markets of different sizes, 

and how job mobility corresponds to wage increases. An early contribution by Wheeler (2001) 

concludes that the advantage of large urban agglomerations results from enhanced worker 

productivity due to job search and matching. Wheeler (2006) and Yankow (2006) show that 

urban wage growth is related to turnover, and Finney and Kohlhase (2008) find that turnover 

is higher in urban areas. Wheeler (2008) and Bleakley and Lin (2012) find that younger 

workers in cities switch sectors and occupations more, and Leknes (2017) shows that the 

switching behavior in cities is increasing in education.  

 

Other scholars have investigated the match between skills and jobs. Overeducation is less 

prevalent in urban settings according to Büchel and van Ham (2003). Boualam (2014) 

concludes that cities assist entrants to the labor market to find a job related to their 

education. Abel and Deitz (2015) present evidence of urban workers with graduate degrees 

being relatively more likely to have a job that both requires that level of education and is 
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related to their college major. The demand side of the market has also been investigated. 

Strange et al. (2006) show that firms with demanding requirements regarding worker 

competences tend to locate in thick markets.  

 

A novel approach entails the investigation of assortative matching between workers and 

firms.  The method was innovated by Abowd, Karmarz and Margolis (1999), called the AKM-

model. Among early studies related to urbanization, Andersson et al. (2007) estimate a 

positive relationship between labor market size and assortative matching using data for two 

US states. Melo and Graham (2014) correct for simultaneity between agglomeration and 

quality of match and support a positive relationship, but Mion and Naticchioni (2009) 

estimate a negative relationship for Italy. Figueiredo et al. (2014) concentrate on industrial 

clusters and find little evidence that the quality of matching increases with firms clustering 

within the same industry. Card et al. (2013, 2018) have developed the empirical methodology 

and shown that assortative matching affects the wage distribution. Dauth et al. (2018) study 

geographic wage disparities with this method and conclude that matching of workers to firms 

is an important explanatory factor. Wages are higher in large cities because they attract high-

quality workers, but also because high-quality workers are likely to be better matched to high-

quality firms. Assortative matching is stronger in large cities, in accordance with the standard 

understanding that large labor markets allow for more productive matches between workers 

and firms than small labor markets.   

 

Using rich administrative data for Norway linking workers and firms, we investigate whether 

the overall positive relationship between city size and matching is driven by high-educated 

workers, similar to the skill-decomposition of the urban wage premium. Workers are 

separated by education level (primary, secondary and college). The positive relationship 

between city size and assortative matching is driven by college-educated workers. To address 

the concern of endogenous regional population size, we instrument population size with the 

number of historical mines. The mines started operating before the 19th century and are 

obsolete today, suggesting that the exclusion restriction holds. The difference between the 

OLS and IV estimates imply a negative bias of about 40%. The negative gap is robust to 

adjustment of the sample to deal with limited mobility bias.  
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To understand our results better, we dvelve deeper into the heterogeneity of effects. We 

start by analyzing whether there are specific education fields of the college educated that 

disproportionally drive the matching result. We find that high-educated within the field of 

business and administration are displaying higher assortative matching in cities. Next, the 

analysis is extended to address how the role of education varies across gender and industries. 

The scale coefficient is higher for college-educated men than women. Workers in services 

display better assortative matching in larger labor markets, while in manufacturing industries 

the match between worker and firm quality is independent of regional size. Conditional on 

industry, the gender differences follow the same general pattern. However, men have 

stronger relationship between regional size and matching quality, and even secondary 

educated workers take some advantage of larger labor markets. Finally, we explore the age 

gradient with respect to assortative matching in regions of different sizes. Independent of age 

group, college educated workers are better matched in more populous areas. In a separate 

analysis we look at the importance of turnover. The descriptive results indicate that rural-

urban gap in job shifting corresponds to better assortative matching in cities. This result 

suggests that the superior job search opportunities in thicker labor markets may, at least 

partially, explain the results. 

 

The econometric strategy and data are discussed in section 2. Section 3 reports results 

regarding the effect of city region population size for the strength of assortative matching for 

all workers using historical mines as instrument for regional population size. The bias 

compared to standard OLS is discussed. Section 4 estimates the relationship between regional 

size and matching quality separately for the education groups. Robustness of results are 

investigated in alternative model specifications in section 5. Further heterogeneity with 

respect to education fields, gender and industries, and age distribution are pursued in section 

6. Section 7 looks at the role of turnover for assortative matching. Concluding remarks are 

given in section 8. 

  

2. Data and econometric strategy 

 

To study if there is a skill-heterogeneous relationship between assortative matching and city 

size, we employ the method innovated by Abowd, Kramarz and Margolis (1999) estimating 
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two-way worker and plant fixed effects.1 In this framework, workers and plant effects are 

identified by workers switching firms. It is therefore ideal to have a large longitudinal dataset 

covering the universe of workers. We use such a comprehensive dataset: employer-employee 

register data for the entire Norwegian labor force on hourly wages and worker characteristics 

during 2003–2010.   

 

The individual level dataset is computed from three administrative registers: employment, 

tax, and education. The employment register links workers and plants and gives information 

on work contracts for all employees. It includes the duration of the contract, the type of 

contract2, and the exact number of hours worked per week. We calculate the number of hours 

worked per year, which is combined with data on annual wage income from the tax register 

to give a measure of hourly wages for all employees. The education register covers the entire 

adult population and gives detailed information about workers’ level and field of education. 

We also have information on the age, gender, immigrant status, occupation group, industry 

affiliation, plant affiliation, and home region of all individuals.  

 

We concentrate on full-time workers aged 25–65 employed in the private sector.3 The dataset 

includes about 575,000 workers every year during the period 2003–2010, giving a total of 

about 4.6 million worker-year observations in 54 industries, 350 occupation groups, 89 labor 

market regions, and about 115,000 plants. Workers can enter and leave the labor market 

during the eight-year period, and in total about 850,000 different workers are included.4 Our 

main interest is to differentiate the degree of urban assortative matching based on skill levels. 

 
1 The terms plant and firm are used interchangeably throughout the paper. 
2 The employment register separates between three contract types: full-time contracts with at least 30 hours of 
work per week, part-time contracts with 20–29 hours of work per week, and part-time contracts with fewer than 
20 hours of work per week.  
3 We exclude workers in the primary industries (agriculture, fishing, and forestry), as well as public sector 
workers. This gives a dataset of about 7.5 million worker-year observations. The tax register gives information 
on total annual earnings, rather than separate earnings for each work contract. Workers with more than two 
contracts during a year, as well as workers with one full-time and one part-time contract, are excluded. For 
workers with two full-time contracts, we allow for a maximum of three months of overlap between the 
contracts. We also exclude workers whose contract length is less than one month during a year. These 
restrictions reduce the dataset by about 0.5 million observations. Missing data on hours worked, annual 
earnings, level/field of education, occupation group, or industry affiliation, together with exclusion of workers 
that change education level after entering the labor market as full-time employees, further excludes 
approximately 2.2 million observations. To avoid extreme observations, we exclude the top and bottom 1% of 
the wage distribution. 
4 Workers that are observed in a single year are excluded, since individual fixed effects cannot be estimated.  
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We proceed with three subgroups of workers according to level of education: college 

(workers who have completed at least one year at college/university), secondary (workers 

who have completed at least one year of secondary education), and primary (workers with 

nothing more than compulsory schooling). About 19% of the workers have only a primary 

education, while workers with a secondary and college education account for 52% and 29% 

of the sample, respectively.  

 

Panel A of Table 1 reports descriptive statistics of the individual level data, both aggregate 

and for three levels of education. The average hourly wage in the dataset is 270 NOK (log 

wage of 5.51) and wages of primary educated and secondary educated workers are, 

respectively, 39% and 26% below wages of the college educated. The average age is 42 years 

and decreases with the level of education, from 43 years among the primary educated to 40 

years among college educated workers. Overall, 70% of workers are male, but the share is 

lower among the college educated. 12% of the workers are registered as immigrants. 

Separating between manufacturing industries and services, about 60% of primary- and 

secondary-educated workers are employed in services, increasing to 75% for college 

educated.  

 

Table 1 about here 

 

We estimate the following specification: 

 

( , )ln it i J i t t it itw X    = + + + +                                                                 (1) 

 

where itw

 

is the hourly wage income for worker i in year t. Worker and plant fixed effects are 

represented by 
i  and ( , )J i t , respectively. The vector of observable worker characteristics 

( )itX  includes education-specific cubic age profiles (quadratic and cubic age terms interacted 

with dummies for the three levels of education) and 
t  represents year dummies.   is a 

vector of parameters and it  is the error term. As seen from panel A of Table 1, the fixed 

effects are centered around zero overall. The mean value of worker fixed effects increases 

with the level of education, from -0.16 among the primary educated to 0.19 among college-
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educated workers. The differences in mean plant fixed effects are much smaller across 

education groups. The correlation between worker and plant fixed effects gives a measure of 

the strength of assortative matching. Under standard assumption of complementarity in 

production, we expect that there is an incentive for high-quality workers to match with high-

quality firms. But overall, the correlation between worker and plant qualities is small. Across 

all 853,209 workers the correlation equals -0.11, and it is higher for college-educated workers 

(-0.04) than for workers with primary education (-0.27).  

 

There are especially two estimation concerns related to the AKM method: limited mobility 

bias and the interpretation the plant effects. A plant’s fixed effect is not identifiable without 

job switchers, and the estimates of the fixed effects might be noisy in small firms with few 

observations. The second issue relates to the sedentary nature of firms. As firms seldom 

change locations, their fixed effects will incorporate time-invariant traits (size, industry). Both 

these issues will only be of consequence if they are related to labor market scale. We use 

several methods to address these concerns in sensitivity tests.  

 

To retrieve the strength of assortative matching within a region, we calculate the correlation 

between worker and plant fixed effects within each labor market ( )rCorrFE . The 

geographical units used in the analysis are based on information about commuting flows 

between municipalities. They are constructed by Statistics Norway, which divides Norway into 

89 travel-to-work areas, denoted “economic regions”. The economic regions conform to 

NUTS-4 regions, as defined by the European Union standard of regional levels. This level of 

aggregation captures functional regions understood as common labor markets.  

 

 To study the relationship between assortative matching and city size, we regress the 

correlation between worker and plant effects on regional population size ( )rPop : 5 

 

 
5 Figures A1 and A2 in the appendix display results showing the relationship between population size and the 
fixed effects. As expected, the worker fixed effects are increasing in skills and the urban gradient is monotonically 
increasing with education level. This suggests that higher educated workers are better able to reap the benefits 
of thicker labor markets. The plant fixed effects are also increasing in education level, suggesting that higher 
educated workers are disproportionally located in high quality firms. The urban gradient for plant fixed effects 
is positive and quite similar across education groups. 
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0 1 logr r rCorrFE Pop  = + +                                                                                       (2) 

 

Panel B of Table 1 presents descriptive statistics at the labor market region level. There are 

large differences in population size across regions with an average of about 50,000 

inhabitants and a standard deviation of 75,000. Of the 89 regions, 36 have population below 

20,000. The correlation between worker and plant fixed effects ranges from -0.52 to 0.05 and 

with an average of -0.20. The majority of negative correlations in city regions is consistent 

with Dauth et al. (2018). The variation is linked in complicated ways to worker and plant 

heterogeneity across regions. 

 

Identification of the role of labor market size for the strength of assortative matching is 

challenging because workers and firms are sorted into urban areas motivated by superior 

labor matching opportunities. Although this may be an important productive advantage of 

cities, it bedevils interpretation of the population scale coefficient. An equally important 

challenge to identification is omitted variables; missing local variables that affect both 

matching opportunities and population size. To handle the possible endogeneity, we apply an 

instrument for current population size using information about the geographic distribution of 

historical mines introduced by Leknes (2015). 

 

The mining industry was one of the first industries in Norway. In the same way as the locations 

of mineral resources are random, it can be argued that the geographical distribution of the 

mining industry is random. Also, all the historical mines were exhausted before the period of 

our study.6 The discoveries of valuable mining resources incited economic activity that 

spurred local population growth, which is even traceable in the population patterns of today. 

 

Norway has a long history of mining. The written source “Historia Norvegia” from 1170 

mentions a silver mine in Oslo. After this period the mining industry gained momentum, and 

in the 18th century mining was one of the largest national industries. Today, however, the 

traditional mining industry is of marginal importance. The advantages of historical mining 

activity are obsolete, as all the historical mines where closed after the resources were 

 
6 We omit a region where there is mining activity in the vicinity of a historical mine. 
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exhausted. The instrument has therefore the same type of flare as the variation used in 

Bleakley and Lin (2012): they use natural features related to rivers, portage sites, and their 

importance in historical times for local economic activity and population growth. They argue 

that the natural advantages of these places can be considered forfeited today and find that 

they can still partially explain contemporaneous population patterns.   

 

Data on historical mines are mainly collected from Thuesen (1979) and Carstens (2000), a 

detailed description of the data collection process can be found in Leknes (2015). We define 

historical mines as mines that opened sometime between the 12th and 19th century. As in the 

applications by Leknes (2015) and Carlsen et al. (2016), we use the number of historical mines 

in each region. The historical mining activity was reasonably spread out across the country 

with a mean number of 0.7 per region (s.e. = 1.28). 

 

The fact that the historical mining activity has ceased sets this instrument apart from some of 

the other instruments in the urban economics literature, for instance historical population 

size. Using historical population size as instrument, identification hinges on different drivers 

of regional population growth historically compared to today. In this case, the mechanisms 

causing historical population growth is not explicitly stated and it is therefore more 

demanding to justify that they are not important today. We compare the results of the mining 

instrument with an alternative specification using early regional population size - beginning 

of the 19th century population. 

 

3. Assortative matching: IV estimation and bias 

 

Our contribution adds to the limited literature about assortative matching and labor market 

size by addressing identification challenges and heterogeneity of effects, in particular with 

respect to the role of education. 

 

The endogenous labor market size is a concern in the literature. We estimate the relationship 

between strength of assortative matching and city region size using an instrument for 

population size based on historical mining. The first stage estimate is documented in the first 

column of Table A1 in the appendix and shows a strong relationship between number of 
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historical mines opened before the 19th century and current regional population size. The first 

column of Table 2 reports the second stage IV estimates and compares with OLS. The OLS 

estimated effect of population size equals 0.034 and is statistically significant at 1% level. IV-

estimation with historical mines as instrument gives a coefficient of 0.057, significant at 10% 

level. This implies that the OLS estimate has a negative bias of about 40%. The interpretation 

of the result is that a doubling of the city region population size increases the correlation 

between worker and plant effect by 5.7 percentage points.  

  

Table 2 about here 

 

Our full sample results suggest that the degree of assortative matching is higher in larger labor 

markets. The conclusion is consistent with the recent contribution of Dauth et al. (2018) using 

a dataset of all private sector workers in Germany 1985–2014. They estimate an OLS 

coefficient for the 2002–2008 period of 0.061. This lies somewhat above our estimate of 

0.034, which might reflect the larger scale of local German labor markets. Dauth et al. (2018) 

instrument regional population size with regional population in 1952. Identification then 

hinges on different drivers of regional population growth half a century ago compared to 

today. Using this instrument, they estimate a coefficient of 0.071 for the 2002–2008 period. 

It follows that they find less negative bias in the OLS estimate, around 13%. The difference in 

bias compared to our results may reflect that their historical population instrument is fairly 

recent and may offer less reliable exogenous variation.  

 

We investigate the alternative identification strategy using early regional population size as 

instrument – beginning of the 19th century population, the year 1801. This is a well-known 

strategy in urban economics that originate from Ciccone and Hall (1996). However, it should 

be noticed that a shortcoming of historical population size instruments is that the 

mechanisms causing historical population growth is unknown and it is therefore hard to 

justify its validity. The first stage is documented in column 2 of Table A1 in the appendix and 

has a much higher R2 than the mining instrument. The second stage is shown in the first 

column of Table A2 in the appendix and implies a coefficient of 0.06. We conclude that 

historical population back in 1801 as instrument gives a similar estimate as historical mines 

for all workers. 
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The interpretation of the negative OLS bias is not obvious. In a discussion of the endogeneity 

of labor market scale, Combes et al. (2008, 2010) emphasize two-way causality. Larger labor 

markets have been found to be more productive and are therefore more likely to attract firms 

and workers, which in turn will increase the labor market scale. Reverse causality suggests an 

upward bias of the estimates. But bias can also be related to heterogeneity. There may be 

unobserved traits of the region that have a positive relationship to both population size and 

degree of assortative matching. In this case, the OLS estimate is downward biased, consistent 

with our results. Industry composition may be a channel of heterogeneity. Small regions with 

specialized high-return industries may exhibit high assortative matching and attenuate the 

scale effect. Inspection of the 89 regions shows quite a few regions with small population that 

are dominated by a single industry (typically resource based, many of them linked to 

waterfalls and electricity production in fjords and valleys) and have good matches. Another 

factor that may dilute the scale effect is the structure of the education market. The larger 

universities are in urban areas and provide specialized educations that match well with 

specific jobs/occupations. Specialization of jobs have been found to be higher in cities 

(Duranton and Jayet, 2011). Mismatch may then occur when persons graduating with these 

educations settle for poor matches in cities waiting for better job opportunities to 

arise. Inspection of data for the regions again indicate that this may be important for some 

larger regional ‘college cities’. More broadly, there are some large city regions with 

heterogenous private industries and many public sector jobs (not included in the analysis) 

that have less correlation between worker and firm quality. 

 

4. Assortative matching heterogeneity: Education level of workers 

 

Our main hypothesis is that the relationship between strength of matching and labor market 

size is positive and increasing in the formal skill level. In arguments relating back to Marshall, 

it is expected that large labor markets offer more opportunities for matching for both firms 

and workers. The number of potential matches increases with labor market size, and the 

incentive to search for a better match is stronger when the potential gains are larger.  Several 

papers suggest that workers with higher skills have higher wage returns from thicker labor 

markets, which may also stem from better matching. 
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In columns 2-4 of Table 2 in section 3, we separate between primary-, secondary- and college-

educated workers. The result is striking, population size is of relevance for assortative 

matching mainly for the college educated. Among primary- and secondary-educated workers, 

there is no significant relationship between size of labor market region and correlation of 

worker and plant fixed effects. This is consistent with the scatter plots in Figure 1 showing the 

association between city size and strength of assortative matching for the full sample and 

different education groups. For the college educated, the strength of assortative matching is 

increasing with population size. The IV-estimate equals 0.094, and the negative bias in the 

OLS estimate is still about 40%. Doubling the size of a city region leads to an increase in 

assortative matching as measured by the correlation coefficient of worker and plant fixed 

effects by 9 percentage points for college-educated workers. 

 

 Figure 1 about here 

 

Labor markets differ with respect to skill and consequently we expect the matching between 

workers and plants to reflect differences both at the supply and the demand side. Our result 

implies that the market for the college educated takes advantage of larger city regions to 

achieve better quality matches between workers and plants. The result is consistent with the 

agglomeration literature discussed in the introduction – the college educated are 

overrepresented in larger cities (Bacolod et al., 2009) and the agglomeration effect is larger 

for college-educated workers (Carlsen et al., 2016). The urban wage premium has been shown 

to be smaller for workers with lower education. Here we find lack of assortative matching for 

primary and secondary educated, and this may contribute to the explanation of a lower 

agglomeration effect for the low educated. 

 

5. Robustness 

 

The AKM-model applied to estimate assortative matching has challenges related to limited 

mobility bias and interpretation of the plant effects. The plant fixed effects are identified 

based on job switchers, and the estimates may be noisy in small plants and small regions. 

Since the plants seldom change locations, their fixed effects incorporate time-invariant 
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characteristics, notably industry. We use several methods to address the robustness of our 

results, and both OLS and IV estimates are reported in Table 3. The results are comparable to 

Table 2. 

 

To check for the limited mobility bias problem, we reduce the sample in three alternative 

ways. First, in panel A, the smallest regions (below 20,000 inhabitants) are excluded. This 

leaves 53 regions covering 90% of the national population. The results are similar to Table 2, 

but the city region size effect for college educated is somewhat higher. In Panel B, we exclude 

all plants with less than five workers. This reduces the number of workers from 853,209 to 

703,105 and the number of plants from 115,220 to 37,208. Excluding the smallest plants leads 

to higher correlation between worker and plant fixed effects. At the regional level, the 

average correlation increases from -0.20 to -0.06, and about 1/3 of the regions now have 

positive correlation between the fixed effects. The conclusions still hold, although the 

coefficient sizes for the college educated are somewhat smaller. To address the possibility of 

noisy estimates with limited mobility, we exclude in Panel C the top and bottom percentile of 

the fixed effects distributions. The results are robust to trimming the fixed effects. 

 

Table 3 about here 

 

As the plant fixed effects also include time-invariant characteristics, a concern is that the 

estimated relationship with urban scale reflects industry differences. In Panel D of Table 3, 

we purge the plant FE of industry influences by regressing them on 2-digit industry fixed 

effects and use the residual plant fixed effects in the correlation with worker FE.  The results 

are very similar to the baseline. In all robustness checks, the negative bias in the OLS 

estimation is of similar magnitude as in Table 2. 

 

6. Additional heterogeneity 

 

6.1. Heterogeneity across education field for college educated 

The literature on the college wage premium has moved on to investigate differences across 

fields of study and link this to geography, notably Cunningham et al. (2016). Given the 

registers with detailed education information for all workers, we can analyze how assortative 
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matching varies across education fields. We concentrate on four large groups that cover 

about 85% of all college educated – humanities and art, social sciences and law, business and 

administration, and natural sciences. Table 4 reports the results for both OLS and IV 

estimation. The main conclusion is that stronger assortative matching with larger labor 

market regions primarily is observed for workers with an education in business and 

administration. The result is in line with the finding of Liu (2017) that workers with education 

related to Economics and Business display the highest urban wage premiums. There is no 

relationship between city region population size and strength of assortative matching for 

workers with college education in humanities and art and social sciences. City region size 

seems not to be relevant. There is a positive relationship for workers educated in natural 

sciences in the OLS estimation, but not in the IV model.  

 

Table 4 about here 

 

6.2. Heterogeneity with respect to gender and industry 

Gender differences at the labor market have been studied in the context of urbanization and 

regional size. Hirsch et al. (2013) deal with regional differences in the gender pay gap, while 

Phimister (2005) analyzes the urban wage premium by gender. The variation in wages is linked 

to different gender intensities across industries. In our dataset, males represent a large share 

of workers in traditional manufacturing industries, construction, business services, 

information technology and finance. Females are more intensively employed in lighter 

manufacturing and services such as hotel/restaurants and cleaning. The importance of gender 

and industries consequently is investigated together. 

 

When we study all workers, males and females have about the same relationship between 

city region size and strength of assortative matching. The first column of Table 5 shows that 

the estimated IV coefficient is about 0.07 for both genders, although significant only at 10% 

level for female workers. When separate regressions are run for the three levels of education, 

the same picture emerges as in Table 2, where only the college educated take advantage of 

larger labor markets. The quantitative effect of city region size on assortative matching is 

higher for college educated men than for college educated women (0.109 vs. 0.077), but both 

estimates are significant at 1% level. 
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Table 5 about here 

 

Since the allocation of labor across industries is quite different between male and female 

workers, we pursue the assortative matching combining education, gender and industry. We 

separate between manufacturing industries (including construction) and services. The most 

striking result shown in Table 6 is that there is no effect of larger labor markets on assortative 

matching in manufacturing. This is true for all estimates – all education groups and when they 

are separated by gender (columns 1–3, panels A–C). In services, the effect of population size 

for the strength of assortative matching is statistically significant for both secondary- and 

college-educated men, but the estimated coefficient is much higher for the college educated 

(0.145 vs. 0.064). Female workers in services with college education have better matches in 

larger labor markets (coefficient of 0.086 significant at 1% level), while there is no significant 

effect for the two lowest education groups. 

 

Table 6 about here 

 

6.3. Heterogeneity with respect to age 

Following the literature on job search, we expect workers early in their career to have 

imperfect information about their own preferences and abilities. They are therefore expected 

to experience worse matches early in their career relative to later. Because of data censoring 

(first observations are in 2003), we have limited knowledge about individual work histories. 

However, we can infer that younger workers have come shorter in the search process for 

better job matches. In Table 7, we split the workforce into four age categories: 25-34, 35-44, 

45-54 and 55-65. We obtain the same conclusion as from the first part of the paper, positive 

urban assortative matching is only traceable for college-educated workers.  Among these, in 

line with our hypothesis, the youngest age group has the lowest score.  

 

Table 7 about here 

 

7. The importance of job turnover 
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If worker characteristics and sector affiliation determine the opportunity to search for jobs in 

cities, this may explain why certain worker groups are better matched to firms. Leknes (2017) 

finds that workers in cities are more likely to switch jobs and that these turnover propensities 

are increasing in education. To explore this issue, we estimate a specification for job switching 

similar to equation (1), but without firm fixed effects: 

 

𝑆𝑖𝑡 =𝜇𝑖 + 𝛾𝑡 + 𝑋𝑖𝑡𝛽 + 𝜀𝑖𝑡                                                                                          (3) 

 

where Sit is an indicator variable equal to unity if the worker has a different firm identifier the 

subsequent year. Worker fixed effects are represented by 
i . The vector of observable 

worker characteristics ( )itX  includes education-specific cubic age profiles (quadratic and 

cubic age terms interacted with dummies for the three levels of education) and 
t  represents 

year dummies.   is a vector of parameters and it  is the error term.  

 

To retrieve the propensity to switch jobs within each region, we calculate the mean worker 

fixed effect within each local labor market ( )rmeanFE .7 Next, we estimate a specification 

similar to equation (2), where we regress the mean worker effects on regional population size 

( )rPop : 

 

 𝑚𝑒𝑎𝑛𝐹𝐸𝑟 = 𝛼0 + 𝛼1 𝑙𝑜𝑔 𝑃 𝑜𝑝𝑟 + 𝜀𝑟                                                                                         (4) 

 

As can be seen from Figure 2, college-educated workers are the only ones that have a 

significantly positive relationship between population size and regional probability of 

switching job.8 Conducting the same analyses for the other splits in sample, we find 

descriptive evidence of rural-urban gaps in job switching that corresponds to better 

assortative matching in cities (see Tables A3 and A4 in the appendix). This is the case for 

college educated, within the field of business and administration, and in the service sector. 

The results suggest that turnover and assortative matching is linked. Women display a 

 
7 In the calculation of region means, each worker is only counted once and is allocated to the local labor market 

where he/she is first observed in the panel. 
8 Almost none of the IV-estimates are significant when using historical mines as instrument. The figures therefore 
display OLS estimates with robust standard errors. 
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somewhat different pattern. Although the propensity to switch jobs in cities for college-

educated women are not very different from that of college-educated men, women with 

lower education levels switch more. The result is at odds with the search hypothesis. The 

pattern seems to be somewhat driven by occupation composition – women tend to 

disproportionally hold positions within culture, sales, administration and services and 

cleaning, which have higher turnover probabilities in cities. Women in the private sector may 

be a selected group, which confuses interpretation of results.  

 

Figure 2 about here 

 

8. Concluding remarks 

 

The analysis adds to the limited literature about assortative matching and labor market size 

by addressing identification challenges and heterogeneity of effects, in particular with respect 

to the role of education. 

 

Using rich administrative data for Norway linking workers and firms, we study if there is a 

skill-heterogeneous relationship between assortative matching and city size. Workers are 

separated by education level – primary, secondary and college. The method innovated by 

Abowd, Kramarz and Margolis (1999), the AKM-model, is employed to estimate two-way 

worker and plant fixed effects. The analysis addresses the concern of endogenous city region 

size. We instrument population size using historical mines before the 19th century that are 

obsolete today. The analysis shows that the overall positive relationship between city size and 

matching is driven by college-educated workers.  Furthermore, we analyze whether there are 

specific education fields of the college educated that disproportionally link to the matching 

result. We find that high-educated workers within the field of business and administration are 

displaying higher assortative matching in cities. The analysis is extended to address how the 

role of education varies across gender and industries. The scale coefficient is higher for 

college-educated men than women. Also, workers in services display better assortative 

matching in larger labor markets, while in manufacturing industries, the match between 

worker and firm quality is independent of city region size. We also find that matching in cities 

is related to the age of workers. Independent of age group, college-educated workers are the 
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only ones that display positive effects of population scale on assortative matching. However, 

the urban scale coefficients are higher for workers in the middle of the age distribution. 

Consistent with the search literature, matching is not as good early in the career as later. In 

an extension, descriptive evidence is provided suggesting that the patterns identified are 

related to turnover intensities. This suggests that the superior conditions for job search in 

cities may lead to better matches.   

 

Our results indicate important variation in assortative matching between workers and firms 

dependent on education level, gender and industries. Methodological issues remain, in 

particular estimating the quality of firms. The plant fixed effects incorporate time-invariant 

regional characteristics that may be related to labor market size. We investigate the 

robustness of the results in alternative specifications. More broadly, it is of interest to develop 

characterizations of firms with more data about their structure and performance. 

 

 

References 

Abel, J. and R. Deitz (2015), Agglomeration and job matching among college graduates, 

Regional Science and Urban Economics 51, 14-24. 

Abowd, J., F. Kramarz and D. Margolis (1999), High-wage workers and high-wage firms, 

Econometrica 67, 2, 251-233. 

Andersson, F., S. Burgess and J. Lane (2007), Cities, matching and the productivity gains from 

agglomeration, Journal of Urban Economics 61, 112-128. 

Bacolod, M., B. Blum and W. Strange (2009), Skills in the city, Journal of Urban Economics 65, 

136-153. 

Baum-Snow, N. and R. Pavan (2012), Understanding the city size wag gap, Review of Economic 

Studies 79, 1, 88-127. 

Bleakley, H. and J. Lin (2012), Portage and path dependence, Quarterly Journal of Economics 

127, 2, 587-644. 

Boualam, B. (2014), Does culture affect local productivity and urban amenities? Regional 

Science and Urban Economics 46, 12-17. 

Büchel, F. and M. van Ham (2003), Overeducation, regional labor markets, and spatial 

flexibility, Journal of Urban Economics 53, 3, 482-493. 



 

 

19 

Card, D., J. Henning and P. Kline (2013), Workplace heterogeneity and the rise of West 

German wage inequality, Quarterly Journal of Economics 128, 3, 967-1015. 

Card, D., A. Cardoso, J. Heining and P. Kline (2018), Firms and labor market inequality: 

Evidence and some theory, Journal of Labor Economics 36, 51, S13-S70.  

Carlsen, F., J. Rattsø and H. Stokke (2016), Education, experience, and urban wage premium, 

Regional Science and Urban Economics 60, 39-49. 

Carstens, H. (2000), …Bygger i Berge, Tapir Akademiske Forlag. 

Ciccone, A. and R. Hall (1996), Productivity and the density of economic activity, American 

Economic Review 86, 1, 54-70. 

Combes, P.P., G. Duranton and L. Gobillon (2008), Spatial wage disparities: sorting matters! 

Journal of Urban Economics 63, 723-742. 

Combes, P.P., G. Duranton, L. Gobillon and S. Roux (2010), Estimating agglomeration 

economies with history, geology, and worker effects. In: Glaeser, E. (Ed.), 

Agglomeration Economics, The University of Chicago Press, pp. 15-66.  

Combes, P.P. and L. Gobillon (2015), The empirics of agglomeration economies. In: Duranton, 

G., V. Henderson and W. Strange (Eds.), Handbook of Urban and Regional Economics 

vol. V. Elsevier-North Holland, Amsterdam, pp. 247-348. 

Cunningham, C., M. Patton and R. Reed (2016), Heterogeneous returns to knowledge 

exchange: Evidence from the urban wage premium, Journal of Economic Behavior & 

Organization 126, 120-139. 

Dauth, W., S. Findeisen, E. Moretti and J. Suedekum (2018), Matching in cities, NBER Working 

Paper No. 25227. 

Duranton, G. and H. Jayet (2011), Is the division of labour limited by the extent of the market? 

Evidence from French cities, Journal of Urban Economics 69, 1, 56-71. 

Figueiredo, O., P. Guimaraes and D. Woolward (2014), Firm-worker matching in industrial 

clusters, Journal of Economic Geography 14, 1-19. 

Finney, M. and J. Kohlhase (2008), The effect of urbanization on labor turnover, Journal of 

Regional Science 48, 2, 311-328. 

Hirsch, B., M. König and J. Möller (2013), Is there a gap in the gap? Regional differences in the 

gender pay gap, Scottish Journal of Political Economy 60, 4, 412-439. 

Leknes, S. (2015), The more the merrier? Evidence on quality of life and population size using 

historical mines, Regional Science and Urban Economics 54, 1-17. 

Leknes, S. (2017), Churning in thick labor markets: evidence of heterogeneous responses 

along the skill and experience gradients. Discussion Papers no. 866, Statistics Norway. 

Liu, S. (2017), Agglomeration, urban wage premiums, and college majors, Journal of Regional 

Science, 57, 4, 611-630.   



 

 

20 

Melo P. and D. Graham (2014), Testing for labour pooling as a source of agglomeration 

economies: Evidence for labour markets in England and Wales, Papers in Regional 

Science 93, 1, 31-52 

Mion, G. and P. Natacchioni (2009), The spatial sorting and matching of skills and firms, 

Canadian Journal of Economics 42, 28-55. 

Moretti, E. (2004), Estimating the social return to higher education: evidence from 

longitudinal and repeated cross-sectional data, Journal of Econometrics 121, 175-212. 

Phimister, E. (2005), Urban effects on participation and wages: Are there gender differences? 

Journal of Urban Economics 58, 3, 513-536. 

Strange, W., W. Heijazi, and J. Tang (2006), The uncertain city: competitive instability, skills, 

innovation, and the strategy of agglomeration, Journal of Urban Economics 59, 3, 331-

351. 

Thuesen, G. (1979), Den første dokumenterte bergverksdrift i Norge, Volund, pp. 7-60. 

Wheeler, C. (2001), Search, sorting and urban agglomeration, Journal of Labor Economics 19, 

879-899. 

Wheeler, C. (2006), Cities and the growth of wages among young workers: Evidence from the 

NLSY, Journal of Urban Economics 60, 162-184. 

Wheeler, C. (2008), Local market scale and the pattern of job changes among young men, 

Regional Science and Urban Economics 38, 101-118. 

Yankow, J. (2006), Why do cities pay more? An empirical examination of some competing 

theories of the urban wage premium, Journal of Urban Economics 60, 139-161. 



 

 

21 

Figure 1. City size and strength of assortative matching. Heterogeneity across education groups. 

 

Notes: The vertical axis shows correlation between worker and plant fixed effects at the regional level (N=89). In top-left 

figure, the correlation is calculated based on fixed effects for 853,209 individuals allocated across 89 labor market regions. 

In the other figures, the correlations are calculated based on fixed effects for three subgroups of workers defined by the 

level of education: 164,807 workers with primary education, 442,048 workers with secondary education, and 246,354 

college-educated workers. The fixed effects follow from individual level AKM estimations during 2003–2010 of the log hourly 

wage on worker effects, plant effects, education-specific cubic age profiles, and year dummies. The regional population level 

is measured in 2003. The figures are binned scatter plots, where regions are grouped into 20 percentiles based on population 

size. The line in each figure is given by bivariate regressions and the slope coefficient and its robust standard error are 

provided within the figure.   
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Figure 2. City size and regional probability of turnover. Heterogeneity across education groups. 

 

Notes: The figure shows the relationship between the regional mean worker fixed effects from a job switching regression 

and population at the regional level (N=89). The mean worker fixed effects are calculated based on subgroups of workers 

defined by the level of education: 164,807 workers with primary education, 442,048 workers with secondary education, and 

246,354 college-educated workers. The fixed effects follow from a linear probability model at the individual level during 

2003–2010. The dependent variable is an indicator of different firm ID the subsequent year, and the regressions control for 

worker effects, education-specific cubic age profiles, and year dummies. The regional population level is measured in 2003. 

The figure provides point estimates and 95 percent confidence intervals with robust standard errors.   
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Table 1. Descriptive statistics 

 All Primary Secondary College 

Panel A: Worker level (mean values)    
  Log hourly wage 5.51 5.33 5.46 5.72 
  Hourly wage 270.2 221.3 252.6 334.4 
  Age 42.0 43.1 42.6 40.3 
  Male 0.70 0.71 0.73 0.65 
  Immigrant 0.12 0.15 0.10 0.15 
  Manufacturing 0.36 0.39 0.42 0.25 
  Services 0.64 0.61 0.58 0.75 
  Worker FE 0.00 -0.16 -0.05 0.19 
  Plant FE 0.00 -0.02 -0.01 0.02 
  Corr (worker FE, plant FE) -0.108 -0.272 -0.171 -0.04 
  No. of workers 853,209 164,807 442,048 246,354 
  Share of workers 1.00 0.19 0.52 0.29 
  No. of plants 115,220 54,172 88,228 49,018 
     

 Mean St.dev. Min Max 

Panel B: Regional level    
  Population 2003 51,149 74,858 5,595 517,401 
  No of historical mines 0.7 1.28 0 6 
  Historical population 1801 9,928 7,577 353 49,209 
  Corr (worker FE, plant FE) region -0.204 0.116 -0.52 0.053 
  No. of regions 89    

Notes: The values for hourly wage and age refer to the average value across the period 2003-2010.  
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Table 2. City size and strength of assortative matching: Heterogeneity across education groups 

 Dependent variable: Correlation of worker and plant FE 
 All 

(1) 
Primary 

(2) 
Secondary 

(3) 
College 

(4) 

Panel A: OLS     
Log population 0.034*** 

(0.012) 
0.003 
(0.01) 

0.018 
(0.013) 

0.053*** 
(0.011) 

R2 0.08 0.001 0.018 0.178 
     
Panel B: IV-2SLS     
Log population 0.057* 

(0.03) 
0.013 

(0.025) 
0.024 

(0.038) 
0.094*** 
(0.028) 

First stage F 18.04 18.04 18.04 18.04 
Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N=89 in panel 

A and N=88 in panel B). In column (1), the correlation is calculated based on fixed effects for 853,209 individuals allocated 

across 89 labor market regions. In columns (2)–(4), the correlations are calculated based on fixed effects for three subgroups 

of workers defined by the level of education: 164,807 workers with primary education, 442,048 workers with secondary 

education, and 246,354 college-educated workers. The fixed effects follow from individual level AKM estimations during 

2003–2010 of the log hourly wage on worker effects, plant effects, education-specific cubic age profiles, and year dummies. 

The regional population level is measured in 2003. In panel B, the instrument for log population is the number of historical 

mines opened before the 19th century. The first stage estimation is given in column (1) of Table A1 in the appendix. Robust 

standard errors in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10 percent level, 

respectively.   
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Table 3. Robustness checks 

 Dependent variable: Correlation of worker and plant FE 
 All 

(1) 
Primary 

(2) 
Secondary 

(3) 
College 

(4) 

Panel A: Excluding the smallest regions (pop < 20,000) 
OLS: Log population 0.054*** 

(0.017) 
0.02 

(0.015) 
0.035* 
(0.019) 

0.069*** 
(0.016) 

R2 0.175 0.028 0.069 0.243 
IV: Log population 0.07 

(0.052) 
0.025 
(0.04) 

0.019 
(0.062) 

0.122** 
(0.052) 

Panel B: Excluding small plants (less than 5 workers) 
OLS: Log population 0.029** 

(0.012) 
0.008 
(0.01) 

0.015 
(0.014) 

0.031** 
(0.013) 

R2 0.048 0.000 0.011 0.046 
IV: Log population 0.051** 

(0.025) 
0.028 

(0.026) 
0.026 

(0.027) 
0.054** 
(0.025) 

Panel C: Excluding outliers in the FE distributions 
OLS: Log population 0.03*** 

(0.009) 
0.006 

(0.007) 
0.017* 
(0.01) 

0.046*** 
(0.01) 

R2 0.101 0.005 0.031 0.168 
IV: Log population 0.049** 

(0.019) 
0.017 

(0.017) 
0.022 
(0.02) 

0.073*** 
(0.024) 

Panel D: Dependent variable is the correlation of worker and residual plant FE 
OLS: Log population 0.03*** 

(0.009) 
0.004 

(0.009) 
0.017* 
(0.01) 

0.05*** 
(0.009) 

R2 0.09 0.002 0.028 0.199 
IV: Log population 0.063** 

(0.029) 
0.026 

(0.025) 
0.039 

(0.034) 
0.101*** 
(0.028) 

Notes: The table presents robustness checks on the regressions in Table 2, where the dependent variable is the correlation 

between worker and plant fixed effects at the regional level (N=89 with OLS and N=88 with IV). In panel A, we exclude regions 

with less than 20,000 inhabitants in 2003, which leaves 53 regions covering 90% of the national population (N=53 with OLS 

and N=52 with IV). In panel B, plants with less than five full-time workers are excluded. This reduces the number of workers 

from 853,209 to 703,105 and the number of plants from 115,220 to 37,208. In panel C, we exclude workers that are in the 

top or bottom 1% of the distribution of worker and/or plant fixed effects. This reduces the number of workers from 853,209 

to 822,206 and the number of plants from 115,220 to 107,032. In panel D, the dependent variable is the correlation between 

worker and residual plant fixed effects at the regional level, where the residual plant effects are the residuals from a 

regression of the plant effects on 2-digit industry effects. In all panels, the instrument for log population is the number of 

historical mines opened before the 19th century. The first stage estimation is given in column (3) and column (1) of Table A1 

in the appendix for panel A and for all other panels, respectively. Robust standard errors in parentheses. ***, ** and * 

indicate significance at the 1 percent, 5 percent and 10 percent level, respectively. 
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Table 4. City size and strength of assortative matching: College educated in different fields of study 

 Dependent variable: Correlation of worker and plant FE 
 Humanities 

and arts 
(1) 

Social sciences 
and law 

(2) 

Business and 
administration 

(3) 

Natural 
sciences 

(4) 

Panel A: OLS     
Log population -0.006 

(0.027) 
0.013 

(0.029) 
0.069*** 
(0.012) 

0.028** 
(0.014) 

R2 0.001 0.003 0.216 0.032 
     
Panel B: IV-2SLS     
Log population 0.07 

(0.047) 
0.044 

(0.046) 
0.084*** 
(0.023) 

0.04 
(0.028) 

Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level for the four 

largest subgroups of college educated workers defined by field of study: Humanities and arts (26,183 workers), Social 

sciences and law (22,118 workers), Business and administration (71,217 workers), and Natural sciences (91,944 workers). 

The four subgroups cover 86% of all college-educated workers. Robust standard errors in parentheses. ***, ** and * indicate 

significance at the 1 percent, 5 percent and 10 percent level, respectively. 
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Table 5. City size and strength of assortative matching: Education and gender 

 Dependent variable: Correlation of worker and plant FE 
 All 

(1) 
Primary 

(2) 
Secondary 

(3) 
College 

(4) 

Panel A: MEN (IV-2SLS)    
Log population 0.07*** 

(0.026) 
0.02 

(0.025) 
0.04 

(0.028) 
0.109*** 
(0.034) 

     
Panel B: WOMEN (IV-2SLS)    
Log population 0.068* 

(0.04) 
0.026 
(0.04) 

0.059 
(0.05) 

0.077*** 
(0.026) 

Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N=88). The 

fixed effects follow from individual level AKM estimations during 2003–2010 of the log hourly wage on worker effects, plant 

effects, education-specific cubic age profiles, and year dummies. The regional population level in 2003 is instrumented with 

the number of historical mines opened before the 19th century. The first stage estimation is given in column (1) of Table A1 

in the appendix. Robust standard errors in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 

10 percent level, respectively.   

 

 

Table 6. City size and strength of assortative matching: Education, gender and industry 

 Dependent variable: Correlation of worker and plant FE 
Sector MANUFACTURING SERVICES 
Education group Primary 

(1) 
Secondary 

(2) 
College 

(3) 
Primary 

(4) 
Secondary 

(5) 
College 

(6) 

Panel A: ALL (IV-2SLS)      
Log population -0.003 

(0.028) 
-0.008 
(0.029) 

0.015 
(0.026) 

0.036 
(0.028) 

0.052 
(0.04) 

0.124*** 
(0.029) 

       
Panel B: MEN (IV-2SLS)      
Log population 0.002 

(0.031) 
-0.002 
(0.03) 

0.033 
(0.025) 

0.042 
(0.027) 

0.064** 
(0.029) 

0.145*** 
(0.038) 

       
Panel C: WOMEN (IV-2SLS)      
Log population 0.014 

(0.047) 
0.021 

(0.045) 
0.012 

(0.053) 
0.038 
(0.04) 

0.07 
(0.048) 

0.086*** 
(0.025) 

Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N=88). The 

fixed effects follow from individual level AKM estimations during 2003–2010 of the log hourly wage on worker effects, plant 

effects, education-specific cubic age profiles, and year dummies. The regional population level in 2003 is instrumented with 

the number of historical mines opened before the 19th century. The first stage estimation is given in column (1) of Table A1 

in the appendix. Robust standard errors in parentheses. *** indicates significance at the 1 percent level.   
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Table 7. City size and strength of assortative matching, by age 

 Dependent variable: Correlation of worker and plant FE 
 All 

(1) 
Primary 

(2) 
Secondary 

(3) 
College 

(4) 

Panel A: Age 25-34 (IV-2SLS)    
Log population 0.034 

(0.026) 
-0.002 
(0.025) 

-0.008 
(0.036) 

0.049** 
(0.023) 

     
Panel B: Age 35-44 (IV-2SLS)    
Log population 0.073* 

(0.037) 
0.033 

(0.033) 
0.024 

(0.046) 
0.122*** 
(0.038) 

    
Panel C: Age 45-54 (IV-2SLS)    
Log population 0.055* 

(0.030) 
-0.015 
(0.031) 

0.031 
(0.034) 

0.113** 
(0.047) 

    
Panel D: Age 55-65 (IV-2SLS)    
Log population 0.061* 

(0.032) 
-0.006 
(0.036) 

0.034 
(0.040) 

0.078* 
(0.046) 

Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N=88). The 

fixed effects follow from individual level AKM estimations during 2003–2010 of the log hourly wage on worker effects, plant 

effects, education-specific cubic age profiles, and year dummies. The regional population level in 2003 is instrumented with 

the number of historical mines opened before the 19th century. The first stage estimation is given in column (1) of Table A1 

in the appendix. Robust standard errors in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 

10 percent level, respectively.   
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Appendix: Additional tables and figures 

Table A1. First stage IV estimation 

 Log 
population 

(1) 

Log 
population 

(2) 

Log 
population 

(3) 

Historical mines 0.288*** 
(0.068) 

 0.185*** 
(0.067) 

Log population 1801  0.884*** 
(0.127) 

 

Constant 10.099*** 
(0.106) 

2.393** 
(1.143) 

10.713*** 
(0.119) 

Observations 88 89 52 
R2 0.148 0.502 0.124 

Notes: The dependent variable is regional population size in 2003 (log form). In columns (1) and (3), the instrument is the 

number of historical mines opened before the 19th century, while the instrument in column (2) is historical population size 

(measured in the year 1801). In column (3), we drop regions with less than 20,000 inhabitants in 2003. Robust standard 

errors in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10 percent level, respectively.   

 

Table A2. Second stage IV-estimation with historical population size as instrument 

 Dependent variable: Correlation of worker and plant FE 
 All 

(1) 
Primary 

(2) 
Secondary 

(3) 
College 

(4) 

Log population 0.06*** 
(0.02) 

0.03 
(0.019) 

0.049** 
(0.024) 

0.073*** 
(0.018) 

First stage F 48.66 48.66 48.66 48.66 
Notes: The dependent variable is the correlation between worker and plant fixed effects at the regional level (N=89). The 

regional population level in 2003 is instrumented with historical population size (1801 census). The first stage estimation is 

given in column (2) of Table A1. Robust standard errors in parentheses. ***, ** and * indicate significance at the 1 percent, 

5 percent and 10 percent level, respectively.   

 

Table A3. City size and job switching probabilities: College educated in different fields of study 

 Dependent variable: Mean worker fixed effects from job switching 
regression 

 Humanities 
and arts 

(1) 

Social sciences 
and law 

(2) 

Business and 
administration 

(3) 

Natural 
sciences 

(4) 

Log population 0.002 
(0.003) 

-0.007 
(0.006) 

0.009*** 
(0.002) 

-0.000 
(0.002) 

R2 0.002 0.022 0.155 0.000 
Notes: The table shows the relationship between the regional mean worker fixed effects from a job switching regression and 

population at the regional level (N=89). The mean worker fixed effects are calculated for the four largest subgroups of college 

educated workers defined by field of study: Humanities and arts (26,183 workers), Social sciences and law (22,118 workers), 

Business and administration (71,217 workers), and Natural sciences (91,944 workers). The worker fixed effects follow from 

a linear probability model at the individual level during 2003–2010. The dependent variable is an indicator of different firm 

ID the subsequent year, and the regressions control for worker effects, education-specific cubic age profiles, and year 

dummies. The regional population level is measured in 2003. Robust standard errors in parentheses. ***, ** and * indicate 

significance at the 1 percent, 5 percent and 10 percent level, respectively.   
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Table A4. Heterogeneity in urban job switching behavior, by education  

 Dependent variable:  Mean worker fixed 
effects from job switching regression 

 Primary  
(1) 

Secondary 
(2) 

College 
(3) 

Panel A: Men 
Log population  0.001 

(0.002) 
0.001 

(0.002) 
0.004*** 
(0.001) 

R2 0.002 0.003 0.076 
Panel B: Women 
Log population  0.010*** 

(0.003) 
0.011*** 
(0.002) 

0.005** 
(0.002) 

R2 0.169 0.291 0.072 
Panel C: Manufacturing 
Log population  -0.005* 

(0.003) 
-0.002 
(0.002) 

0.001 
(0.002) 

R2 0.035 0.009 0.002 
Panel D: Services 
Log population  0.005*** 

(0.002) 
0.005*** 
(0.002) 

0.006*** 
(0.001) 

R2 0.086 0.078 0.146 
Panel E: Services for men 
Log population  0.003 

(0.002) 
0.002 

(0.002) 
0.005*** 
(0.002) 

R2 0.018 0.009 0.092 
Panel F: Services for women 
Log population  0.012*** 

(0.003) 
0.012*** 
(0.002) 

0.006** 
(0.002) 

R2 0.153 0.298 0.079 
Notes: The table shows the relationship between the regional mean worker fixed effects from a job switching regression and 

population at the regional level (N=89). The mean worker fixed effects are calculated based on subgroups of workers defined 

by the level of education: 164,807 workers with primary education, 442,048 workers with secondary education, and 246,354 

college-educated workers. The fixed effects follow from a linear probability model at the individual level during 2003–2010. 

The dependent variable is an indicator of different firm ID the subsequent year, and the regressions control for worker 

effects, education-specific cubic age profiles, and year dummies. The regional population level is measured in 2003. Robust 

standard errors in parentheses. ***, ** and * indicate significance at the 1 percent, 5 percent and 10 percent level, 

respectively. 
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Figure A1. City size and worker fixed effects. Heterogeneity across education groups. 

 

Notes: The vertical axis shows mean worker fixed effects at the regional level (N=89). In top-left figure, the mean is calculated 

based on fixed effects for 853,209 individuals allocated across 89 labor market regions. In the other figures, the means are 

calculated based on fixed effects for three subgroups of workers defined by the level of education: 164,807 workers with 

primary education, 442,048 workers with secondary education, and 246,354 college-educated workers. The fixed effects 

follow from individual level AKM estimations during 2003–2010 of the log hourly wage on worker effects, plant effects, 

education-specific cubic age profiles, and year dummies. They are centered around zero for the full sample. The regional 

population level is measured in 2003. The figures are binned scatter plots, where regions are grouped into 20 percentiles 

based on population size. The line in each figure is given by bivariate regressions and the slope coefficient and its robust 

standard error is provided within the figure.   
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Figure A2. City size and plant fixed effects. Heterogeneity across education groups. 

 

Notes: The vertical axis shows mean plant fixed effects at the regional level (N=89). In top-left figure, the mean is calculated 

based on fixed effects for 853,209 individuals allocated across 89 labor market regions. In the other figures, the means are 

calculated based on fixed effects for three subgroups of workers defined by the level of education: 164,807 workers with 

primary education, 442,048 workers with secondary education, and 246,354 college-educated workers. The fixed effects 

follow from individual level AKM estimations during 2003–2010 of the log hourly wage on worker effects, plant effects, 

education-specific cubic age profiles, and year dummies. The regional population level is measured in 2003. The figures are 

binned scatter plots, where regions are grouped into 20 percentiles based on population size. The line in each figure is given 

by bivariate regressions and the slope coefficient and its robust standard error is provided within the figure.   
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