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Abstract

This paper proposes a new evaluation approach of the class of small-scale ‘hybrid’ New

Keynesian Dynamic Stochastic General Equilibrium (NK-DSGE) models typically used in

monetary policy and business cycle analysis. The novelty of our method is that the empirical

assessment of the NK-DSGE model is based on a conditional sequence of likelihood-based

tests conducted in a Vector Autoregressive (VAR) system in which both the low and high

frequency implications of the model are addressed in a coherent framework. The idea is that

if the low frequency behaviour of the original time series of the model can be approximated

by unit roots, stationarity must be imposed by removing the stochastic trends. This means

that with respect to the original variables, the solution of the NK-DSGE model is a VAR

that embodies a set of recoverable unit roots/cointegration restrictions, in addition to the

cross-equation restrictions implied by the rational expectations hypothesis. The procedure

is based on the sequence ‘LR1→LR2 →LR3’, where LR1 is the cointegration rank test, LR2

the cointegration matrix test and LR3 the cross-equation restrictions test: LR2 is computed

conditional on LR1 and LR3 is computed conditional on LR2. The type-I errors of the

three tests are set consistently with a pre-fixed overall nominal significance level and the

NK-DSGE model is not rejected if no rejection occurs. We investigate the empirical size

properties of the proposed testing strategy by a Monte Carlo experiment and illustrate the

usefulness of our approach by estimating a monetary business cycle NK-DSGE model using

U.S. quarterly data.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models, in the particular the approach dubbed

the New Keynesian (NK) models, are presently dominant both in policy and academic environ-

ments. It is therefore important to ascertain the validity of these models. Henceforth we denote

this class of models with the acronym ‘NK-DSGE’.

There are several methods that can be used to evaluate the empirical performance of NK-

DSGE models, including economic reliability, statistical fit and forecasting accuracy, see e.g.

Schorfheide (2000), An and Schorfheide (2007) and Schorfheide (2011). It is often claimed that

Bayesian techniques are preferable to standard likelihood-based methods because NK-DSGE

models typically represent a false description of the Data Generating Process (DGP) and mis-

specification can be important in estimation, see e.g. Canova and Ferroni (2012). Schorfheide

(2000) suggests using a loss function to assess the discrepancy between DSGE model predictions

and overall posterior distribution of population characteristics that the researcher is trying to

match. Del Negro et al. (2007) develop a set of tools within the Bayesian approach that can

be used for assessing the time series fit of a DSGE model based on a systematic relaxation of

the set of cross-equation restrictions (CER) that the structural model implies on the Vector

Autoregressive (VAR) representation of the data.

In this paper we argue that the scientific validity of a model should not be exclusively based

on its logical coherence or its intellectual appeal, but also on its capability of making empirical

predictions that are not rejected by the data, see e.g. De Grauwe (2010) and Pesaran and

Smith (2011). While misspecification in NK-DSGE models is a clear possibility, we do not

think it represents a strong argument against the use of frequentist (classical) likelihood-based

techniques. A model is purporting by definition to replicate some main properties of its subject,

whatever the use or preferences made for its design, and a macroeconometric model should be

able to generate the main properties of the actual macro economy.

The purpose of the analysis is therefore to see to what extent it is possible to test the empirical

reliability of NK-DSGE models by classical methods. We not only want to use the CER as a

‘metric’, in line with the spirit of the early literature on the econometrics of rational expectations

models, see Hansen and Sargent (1980), Wallis (1980) and Hansen and Sargent (1981), but we

also want to test other implied restrictions, usually neglected in the literature, in a coherent

and comprehensive framework. Schorfheide (2011) observes that one of the major challenges of

current dynamic macro modelling is to recognize that many time series exhibit low frequency

behavior that it is difficult to reconcile with the models being estimated. Gorodnichenko and

Ng (2010) report in their Table 1 a non-exhaustive listing of how the high persistence of the

variables has been addressed in the literature on DSGE models and propose robust estimators
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that do not require researchers to take a stand on whether shocks have permanent or transitory

effects. We instead account for the low/high frequency behavior of the data by assuming that

the variables of interest are driven by unit roots and that the underlying common stochastic

trends cancel through steady-state relationships. In this respect, we do not need to take any a

priori stand about how to filter the model and the data—because ‘filtering’ is implicitly obtained

by a proper transformation of the model through the cointegration restrictions implied by the

theory under investigation.

We use classical frequentist statistical tests, in particular likelihood ratio (LR) tests, with

the idea of maximizing the role attached to the data as much as possible. Moreover, we analyze

long and short-run restrictions jointly.

We focus on a particular family of small-scale NK-DSGE models typically used in monetary

policy and business cycle analysis, see among many others Ireland (2004), Dave and DeJong

(2007), Carlstrom et al. (2009), Benati and Surico (2009) and Fanelli (2012) and references

therein. We test the NK-DSGE model by a sequential procedure computed in three steps. We

start from a finite order VAR involving the (observable) variables of the system. We first test

whether the cointegration rank is consistent with the predictions of NK-DSGE model. Next,

we test the implied overidentifying cointegrating restrictions, conditional on the chosen rank.

Finally, we test the implied overidentifying CER, conditional on the cointegrating restrictions

(steady state). Overall, the suggested method involves computing a sequence of three LR tests,

hereafter denoted LR1 (LR cointegration rank test), LR2 (LR cointegration matrix test) and

LR3 (LR test for CER), leading to a multiple hypothesis testing strategy, whose overall size

can be controlled for. For ease of exposition we denote our testing strategy with the symbol

‘LR1→LR2→LR3’.

The novelty of the ‘LR1→LR2→LR3’ approach is that the empirical evaluation of the NK-

DSGE model is based on the joint assessment of the low and high frequency implications of the

model: LR2 is run conditional upon that LR1 does not reject the cointegration rank and LR3

is run if LR2 does not reject the overidentification cointegrating restrictions.1 Since we have a

precise prediction from the theoretical model about the number of common stochastic trends

which should drive the NK-DSGE model, the chosen LR1 test used in the sequence is the ‘one

1To our knowledge, King et al. (1991) and Vredin and Söderlind (1996) are early examples of the use of LR1

in related contexts, Juselius (2011) is a recent example of the use of LR2 in the context of NK-DSGE models,

while Guerron-Quintana et al. (2013) propose the inversion of a test like LR3 to build confidence sets for the

structural parameters of DSGE models robust to identification failure. Fanelli (2008) applies a testing strategy

similar to the one suggested in this paper in a single-equation framework. Fanelli (2012) and Castelnuovo and

Fanelli (2011) have recently proposed the use of LR3 (which in the former is actually a Lagrange multiplier test)

in the context of NK-DSGE models to test determinacy/indeterminacy.
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shot’ version of Johansen’s LR Trace test, see Johansen (1996).

This paper has several connections with the existing literature. The work closer to ours in

spirit is Canova et al. (1994), who propose a method to evaluate real business cycle models by

eliciting the (highly) restricted VAR representation underlying them and comparing it with an

unrestricted VAR for the data. Canova et al. (1994) recognize that the driving forces in these

models may be integrated and hence account for the implied set of cointegration restrictions

and also consider what they call ‘non-cointegrating restrictions’. Our approach is different

from Canova et al. (1994) not only because we focus on a class of monetary policy business

cycle models, but mainly because our ‘LR1→LR2 →LR3’ procedure accounts for long-run and

short-run restrictions jointly in a comprehensive framework, allowing us to keep the overall

size or the procedure under control. Similarly, Fukač and Pagan (2010) propose an evaluation

approach to NK-DSGE models in which both the long and short-run behavior of the data are

taken into account by modelling the common stochastic trends in an equilibrium-correction

framework. However, while Fukač and Pagan (2010) put forth a ‘limited information’ approach,

our analysis is developed in a ‘full information’ framework. Juselius (2011) also applies a ‘full

information’ maximum likelihood (ML) approach but he limits attention to the steady-state

implications of the NK-DSGE model, leaving the CER untested. Compared to Del Negro et al.

(2007), who use a (cointegrated) VAR in error correction form as an approximating model

for the DSGE model in their Bayesian evaluation method, we test, other than impose, the

cointegration restrictions because testing these restriction is one of the crucial steps of the

proposed model evaluation approach. Moreover, Del Negro et al. (2007) consider a model which

is a combination of an unrestricted VAR for the data and the VAR subject to the CER implied

by the DSGE model: the combination is indexed by a scalar parameter whose level, determined

by the data, indicates whether the empirical evidence favours the unrestricted or constrained

VAR representation. Instead, the third step of our procedure is explicitly designed to test the

CER in the spirit of Hansen and Sargent (1980) and Hansen and Sargent (1981). Compared to

Gorodnichenko and Ng (2010), who apply robust filters to both the model and the data, our

approach is explicitly designed to testing both the long-run and short-run restrictions and, if the

NK-DSGE model is not rejected by the data, delivers ML estimates of the structural parameters.

Compared to the likelihood-based estimation and testing approach proposed by Johansen and

Swensen (1999) for ‘exact’ linear rational expectation models (Hansen and Sargent, 1991), the

‘LR1→LR2 →LR3’ procedure is explicitly focused on the class of monetary policy NK-DSGE

models which are prominent examples of ‘inexact’ linear rational expectations models. ‘Inexact’

models involve a tighter set of non-linear restrictions compared to their ‘exact’ counterparts,

and this fact complicates the issue of maximizing the constrained likelihood function in just
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one step. Moreover, in our set-up the knowledge of the ‘right’ number of common stochastic

trends and the cointegration rank is not taken for granted, but is tested explicitly and is part

of the overall testing strategy. In this respect, our approach can also be related to the method

put forward by Campbell and Shiller (1987) for estimating and testing present value models

through VAR systems. As in Campbell and Shiller (1987), we find the overall set of restrictions

that small NK-DSGE models impose on the VAR solution, but differently from Campbell and

Shiller (1987) we test all restrictions jointly. Finally, our procedure is very much in the spirit of

Hendry and Mizon (1993) who also consider testing of rank, cointegration and overidentifying

restrictions in a VAR mapped from non-stationary to stationary representations.

Under the conditions discussed in the paper, the tests LR1, LR2 and LR3, individually

considered, are correctly sized in the sense that their asymptotic size is equal to the pre-fixed

nominal type I error. Accordingly, using simple Bonferroni arguments, we can easily prove that

the overall asymptotic size of the testing strategy does not exceed the sum of the type I errors

pre-fixed for each test. Thus, if a practitioner wishes to test the NK-DSGE model at, say, the

5% nominal level of significance, the critical values of the tests LR1, LR2 and LR3 can be chosen

such that the sum of the individual type I errors is 5%. The ‘LR1→LR2→LR3’ test is consistent

against all main hypotheses with respect to which its three individual tests are consistent, i.e. (i)

DGPs in which the number of common stochastic trends is not consistent with what is implied

by the NK-DSGE model; (ii) DGPs in which the number of common stochastic trends is the one

predicted by the NK-DSGE model, but the identification structure of the cointegration matrix

is at odds with the requirements of the theoretical model; (iii) DGPs in which the CER do not

hold, respectively. Undoubtedly, one advantage of the ‘LR1→LR2 →LR3’ testing strategy is

that one can monitor the data adequacy of the NK-DSGE model at the low and high frequency

and control at which stage the model is rejected when rejection occurs. The ‘LR1→LR2→LR3’

procedure can therefore be regarded as a diagnostic test for the NK-DSGE model by which the

researcher can control at which stage the model is rejected and the cause of rejection. Notably,

the procedure also delivers, if the NK-DSGE model is not rejected, the ML estimates of the

structural parameters.

We discuss the empirical performance of the ‘LR1→LR2→LR3’ testing strategy by a small

Monte Carlo experiment in which the data generating process is assumed to belong to a de-

terminate solution of the structural model of Benati and Surico (2009), which represents the

benchmark NK-DSGE specification of our paper. A remarkable by-product of this experiment

is the possibility to investigate the identifiability of some of the structural parameters of the

NK-DSGE model, in particular those associated with the policy rule, for which an important

recent contribution by Cochrane (2011) suggests the impossibility of making reliable inference.
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We further show the empirical usefulness of our approach by evaluating the data adequacy

of Benati and Surico’s (2009) model using U.S. quarterly data. Finally, we report some consid-

erations which might be useful for practitioners.

The paper is organized as follows. We introduce the baseline NK-DSGE model and its

assumptions in Section 2 and discuss a set of testable restrictions which are usually ignored in

the literature on DSGE models in Section 3. We presents our testing strategy in Section 4 and

investigate its empirical size performance by a simulation experiment in Section 5. We present

an empirical illustration in which our reference NK-DSGE model is taken to U.S. quarterly data

and evaluated empirically in Section 6. A few of suggestions for practitioners are noted in Section

7 that concludes the paper. Two technical appendices summarize some aspects related to the

asymptotic properties of the proposed test and the time series representation of the reference

NK-DSGE model.

2 Model and assumptions

Our starting point is the structural representation of a typical NK-DSGE model, i.e. the system

of equations resulting from the log-linearization around steady-state values of the equations that

describe the behavior of economic agents.

Let Wt be the p-dimensional vector collecting all the variables of the model of interest. A

typical structural NK-DSGE model which aims at capturing the stylized features of the business

cycle takes the form of a linearized rational expectations model:

B0Wt = BfEtWt+1 +BbWt−1 + ηWt , (1)

where B0, Bf and Bb are p × p matrices whose elements depend on the structural parameters

collected in the vector θ, and ηWt is a mean zero vector of disturbances. The term EtWt+1 =

E(Wt | Ft) denotes conditional expectations, where Ft is the available stochastic information

set at time t and is such that σ(Wt,Wt−1,...,W1) ⊆ Ft, and σ(Wt,Wt−1,...,W1) is the sigma field

generated by the variables.

As is standard in the literature, we posit that ηWt obeys a vector autoregressive processes of

order one, i.e.

ηWt = RW ηWt−1 + uWt , uWt ∼WN(0p×1,ΣW,u) (2)

where RW is a stable matrix (i.e. with eigenvalues lying inside the unit disk) and uWt is a

White Noise disturbance with covariance matrix ΣW,u. Hereafter uWt will be the vector of

structural or ‘fundamental’ disturbances and it will be assumed that dim(uWt )=dim(Wt) =
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p, preventing the occurrence of the ‘stochastic singularity’ issue.2 Theory does not generally

provide indications about the correlation of the structural disturbances across equations; if

cross-equation correlations are assumed for the structural disturbances, these can be captured

either by specifying a non-diagonal RW matrix or a non-diagonal ΣW,u covariance matrix, or

both non-diagonal. We follow the convention of taking RW to be diagonal, while we allow

the possibility of non-diagonal ΣW,u. The non-zero elements of RW and of vech(ΣW,u) enter

the vector of structural parameters θ. All meaningful values of θ belong to the ‘theoretically

admissible’ (compact) parameter space, denoted P.
A solution of the model (1)-(2) is any stochastic process {W ∗t }

∞
t=0 , W ∗t = W ∗t (θ), such that

for θ ∈ P, EtW
∗
t+1 = E(W ∗t+1 | Ft) exists, and for fixed initial conditions, if W ∗t is substituted

for Wt into the structural equations, the model is verified for each t. A reduced form solution is

a member of the solution set whose time series representation is such that Wt depends on uWt ,

lags of Wt and uWt (and, possibly, other arbitrary martingale difference sequences (MDS) with

respect to Ft independent of uWt , called ‘sunspot shocks’).

We confine the class of reduced-form solutions associated with the NK-DSGE model to a

known family of linear models by the assumption that follows.

Assumption 1 [Determinacy] The ‘true’ value θ0 of θ is an interior point of P∗, where P∗ ⊂
P is such that for each θ ∈ P∗, the NK-DSGE model (1)-(2) has a determinate reduced-

form solution, i.e. unique and asymptotically stationary (stable).

Assumption 1 is crucial to rule out the occurrence of arbitrary parameters unrelated to θ

and sunspot shocks unrelated to uWt from the time series representation of the system (other

than non-stationary explosive processes), see Fanelli (2012). This assumption is standard in the

literature on NK-DSGE models and hinges on the idea that the time series upon which model

(1) is built and estimated are typically constructed as (or are thought of as being) stationary

deviations from steady-state values. In the case of variables such as output, these are mostly log

deviations from a steady-state path while, for variables such as interest rates and inflation, they

are level deviations from a constant steady-state rate. However, it is well known that removing

constants does not ensure stationarity if the persistence of the time series is governed by unit root

processes, see Cogley (2001), Juselius and Franchi (2007), Dees et al. (2009), Gorodnichenko and

Ng (2010) and Fukač and Pagan (2010). Moreover, treating non-stationary processes mistakenly

as stationary may flaw standard inferential procedures, see Johansen (2006), Li (2007) and

Fanelli (2008). Thus, for the purpose of testing the model, we will take the implications of

2One feature of the class of NK-DSGE models considered in this paper is that the number of fundamental

shocks is not lower than the number of endogenous variables. In other words, in this setup we do not consider

the ‘stochastic singularity’ issue, see e.g. Ireland (2004) and Dave and DeJong (2007).
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Assumption 1 seriously, in the sense that, given the gap between the time series properties

observed in the data and Assumption 1, we pursue routes similar to the strategies A and B

in Fukač and Pagan (2010), looking for explicit mappings to stationary variables which do not

imply loss of information on the low and high frequency behavior of the variables.

We consider a ‘fully hybrid’ specification of the NK-DSGE system (1)-(2), meaning that in

our set-up all diagonal elements of Bb are different from zero. This assumption implies that each

Euler equation of the system features at least one lag of the dependent variable.3

Under Assumption 1, the unique stable solution of the model (1)-(2) can be represented as

the asymptotically stationary VAR system

Wt = F̃1Wt−1 + F̃2Wt−2 + εWt , εWt =Q̃uWt (3)

where F̃1 = F1(θ), F̃2 = F2(θ) and Q̃ = Q(θ) are p× p matrices that depend non-linearly on θ.

The dependence is through the implicit set of non-linear CER:

(BR
0 −Bf F̃1)F̃1 −Bf (F̃2) +Bb,1 = 0p×p (4)

(BR
0 −Bf F̃1)F̃2 −Bb,2 = 0p×p (5)

Σ̃W,ε = Q̃ ΣW,u Q̃
′ (6)

where BR
0 = (B0 +RWBf ), Bb,1 = (Bb+RWB0), Bb,2 = −RWBb, Q̃ = Q(θ) =

(
B0 −Bf F̃1

)−1
,

and Σ̃W,ε is the constrained covariance matrix of εWt , see Binder and Pesaran (1995), Uhlig (1999)

and Fanelli (2012). We discuss in Appendix B the so-called ‘A, B, C’s (and D’s)’ representation

associated with determinate reduced form solution in Eq. (3), see e.g. Fernandez-Villaverde

et al. (2007) and Ravenna (2007).

The identifiability of the NK-DSGE system depends on whether θ can be uniquely recovered

from the mapping in Eq.s (4)-(6), that we compact for ease of exposition in the expression

φ = g(θ), where φ = (vec(F1)′, vec(F2)′, vech(ΣW,ε)
′)′ is the vector of VAR coefficients and

g(·) is a non-linear differentiable function, see Iskrev (2008), Iskrev (2010), and Fanelli (2011).

Albeit the function g(·) is not generally available analytically, the Jacobian matrix ∂g(θ)
∂θ′ can be

evaluated analytically by exploiting the implicit mapping in (4)-(6) and the implicit function

theorem, see Iskrev (2008) and Fanelli (2011). If the system information matrix evaluated

at θ0 is non-singular, the ML estimation of θ can be obtained by maximizing the (assumed

Gaussian) likelihood of the VAR system (3) subject to numerical approximations of the non-

linear constraints in (4)-(6), see among many others, Ruge-Murcia (2007), Dave and DeJong

(2007).

3When Bb:=0p×p and RW :=0p×p, system (1)-(2) collapses to a ‘purely forward-looking’ model. ‘Purely

forward-looking’ models are highly discussed in the monetary policy literature but exhibit problems in the iden-

tifiability of some components of θ, see e.g. Lubik and Schorfheide (2003) and Lubik and Schorfheide (2004).
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There are cases in which all components in Wt are observed or can be approximated, so

the system can be taken directly to the data, see Section 6. In general, however, although

the NK-DSGE model in Eq.s (1)-(2) is ‘incomplete’ as it does not specify how any unobservable

components of Wt, denoted W̆t, are generated. Let W o
t be the sub-vector of Wt that contains the

observable variables. Given the n-dimensional ‘complete’ vector Zt = (W o′
t , W̆

′
t)
′ that collects

the observable (first) and unobservable variables (last), n ≥ p , one can interpret the vector Wt

in systems (1) and (3) as obtained from the linear combination

Wt=ζ
′Zt (7)

where ζ is a known n× p matrix of full row-rank p that combines the observed and unobserved

variables and/or selects the stationary elements of Zt that enter the structural model. We thus

complete the NK-DSGE model by Assumption 2.

Assumption 2 [Unobserved processes are integrated of order one] The vector W̆t is such

that ∆W̆t is covariance stationary.

Assumption 2 states that W̆t is integrated of order one (W̆t ∼ I(1)) and can be further

specialized as shown in the next sub-section. Given the scope of the present paper, the idea

of approximating the unobservable components with I(1) processes meets two requirements.

First, in the class of small-scale NK-DSGE models used in monetary policy and business cycle

analysis, typical unobservable components are potential output and/or the inflation target (or

trend inflation), for which the I(1) hypothesis may represent a reasonable and interpretable

choice, as suggested by Bekaert et al. (2010), Fukač and Pagan (2010) and Section 2.1 below.

Second, Assumption 2 captures the idea that the persistence observed in many observed time

series can be approximated by unit roots processes.

Under Assumptions 1-2, the ‘complete’ NK-DSGE model is given by

A0Zt = AfEtZt+1 +AbZt−1 + ηZt (8)

ηZt = RZη
Z
t−1 + uZt , uZt ∼WN(0n×1,Σu,Z), (9)

where the matrices A0, Af , Ab and Σu,Z now depend on θ and on diag(ΣW̆ ). The ‘extended’

vector of structural parameters is θe = (θ′, θa′)′, where θa =diag(ΣW̆ )′ is the ‘additional’ (n−p)-
dimensional vector containing the diagonal elements of ΣW̆ . It is worth emphasizing that the

system (8)-(9) also incorporates the model postulated for the unobservable variables, hence it

embodies the unit root hypothesis implied by Assumption 2.

The next sub-section provides a detailed example about the relationship between the repre-

sentation in Eq.s (1)-(2) and (8)-(9) of the NK-DSGE model.
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2.1 An example

To focus the discussion, we will throughout use an example based on Benati and Surico (2009).

Let Wt = (ỹt, πt, it)
′ be the p-dimensional vector (p = 3), while the vector of structural shocks is

ηWt = (ηỹ,t, ηπ,t, ηi,t)
′ and the vector of fundamental shocks is uWt = (uỹ,t, uπ,t, ui,t)

′. The model

is then made up of the following equations:

ỹt = γEtỹt+1 + (1− γ)ỹt−1 − δ(it − Etπt+1) + ηỹ,t (10)

πt = ωfEtπt+1 + ωbπt−1 + κỹt + ηπ,t (11)

it = ρit−1 + (1− ρ)(ϕππt + ϕyỹt) + ηi,t (12)

ηa,t = ρaηa,t−1 + ua,t , ua,t ∼WN
(
0, σ2

a

)
, a = ỹ, π, i (13)

In this model, ỹt = (yt − ypt ) is the output gap, where yt is the log of output and ypt potential

output; πt is the inflation rate and it is the nominal interest rate; ηỹ,t, ηπ,t and ηi,t are stochastic

disturbances autocorrelated of order one and uỹ,t, uπ,t and ui,t can be interpreted as demand,

supply and monetary shocks, respectively. Benati and Surico (2009) restricts the parameters ωf

and ωb of the New Keynesian Phillips Curve (NKPC) in (11) such that

ωf=%/(1 + %κ) , ωb=κ/(1 + %κ), (14)

where % is the firms’ discount factor and κ captures the extent of firms’ indexation to past

prices. This parameterization implies the restriction ωf +ωb < 1. Under these assumptions, the

vector of structural parameters is given by θ = (γ, δ, %, κ, ρ, ϕπ, ϕy, ρỹ, ρπ, ρi, σ
2
ỹ
, σ2

π, σ
2
i )
′.

The model (1)-(2) is ‘incomplete’ as it does not specify how the unobservable component

W̆t = ypt is generated. We complete the model by specializing our Assumption 2 as follows.

Assumption 2’ [Potential output is a Random Walk]

ypt = ypt−1 + ηyp,t (15)

where ηyp,t is a white noise term with variance σ2
yp .

In addition to the I(1) hypothesis, Assumption 2’ captures the need of modelling the un-

observable components by simple models whose estimation does not involve many ‘extra’ pa-

rameters to those in θ; in this case, only the variance of potential output σ2
yp is added. The

usual interpretation of Assumption 2’ is that the flexible price level of output ypt is driven by a

combination of a stationary demand shock and a non-stationary technology shock, as in Ireland

(2004). Moreover, θa =diag(ΣW̆ )= σ2
yp .
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Under Assumption 2’, the vector Wt = (ỹt, πt, it)
′ featured by the model (10)-(12) can be

thought of as being obtained through the linear combination in Eq. (7) which we report here

for convenience

Wt=


1 0 0 −1

0 1 0 0

0 0 1 0


ζ′


yt

πt

it

ypt


Zt

, (16)

where yt is output and Zt = (W o′
t , W̆

′
t)
′ accommodates both the observable W o

t = (yt, πt, it)
′ =

Zot and unobserved W̆t = ypt variables. Given the specification of Zt in Eq. (16), the three

equations (10)-(12) jointly with (15) imply the following configuration of the matrices A0, Af

and Ab of the general model (8)-(9) for the example model

A0 =


1 0 δ −1

−κ 1 0 κ

− (1− ρ)ϕy − (1− ρ)ϕπ 1 (1− ρ)ϕy

0 0 0 1



Af =


γ δ 0 −γ
0 ωf 0 0

0 0 0 0

0 0 0 0

 Ab =


(1− γ) 0 0 − (1− γ)

0 ωb 0 0

0 0 ρ 0

0 0 0 1

 .

The ‘extended’ vector of parameters is defined as θe = (θ′, θa)′, where θa = σ2
yp .

3 Testable restrictions

Consider the representation in Eq.s (8)-(9) of the NK-DSGE model. Under Assumptions 1 and

2, Zt ∼ I(1). Because of the non-stationarity of Zt, we need to transform this system such

that only stationary variables are involved before its unique stable (determinate) solution can

be derived and tested.

To achieve this aim, one possibility is to consider the n-dimensional vector of transformed

variables

Yt=

(
β′0

τ ′(1− L)

)
Zt = G(β0, τ, 1− L)Zt, det(τ ′β0⊥) 6= 0, (17)

where β0 is the n×r identified cointegration matrix, and τ is a (n− r)×r selection matrix which

is restricted to be not orthogonal to β0⊥. The role of τ is to pick out a proper set of variables in
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first differences from the vector (1− L)Zt = ∆Zt, where L is the lag operator (LjZt = Zt−j).

The choice of τ in Eq. (17) is not necessarily unique, however. The case discussed below show

that despite there are many possible choices of τ , one is consistent with the theoretical features of

the NK-DSGE model. In principle, β0 may temporarily depend on some ‘additional’ parameters

that we collect in the vector ν, and which are not necessarily related to θ. We write β0 = β0(ν)

to make clear such a dependence. Under the null hypothesis that the NK-DSGE model is valid,

and with all constraints implied by the NK-DSGE model imposed on the system for Zt, the

joint restriction

r = p , β0 = βb0 = ζ (18)

must hold, where the symbol βb0 denotes the counterpart of the identified cointegration matrix

β0 that leads to what we call a ‘balanced’ representation of the NK-DSGE model. The condition

(18) maintains that under the null hypothesis that the NK-DSGE model is ‘true’, the identified

cointegration matrix β0 must be equal to the selection matrix ζ introduced in Section 2 and,

accordingly, must not depend on any parameter. Hence, the dependence of β0 on ν is suppressed

in Eq.(18). We observe that under the restrictions in Eq. (18) and for a proper choice of the

selections matrix τ , the vector Yt defined in Eq. (17) represents a transformation of the original

variables in Zt which mimics the transformations used by Campbell and Shiller (1987) to address

the analysis for present value models.

Under the restriction (18), we can recover Wt from Yt as follows:

Yt=

(
β′0

τ ′(1− L)

)
Zt = G(βb0, τ, 1− L)Zt

=

(
ζ

τ ′(1− L)

)
Zt =

(
ζZt

τ ′∆Zt

)
=

(
Wt

τ ′∆Zt

)
.

Hence the vector Wt becomes part of the transformed system for Yt. Since the G(β0, τ, 1 − L)

(or G(βb0, τ, 1 − L)) matrix in (17) is non-singular by construction, the representation (17) can

be used in the model (8) to obtain

A0G(β0, τ, 1− L)−1Yt = AfG(β0, τ, 1− L)−1EtYt+1 +AbG(β0, τ, 1− L)−1Yt−1 + ηZt . (19)

The appealing feature of the representation in Eq. (19) is that, other than involving stationary

variables (i.e. those in Yt), the (inverse of the) difference operator (1− L) cancels out from the

equations if one restricts β0 as in Eq. (18) and imposes a proper set of restrictions on θ such that

the transformed model is ‘balanced’. With the term ‘balanced’ we mean that all left-hand and

right-hand side variables appearing in system (18) variables are stationary once G(β0, τ, 1−L)−1

is replaced with G(βb0, τ, 1 − L)−1 and some restrictions are placed on the elements of θ. The

nature of these restrictions will be demonstrated in the two example cases that follow.

12



Hereafter we use the representation

AY0 Yt = AYf EtYt+1 +AYb Yt−1 + ηYt (20)

ηYt = RY η
Y
t−1 + uYt (21)

to denote the ‘balanced’ counterpart of system (19). The system (20)-(21) can be regarded

as an equilibrium-correction representation of the NK-DSGE model and is consistent with the

specification strategies A and B in Fukač and Pagan (2010, section 4).

The structural parameters in the matrices AY0 , AYf , AYb , RY and ΣY,u = E
(
uYt u

Y ′
t

)
are

collected in the vector θY , where θY is obtained from θe by imposing the restrictions that map

system (19) into the transformed representation in (20)-(21). In general, dim(θY ) = dim(θe)−c,
where c is the total number of restrictions on θe necessary for balancing.

We now discuss a specific example which helps to clarify the essence of the transformations

in Eqs. (17)-(20) and the resulting set of testable restrictions.

Suppose that r = p = 3 and that β0 = βb0 = ζ is specified such that

βb′0 Zt =


1 0 0 −1

0 1 0 0

0 0 1 0



yt

πt

it

ypt

 = Wt. (22)

In this case, the output gap, inflation and the short term interest rate are jointly stationary, as

typically assumed in small NK-DSGE models. The vector Yt in Eq. (17) is given by

Yt = G(βb0, τ, 1− L)Zt =

(
βb′0

(1− L) 0 0 0

)
yt

πt

it

ypt

 = (W ′t ,∆yt)
′, (23)

where it can be noticed that τ = (1, 0, 0, 0)′, β0⊥ = (1, 0, 0, 1)′, and hence det(τ ′β0⊥) = det(1) 6=
0. Correspondingly, the inverse of the transformation matrix G(βb0, τ, 1− L) in Eq. (19) is

G(βb′0 , τ, 1− L)−1 =


0 0 0 1

1−L

0 1 0 0

0 0 1 0

−1 0 0 1
1−L

 .
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In particular, the four equations of system (19) are given as

ỹt = γEtỹt+1 − δ(it − Etπt+1) + (1− γ)ỹt−1 + ηỹ,t

πt = ωfEtπt+1 + ωbπt−1 + κỹt + ηπ,t

it = ρit−1 + (1− ρ)(ϕππt + ϕyỹt) + ηi,t

−ỹt + (1− L)−1(1− L)yt = −ỹt−1 + (1− L)−1(1− L)yt−1 + ηy
p

t ,

where we have left the operator (1 − L)−1 in the final equation to highlight the point about

balancing. To see that (1 − L)−1 cancels out from this equation, it is sufficient to rewrite it in

the form (using Assumption 2)

ỹt = ỹt−1 + ∆yt + ηy
p∗
t

where ηy
p∗
t = −ηy

p

t . In this case, θY = θe and the matrices AY0 , AYf and AYb , as well as the

vector ηYt in the representation in Eq. (20) can easily be derived and are equal to

AY0 =


1 0 δ 0

−κ 1 0 0

−(1− ρ)ϕy −(1− ρ)ϕπ 1 0

1 0 0 −1

 , (24)

AYf =


γ −δ 0 0

0 ωf 0 0

0 0 0 0

0 0 0 0

 , AYb =


1− γ 0 0 0

0 ωb 0 0

0 0 ρ 0

1 0 0 0

 , (25)

and ηYt = (ηỹ,t, ηπ,t, ηi,t, η
yp∗
t )′. The testable cointegration restrictions relative to the strictly

observable time series in Zt, Z
o
t = (yt, πt, it)

′ = W o
t , are

Zot =(yt, πt, it)
′ ∼ I(1) and

(
0 1 0

0 0 1

)
Zot ∼ I(0) (26)

or, equivalently, (∆yt, πt, it)
′ ∼ I(0).

4 The test sequence

The example discussed in the previous section show one way to obtain the mapping from the

complete non-stationary state vector Zt and the stationary system for Yt, given the NK-DSGE

model and different assumptions about the common stochastic trends driving the variables. It

demonstrates that despite the presence of unobservable components, some of the restrictions
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underlying the mapping from I(1) to I (0) are testable by cointegration analysis, see also Fanelli

(2008) and Juselius (2011).

We now turn to our procedure to show how to evaluate the cointegration implications of the

NK-DSGE along with other testable implications .Under Assumptions 1-2 (and the other minor

assumptions in Section 2), the unique stable solution of the NK-DSGE model (20)-(21) can be

represented in the form

Yt = P̃1Yt−1 + P̃2Yt−2 + εYt , εYt = S̃uYt (27)

where P̃1 = P1(θY ), P̃2 = P2(θY ) and S̃ = S(θY ) = (AY,R0 − AYf P̃1)−1 are n × n matrices that

depend non-linearly on θY through the set of non-linear CER:

(AY,R0 −AYf P̃1)P̃1 −AYf (P̃2) +AY,Rb,1 = 0n×n (28)

(AY,R0 −AYf P̃1)P̃2 −AY,Rb,2 = 0n×n (29)

Σ̃Y,ε = S̃ ΣY,uS̃
′ (30)

where AY,R0 = (AY0 +RYA
Y
f ), AY,Rb,1 = (AYb +RYA

Y
0 ), AY,Rb,2 = −RYAYb , and Σ̃Y,ε is the covariance

matrix of the reduced form disturbances εYt subject to the constraints, see Section 2. The

constraints in (28)-(30) mimic those derived in Eq.s (4)-(6) for the ‘original’ specification of the

NK-DSGE model, but refer here to a more general specification in which the role of unobservable

components is accounted for by Assumption 2.

Our approach is based on the idea of testing the CER in Eq.s (28)-(30) without disregarding

the mapping which transforms Zt into Yt. As argued in Section 3, the restrictions that lead

from Zt to Yt are testable by cointegration techniques. This consideration motivates our overall

testing strategy.

The null hypothesis is

H0: the DGP belongs to the VAR solution (27)-(30) of the NK-DSGE model (31)

while the alternative hypothesis is

H1: the DGP is not consistent with the VAR solution (27)-(30). (32)

To simplify our exposition without altering the logic of our method, we assume temporarily

that all variables in Zt and Yt are observable. We turn to the role of unobservables later. Our

procedure is based on the following testing steps:

LR1 [Cointegration rank test] We specify a VAR model for Zt and test for the cointegration

rank r = p (corresponding to n− r common stochastic trends driving the system) against
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r = n (corresponding to a stationary system), using the ‘one shot’ version of the LR

Trace test (Johansen (1996)). This requires selecting the VAR deterministic components

in accordance with the time series features observed in the variables in Zt. If r = p is

rejected, we reject H0 in Eq. (31) in favour of H1 in Eq. (32). If instead the selected

cointegration rank is found to be equal to the hypothesized rank r = p, we consider the

next step.

LR2 [Overidentification cointegration restrictions test] Given r = p, we fix the (iden-

tified) cointegration matrix β0 at the structure implied by the theoretical model, i.e.

β0 = βb0 = ζ, see Eq. (18). Then we compute a LR test for the implied set of over-

identifying restrictions, see Johansen (1996). If the LR test rejects the over-identifying

restrictions, we reject H0 in Eq. (31) in favour of H1 in Eq. (32), otherwise we build

the transformed Yt vector in Eq. (17) by keeping β0 = βb0 = ζ fixed at the non-rejected

structure and consider the next step.

LR3 [Test for CER] We estimate the VAR representation associated with the NK-DSGE

model in Eq. (27) by ML both unrestricted (i.e. by leaving P1, P2, and ΣY,ε unrestricted)

and subject to the CER in Eq.s (28)-(30). Then we compute a LR test for the CER. If the

CER are rejected, we reject H0 in Eq. (31). If the CER are not rejected, H0 is accepted

and θ̂Y is the ML estimator of the structural parameters of the NK-DSGE model.

Albeit to some extent cointegrated VAR models have been already used to evaluate DSGE

models through ‘frequentist’ approaches, see e.g. Canova et al. (1994), the ‘LR1→LR2 →LR3’

sequence is a novel approach in the literature.4 The null H0 in Eq. (31) can be rejected either

because the model predicted cointegration rank is rejected (LR1), or because the predicted

model structure of cointegration relationships is rejected (LR2) given that the cointegration

rank implied by the model is accepted, or because the CER are rejected (LR3) given that the

predicted model structure of cointegration relationships is not rejected. The null hypothesis is

not rejected if all three tests pass.

4Rational expectation models are often given an ‘exact’ representation, i.e. such that the structural distur-

bances ηWt in (1) are absent, see Hansen and Sargent (1991). Johansen and Swensen (1999) have shown how ‘exact’

linear rational expectations models, which feature non-stationary observable variables, can be nested within the

cointegrated VAR model and tested by likelihood-based methods in just one solution. Given the ‘exact’ nature

of the model they consider, in their approach the CER on the short run dynamics of the system do not have

the highly non-linear nature featured by NK-DSGE models which are prominent examples of ‘inexact’ rational

expectation systems. Our approach extends the original idea of Johansen and Swensen (1999) to ‘inexact’ models

and, as we show at the end of this section, to the case in which the linear rational expectations model features

unobserved (latent) components.
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The method discussed so far is based on the maintained assumption that the econometrician

observes all components of Zt and Yt. We now turn to the role of unobservable components. An

obvious way to face this issue and apply the ‘LR1→LR2 →LR3’ testing strategy is to appeal to

‘additional’ structural information related to the unobserved components in Yt.
5 For instance,

Bekaert et al. (2010) show how the information provided by the term structure of interest rates

can be constructively incorporated and used to transform a standard NK-DSGE model featuring

unobservable potential output and inflation target into a tractable linear system that can be

estimated by ‘standard’ methods. Gaĺı et al. (2001) follow a similar approach by assuming that

under certain restrictions on technology and labour market structure, real marginal costs are

proportionately related to the output gap within a local neighborhood of the steady state. We

use a similar route in the empirical illustration of Section 6, where we approximate the output

gap with the official measure provided by the Congressional Budget Office (CBO).

When proxies for the unobservables are not directly available and Assumption 2 is taken into

explicit account, the ‘LR1→LR2 →LR3’ testing strategy can be adapted. As is known, and as

the previous example show, while cointegration is invariant to extensions of the information set,

it is not invariant to its reductions. This means that one can recover part of the cointegration

implications of the model from observing Zot (Y o
t ), as shown in the previous sub-sections. Yet,

some of the long-run implications of the NK-DSGE model are still testable (see also Juselius,

2011).

In this case, the procedure is based on the following testing steps:

LR1 [Cointegration rank test: the case of unobservables] We specify a VAR model (with

possibly with many lags) for the vector Zot = W o
t (see Section 3) and test for the cointe-

gration rank using the ‘one shot’ version of the LR Trace test.6 If the cointegration rank

implied by the NK-DSGE model—see Eq. (26) for the example—is rejected, we reject H0

in Eq. (31) in favour of H1 in Eq. (32). If instead the selected cointegration rank is model

consistent we consider the next step.

LR2 [Overidentification cointegration restrictions test: the case of unobservables] We

5We refer to Fukač and Pagan (2010) for a discussion of the impact of off-model filtering upon the estimation

of DSGE models.
6Our point is that the finite order VAR for Zot with many lags should provide a reasonable approximation of

the actual time series representation of Zot , which is of VARMA-type under the null of valid NK-DSGE model, see

Appendix B. Admittedly, a reasonable concern here is whether the cointegration rank test performed on the finte

order VAR for of Zot retains its usual properties. In principle, under certain conditions and with qualifications, the

cointegration properties of the data should be invariant to the specification of the transient dynamics. Moreover,

it is possible to apply a number of alternative cointegration rank tests, reviewed in e.g. Lütkepohl and Claessen

(1997), which do not require estimating a fully identified VARMA-type model, see also Stock and Watson (1988).
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compute the LR2 test by considering the cointegration implications of the NK-DSGE model

subsumed in the vector Zot = W o
t . If the LR test rejects the over-identifying restrictions,

we reject H0 in Eq. (31) in favour of H1 in Eq. (32), otherwise we consider the next step.

LR3 [Test for CER: the case of unobservables] We compute the LR3 test by evaluating

the constrained likelihood of the transformed VAR model for Yt by using a Kalman filter

approach, see e.g. Ruge-Murcia (2007), Dave and DeJong (2007) and Fukač and Pagan

(2010). If the CER are not rejected, H0 is accepted and θ̂Y is the ML estimator of the

structural parameters of the NK-DSGE model. In alternative to the LR3 test one can use,

borrowing from the indirect inference literature, the cointegrated VAR for Zot = W o
t not

rejected in the previous two steps as the auxiliary model associated with the NK-DSGE

system; this amounts to establishing a mapping from the NK-DSGE model parameters to

the VAR parameters and then testing the data adequacy of the implied ‘binding function’

using the methods discussed in e.g. Smith (1993), Gourieroux et al. (1993) and Ruge-

Murcia (2007).

Under Assumptions 1-2 and the null of correct specification H0 in Eq. (31), the asymptotic

properties of each of the three tests comprising the ‘LR1→LR2 →LR3’ testing strategy are

known. The asymptotic properties of LR1 and LR2 may be found in Johansen (1996), while

the asymptotic properties of LR3 are standard. Since under H0 the three tests are correctly

sized (and in particular their asymptotic size is equal to the nominal type-I error pre-fixed by

the researcher), a simple Bonferroni argument suggests that the asymptotic size of the overall

procedure does not exceed the sum of the type I error pre-fixed for the individual tests. This

means that if the test for H0 in Eq. (31) against H1 in Eq. (32) is conducted by fixing the overall

significance level at e.g. the 5% level, the critical values of the tests LR1, LR2 and LR3 must be

chosen accordingly. Thus, if the practitioner wishes to test the null H0 in Eq. (31) against the

alternative H1 in Eq. (32) at the 5% overall nominal level of significance, a reasonable choice is

to fix the nominal significance level of the test LR1 at the 1% level, and the type-I error of the

tests LR2 and LR3 at the 2% level.

We have postponed to Appendix A a more detailed derivation based on a refinement of the

Bonferroni argument of the asymptotic size properties of the ‘LR1→LR2→LR3’ testing strategy.

The procedure will be consistent against all hypotheses with respect to which the individual tests

LR1, LR2 and LR3 are consistent, including (i) DGPs in which the actual number of common

stochastic trends is not the one implied by the NK-DSGE model, (ii) DGPs in which the number

of common stochastic trends is the one predicted by the NK-DSGE model but the identification

structure of the cointegration matrix is at odds with the requirements of the theoretical model,

and (iii) DGPs in which the CER do not hold.
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5 Simulation experiment

To evaluate the finite sample performance of the test sequence ‘LR1→LR2 →LR3’ under the

null H0 in Eq. (31), we conduct a small Monte Carlo experiment.

The set-up of the experiments is as follows. We assume that the DGP belongs to the family

of determinate solutions associated with the NK-DSGE model for Zt = (yt, πt, it, y
p
t ) discussed

in the example of Section 3, reproduced here for completeness:

(yt − ypt ) = γE
(
yt+1 − ypt+1

)
− δ(it − Etπt+1) + (1− γ)

(
yt−1 − ypt−1

)
+ ηỹ,t (33)

πt = ωfEtπt+1 + ωbπt−1 + κ (yt − ypt ) + ηπ,t (34)

it = ρit−1 + (1− ρ) [ϕππt + ϕy (yt − ypt )] + ηi,t (35)

ypt = ypt−1 + ηyp,t (36)
ηỹ,t

ηπ,t

ηi,t

ηyp,t


ηZt

=


ρỹ 0 0 0

0 ρπ 0 0

0 0 ρi 0

0 0 0 0


RZ


ηỹ,t−1

ηπ,t−1

ηi,t−1

ηyp,t−1


ηZt−1

+


uỹ,t−1

uπ,t−1

ui,t−1

uyp,t−1


uZt

(37)

uZt ∼WNN (04×1,ΣZ,u) , ΣZ,u=


σ2
ỹ 0 0 0

0 σ2
π 0 0

0 0 σ2
i 0

0 0 0 σ2
yp

 . (38)

The parameters ωf and ωb in the NKPC in Eq. (34) are restricted such that ωf = %/(1 + %κ),

ωb = κ/(1 + %κ), where % is the firms’ discount factor which is kept fixed at the known value

% = 0.99, and κ captures the extent of firms’ indexation to past prices, see Sub-section 2.1. The

‘free’ structural parameters are θ = (γ, δ, κ, ρ, ϕπ, ϕy, ρỹ, ρπ, ρi, σ
2
ỹ
, σ2

π, σ
2
i )
′ and θe = (θ′,

θa)′, where θa = V ar(uyp,t) = σ2
yp . The vector of fundamental shocks uZt is assumed White

Noise Gaussian with covariance matrix ΣZ,u above. The parameter vector θ is calibrated to the

empirical estimates of Benati and Surico (2009), see in particular the last column of their Table

1 (‘After the Volcker stabilization’), while the variance of potential output σ2
yp is fixed at a value

considered reasonable. The complete vector θe (θY ) chosen for this Monte Carlo experiment is

reported in the left-most column of Panel 2 of our Table 1.

As shown in Section 4, the system (33)-(38) involves I(1) variables and can be mapped into

the representation in Eq.s (20)-(21) which is based on the stationary variables in Yt. Thus,

for a given θe (θY ) i.e. for given AY0 , A
Y
f , A

Y
b and ΣY,u and fixed the initial conditions Y0 and

Y−1, we generate the sequence Y1, ..., YT from the VAR system (27)-(30). We next use the
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restriction β0 = βb0 = ζ ′ from Eq. (18) and the mapping Zt = G
(
βb0, τ, 1− L

)−1
Yt to obtain the

observations Z1, ..., ZT . We then have all the ingredients to replicate M times the ‘LR1→LR2

→LR3’ procedure and evaluate the empirical sizes of the tests LR1, LR2 and LR3 individually

and the overall empirical size, along with and the empirical performance of the ML estimator of

θe.

[Table 1 about here.]

We generate time series of size T = 100, 200 and 500 from the NK-DSGE model M = 10000

times, and then compute the test sequence ‘LR1→LR2 →LR3’.7 For each replication, a sample

of T+200 observations of Yt (and then Zt) is generated, and the first 200 observations are

then discarded. To investigate the performance of our procedure, we use the overall nominal

significance level of 5% (ψ =0.05), and consistent with this choice, we fix the nominal type-I

errors of three tests of the procedure as follows: 1% for the LR1 test (ψ1 = 0.01), 2% for the

test LR2 (ψ2 = 0.02) and 2% for the test LR3 (ψ3 = 0.02). The corresponding critical values

are chosen accordingly. The 1% critical values of the ‘one-shot’ cointegration rank test LR1 are

the asymptotic ones derived by Doornik (1998), see also Juselius (2006, p. 419).

The likelihood maximization of the VAR system (27) under the constraints in Eq.s (28)-(30) is

carried out using a numerical approximation of the non-linear CER. To simplify the computation

burden, the likelihood maximization is carried out by treating ωf as ‘free’ parameter, hence we

replace κ with ωf in the vector θ. Given the ML estimate of ω̂f , we use the relationship

ωf = 0.99/(1 + 0.99κ) to derive the indirect ML estimator of κ, κ̂ = (1/ω̂f − 1/0.99), and the

restriction ωb = (1/0.99)(1− ωf/0.99) to impose the condition ωf + ωb < 1.

The results of this Monte Carlo experiment are summarized in Table 1. The empirical sizes of

the individual tests and of the overall testing procedure are reported in Panel 1, while the Monte

Carlo means and standard errors of the ML estimates of θe are reported in Panel 2. The rejection

frequencies of the test statistics in Panel 1 are computed conditional on the non-rejection of the

NK-DSGE model by the tests which come earlier in the sequence ‘LR1→LR2 →LR3’. These

conditional rejection frequencies sum up to the overall empirical size of the ‘LR1→LR2 →LR3’

procedure.

Before discussing the empirical size of the overall testing strategy, we discuss the empirical

size of its components. The test LR1 is the ‘one-shot’ version of Johansen’s LR trace test

for cointegration rank and is conducted with Hr: r = 3 (one common stochastic trend), as

predicted by the NK-DSGE model, against the alternative HA: r = n = 4 (stationary system),

7All computations in this Monte Carlo experiment and in Section 6 where the NK-DSGE model is estimated

using U.S. data have been computed in Ox.
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using the 1% asymptotic critical value. The empirical size of the test is reported in the row

labeled ‘LR1 (ψ1 = 0.01): test of rank’ in Panel 1. The empirical size of the LR1 test is not

much affected by the number of observations in the sample and is between 0.6% and 1.1% for

all sample sizes. A closer look at Table 1 reveals that LR1 test is under-sized for small samples

with T = 100. This result is unexpected, as one would typically expect a much higher empirical

size in samples of length T = 100 compared to the case T = 500, since many simulation studies

have shown that the asymptotic critical values might be of little use in small samples. However,

it is well known that the finite sample performance of the LR cointegration rank test may well

depend on the structure of the short-run dynamics of the system which, in our set-up, is ‘special’,

in the sense of being highly restricted by the CER.8

As concerns the test LR2, we recall that this is Johansen’s 1991 likelihood ratio test of overi-

dentified cointegrating vectors for a given rank. In our experiment, the identified cointegration

matrix β0 is fixed at the structure of the theoretical model in Eq. (22), β0 = βb0 = ζ. The test

is asymptotically distributed as chi-square with 3 degrees of freedom under the null. If the LR2

test rejects the over-identifying restrictions, the NK-DSGE model is rejected for the realizations

of the DGP in the relevant replication. The empirical size of the LR2 test is reported in the

second row of Panel 1 in Table 1, labeled ‘LR2 (ψ2 = 0.02): test of beta’. As recognized in Jo-

hansen (2000, 2002) the limit distribution of the test is often a poor approximation to the finite

sample distribution, and earlier simulation studies have shown that the empirical sizes tend to

be much higher than nominal sizes, see inter alia Bewley et al. (1994), Fachin (2000), Gonzalo

(1994), Li and Maddala (1997), Omtzigt and Fachin (2006). Our results add to this evidence,

but the size distortions are not as bad as might be expected. For a sample length of T = 100,

the empirical size is 6.7% as opposed to the 2% nominal size. However, the empirical size tends

to be uniformly diminishing towards the nominal size of 2% as the sample size increases. For a

sample size of T = 500, the rejection frequency of the LR2 test is 2.8%.

Finally, the test LR3 for the CER is reported in the third row of Panel 1 in Table 1, labeled

‘LR3 (ψ3 = 0.02): test of CER’. The test is conducted conditional on the non-rejection of the

beta matrix by LR2. The test statistic is compared with the critical value taken from the chi-

square distribution with 28 degrees of freedom, the difference between the number of unrestricted

parameters in the VAR (32+10) and the structural parameters (dim (θe) = 14). The empirical

size is very good for samples of T = 200 and higher.

The empirical rejection frequency associated with the ‘LR1→LR2 →LR3’ testing strategy

8We notice for completeness that if for T = 100 one uses the asymptotic critical values taken from Table 15.1

in Johansen (1996) for the LR1 cointegration rank test in place of the critical values from Doornik (1998), the

empirical size of the LR1 test turns out to be 0.015 (1.5%). We do not find significant differences in the results

in samples of length T = 200 and T = 500.
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is summarized in the seventh row of Panel 1 in Table 1 and can be compared to the overall

empirical rejection frequency of the DSGE model reported in the eighth row. The performance

of the ‘LR1→LR2 →LR3’ testing strategy obviously reflects the empirical size behavior already

discussed of the three tests. It can be noticed that it ranges from 9.8% when T = 100 to

5.7% when T = 500, as opposed to a nominal type-I error of 5%. We deduce, therefore, that

in samples of lengths typically available to practitioners, the use of small sample correction

methods may improve the empirical performance of the testing strategy. For instance, albeit

in this experiment the empirical performance of the cointegration rank test is satisfactory, in

more general contexts it can be refined by using the methods recently proposed by Swensen

(2006) and Cavaliere et al. (2012); similarly, the empirical performance of the LR2 test can

be improved by using standard Bartlett corrections or bootstrap techniques, as advocated by

Johansen (2000, 2002), Fachin (2000), Li and Maddala (1997), Omtzigt and Fachin (2006). As

regards the test LR3, Cho and Moreno (2006) and Fanelli and Palomba (2011) have shown that

bootstrap methods deliver reasonable size coverage in the presence of the highly non-linear CER

implied by the rational expectations hypothesis.9

Panel 2 of Table 1 reports the Monte Carlo means of the structural parameters with the

Monte Carlo standard errors in parentheses, i.e. the average of the i-th component of θe, θei ,

computed as ÊMC

(
θ̂ei

)
= 1

B

∑B
j=1 θ̂

e
ij , where θ̂Yij is ML estimate of θei obtained in the j-th

simulation and B < M is the number of DGPs for which the ‘LR1→LR2 →LR3’ test does

not reject the NK-DSGE model; the associated Monte Carlo standard errors are calculated

accordingly.

The structural parameters are recovered with surprising precision. The only exceptions,

in samples of length T = 100, are the parameters of the policy rule ϕy and ϕπ, although the

estimation precision is increasing with the sample size. This lack of precision is a common finding

and source of misunderstandings in the literature. In a recent influential paper, Cochrane (2011)

has argued that the parameters of Taylor-type rules like that in Eq. (35) are not identifiable.

Cochrane (2011), however, does not consider the ‘hybrid’ specification in Eq.s (33)-(37) but a

less dynamic formulation of the NK-DSGE model. As it is known, identification problems in

a system of variables featuring highly non-linear restrictions may involve the rank condition of

the information matrix, or the relationship between the structural parameters and the sample

objective function (in our case the likelihood function) which may display ‘small’ curvature in

certain regions of the parameter space. The former concept of identification is also referred to

as ‘mathematical identification’ (Johansen, 2010, p. 262) or ‘population identification’ (Canova

9We observe, however, that when the ML estimation is carried out through a grid search on all or part of

the structural parameters (see Section 6), the implied computation burden may discourage the use of bootstrap

techniques for the test LR3.
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and Sala, 2009), as opposed to the latter, often termed ‘sample identification’, because it is

specific to a particular data set and sample size. The results in Table 1 show that the chosen

‘hybrid’ NK-DSGE model is only moderately affected by ‘sample identification’ issues and this

fact is confirmed by the empirical size of the LR3 test which for T = 200 is remarkably close to

the the 2% nominal level.

In our Monte-Carlo experiment, the policy inertia parameter ρ is calibrated in the DGP to a

relatively high value (0.834) and this fact might explain, in line with what argued by Mavroeidis

(2010), why the coefficients ϕỹ and ϕπ of the reaction function are less accurately estimated in

small samples.

[Figure 1 about here.]

[Figure 2 about here.]

That the difficulty of identifying the policy parameters ϕy and ϕπ reflects a small sample

issue rather than a ‘population identification’ issue is further confirmed by the graphs we have

reported in Figures 1 and 2. Here we have plotted the marginal empirical distributions of the ML

estimators of some of the elements in the vector θe obtained from the Monte Carlo experiment,

for the cases T = 100 and T = 500, respectively. We notice that the sample distributions of

ϕ̂y and ϕ̂π tend to be more concentrated around their ‘true’ values as the sample size increases.

Instead, we observe that the marginal sample distributions of the ML estimator of the forward-

looking parameter of the NKPC, ωf , displays a substantial bimodality which does not disappear

in samples of length T = 500 (recall that ωf = 0.99/(1 + 0.99κ) and that in our Monte Carlo

experiment we estimated ωf freely and κ indirectly). The graphs also confirm that difficulties

that characterize the estimation of the slope parameter of the NKPC, κ, must be ascribed to

small sample issues. We leave a detailed investigation of these interesting issues, which perhaps

helps to explain some controversial results about the estimation of the NKPC in the literature,

to future research.

For large samples, the test sequence ‘LR1→LR2 →LR3’ seems to work well. For small

samples, the overall size is somewhat distorted by the well-known small sample problems of the

LR2 test.

Keeping these results in mind, we next turn to an empirical application of our test procedure.

6 An estimated NK-DSGE model of the U.S. economy

When all variables Wt (not to be confounded with the case of Zt) of our reference small NK-

DSGE model are observed, the ‘LR1→LR2→LR3’ testing strategy discussed in this paper can be
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properly adapted as illustrated in this section. We estimate the reference NK-DSGE monetary

model summarized in Eq.s (1)-(2) using U.S. quarterly data, approximating potential output

with the official measure provided by the Congressional Budget Office (CBO) estimation like,

inter alia, Cho and Moreno (2006) and Castelnuovo and Fanelli (2011). This solution allows us

not to consider Assumption 2 because we treat the output gap as an observed variable. Thus,

we take system (1)-(2) directly to the data.

Contrary to what we have done in the Monte Carlo experiment, we treat the indexation

parameter κ of the NKPC as a ‘free’ parameters (for reasons that will be clear below) and

estimate ωf and ωb accordingly. Moreover, differently from Benati and Surico (2009), we do not

force the covariance matrix of structural disturbances, ΣW,u, to be diagonal, see e.g. Dufour

et al. (2009) and Castelnuovo and Fanelli (2011) for similar choices. We split the vector θ as

θ = (θ′s, θ
′
u)′, where θs = (γ, δ, %, κ, ρ, ϕπ, ϕy, ρỹ, ρπ, ρR)′ and θu = vech(ΣW,u).

We employ quarterly data relative to the ‘Great Moderation’ sample 1985q1-2008q3. Four

arguments motivate our choice: (i) the ‘credibility build-up’ undertaken by the Federal Reserve

in the early 1980s, a period during which private agents gradually changed their view on the

Fed’s ability to deliver low inflation (Goodfriend and King, 2005); (ii) the first years of Volcker’s

tenure (until October 1982) were characterized by non-borrowed reserves targeting, hence one

can hardly expect a good fit of conventional policy rules within this period, a fact that would

carry consequences on the estimates of all parameters of the system, see Mavroeidis (2010)

and references therein; (iii) the end of the sample 2008q3 is justified by our intention to avoid

dealing with the ‘zero-lower bound’ phase began in December 2008, which triggered a series of

non-standard policy moves by the Federal Reserve; (iv) formal testing analysis by Castelnuovo

and Fanelli (2011) shows that the reference NK-DSGE model in Eq.s (10)-(13) has a unique

stable solution over the 1985q1-2008q3 period, while the picture is more controversial if other

sample periods are considered, and our approach requires the system to be in a determinate

state.

The variables used in the empirical analysis are real GDP, GDPt; the CBO measure of

potential output, GDP pt ; the inflation rate πt which is the quarterly growth rate of the GDP

deflator; the short-term nominal interest rate, it, given by the effective Federal funds rate ex-

pressed in quarterly terms (averages of monthly values). The output gap ỹt is computed as

percent log-deviation of the real GDP with respect to the CBO potential output: ỹt = yt− ypt =

log(GDPt)− log(GDP pt ) '
(
GDPt
GDP pt

− 1
)
. The source of the data is the Federal Reserve Bank of

St. Louis’ web site.

The assumption that GDP pt is proxied with an observable time series allows us to treat the
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vector Wt = (ỹt, πt, it)
′ = W o

t as observable.10 The unique asymptotically stable solution of

the NK-DSGE model is given by the constrained VAR model in Eq. (3), where the reduced

form coefficients F1 = F1(θ), F2 = F2(θ) and Q = Q(θ) depend non-linearly on the structural

parameters θ through the CER in Eq.s (4)-(6). The ML estimation of θ is obtained by taking

system (3) directly to the data.

In this set-up, the null hypothesis under investigation is

H ′0: the DGP belongs to the VAR solution in Eq.s (3)-(6) of the NK-DSGE model

and the alternative is

H ′1: the DGP is not consistent with the VAR solution in Eq.s (3)-(6).

The ‘LR1→LR2 →LR3’ testing strategy collapses to the ‘LR1&2→LR3’ sequence, whose steps

are described in the following.

LR1&2 [stationary W o
t system] Estimate the unrestricted counterpart of the VAR model

for W o
t = (ỹt, πt, it)

′, see Eq. (3), and test for the stationarity of W o
t . If stationarity is

rejected, H ′0 is rejected, otherwise consider the next test.

LR3 [Test for CER] Estimate θ from the VAR representation in Eq.s (3)-(6) by ML, obtain-

ing θ̂ = (θ̂′s, θ̂
′
u)′. Then compute a LR test for the CER: if the CER are rejected, H ′0 is

rejected, otherwise the NK-DSGE model is supported by the data.

Thus, in this simplified set-up, we have simply ‘merged’ the tests LR1 and LR2 in a single

LR test which assesses the stationarity of the VAR for W o
t .

[Table 2 about here.]

Our empirical analysis starts with the estimation of an unrestricted VAR system for W o
t

= (ỹt, πt, it)
′ with two lags (henceforth VAR(2)) on the 1985q1-2008q3 period. Estimation

is performed by including a constant in the equations because the variables in W o
t were not

demeaned prior to estimation. The upper panel of Table 2 reports the estimated unrestricted

reduced form VAR coefficients, while the lower panel summarizes some diagnostic tests, including

a test for the absence of autocorrelation in the disturbances, a test for the absence of ARCH-type

10Obviously, the econometric analysis could be also based on the system Zt = (yt, πt, it, GDP
p
t )′, but the

information set is less well suited to model potential output. Another alternative would be to treat potential

output as exogenous and use the approach of Harbo et al. (1998). The results of these alternative approaches are

available upon request.
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components in the disturbances and a test for the hypothesis of Gaussian disturbances. Table

3 reports the eigenvalues of the companion matrix of the unrestrictedly estimated VAR(2) and

the LR cointegration rank test for the hypothesis that there are two cointegrating relations in

the system (i.e. one common stochastic trend) against the alternative of a stationary VAR. This

LR test acts as the LR1&2 test described above.

[Table 3 about here.]

Overall, the results in Tables 2-3 suggest that a stationary VAR representation for the

variables in W o
t = (ỹt, πt, it)

′ stands as a reasonably good approximation of U.S. quarterly data

over the period 1985.q1-2008.q3. We will turn on the interpretation of the LR1&2 test reported

in the bottom part of Table 3 at the end of this section.

We then proceed with the estimation of the structural parameters θ = (θ′s, θ
′
u)′ by maximizing

the log-likelihood of the VAR(2) under the CER in Eqs. (4)-(6). We use a grid search for the

parameters δ, %, κ, ϕy and ϕπ, which are notoriously difficult to estimate through non-Bayesian

techniques. Estimation results are summarized in the upper panel of Table 4, while the test

LR3 for the CER is reported in the lower panel.

[Table 4 about here.]

Our point estimates turn out to be quite similar to those in a variety of contributions in

the literature, hence we do not discuss these results in details. Nevertheless, a note of caution

is needed for the policy parameters: as suggested by the Monte Carlo section, with about 100

observations it is extremely difficult to obtain precise estimates of the policy reaction function

ϕỹ and ϕπ; the same is true for the slope of the NKPC κ and the indexation parameter κ. Our

results confirm this evidence and the one recently reported in Mavroeidis (2010).

If the overall type-I error for the null hypothesis that the NK-DSGE model is valid (our

H ′0) is pre-fixed at the 5% level, a reasonable choice for our sequential testing procedure is the

2.5% level for the test LR1&2 and the 2.5% level for the test LR3. The results in Table 4 show

that, quite surprisingly, that LR1&2 accepts the stationarity of the system while LR3 rejects

the CER, albeit only marginally. Unfortunately, we can not easily provide a bootstrap version

of the test LR3 because the grid search procedure used to maximize the likelihood function

is computationally intensive and the computation burden would be relevant. Nonetheless, the

indication emerging from our analysis is that the overall set of restrictions implied by the NK-

DSGE model is rejected only marginally, hence the model is not completely at odds with the

data on the period 1985q1-2008q3.11

11Our testing result has been obtained by specifying the covariance matrix of fundamental disturbances, ΣW,u,
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7 Lessons for practitioners

In this paper we have proposed a new approach to evaluate the empirical reliability of the class

of NK-DSGE models used in monetary policy analysis based on the idea of testing jointly all

restrictions these models places on their unique stable solution under rational expectations. We

adopt a likelihood-based perspective and consider the set of restrictions at low and high fre-

quencies which the NK-DSGE model places on its reduced form VAR solution. The novelty of

our evaluation method is that the empirical assessment of the NK-DSGE model is based on a

conditional sequence of likelihood-ratio tests which assess the long-run and short-run features of

the model jointly and through which we can control at which stage of the process the system is

rejected by the data. Our approach is logically comparable, with many qualifications discusses

throughout the paper, with the methodology originally proposed by Campbell and Shiller (1987)

for estimating and testing present value models through VAR systems. Furthermore, it comple-

ments the evaluation approach suggested by Fukač and Pagan (2010) in a ‘limited-information’

framework and generalizes the seminal method advocated by Canova et al. (1994) to evaluate

real business cycle models to a wider set-up.

Our analysis, based on a simulation experiment and the estimation of a monetary NK-

DSGE model using U.S. data, reveals that some conclusions about the frequentist approach to

the estimation of NK-DSGE models can be reached.

First, the empirical evaluation of a NK-DSGE model should be carried out by considering

all long-run and short-run restrictions, not just a sub-set of them.

Second, even though our procedure consists of several tests, the size of the overall procedure

is under control. The ‘LR1→LR2 →LR3’ testing strategy has been explicitly designed to assess

the empirical validity of the joint set of restrictions implied by the NK-DSGE model at a pre-

fixed significance level. Our simulation experiment shows that despite the highly non-linear

nature of the CER, the overall empirical size can be controlled.

Third, the size control of the proposed testing strategy can be improved by various methods.

In particular, the test for steady-state restrictions, LR2, is probably best performed using a

small sample adjustment, in the form of a Bartlett correction or a bootstrap procedure, see in

particular the evidence presented in Omtzigt and Fachin (2006).

non-diagonal. Indeed, in Table 4 we do find significant off-diagonal terms in the estimated ΣW,u matrix. This

result can be interpreted by observing that from Eq. (2) one can derive the relationship

vec(ΣW,u) = [(Ip ⊗ Ip) − (RW ⊗RW )] vec(ΣW,η)

where ΣW,η is the covariance matrix of the disturbances ηWt of the NK-DSGE model: the significant cross-

correlations found in Σ̂W,u might simply reflect a non-diagonal structure of the RW matrix in the DGP. Interest-

ingly, with both RW and ΣW,u diagonal, we would have rejeced the NK-DSGE model by the test LR3.
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Fourth, ML estimation is involved for two reasons. On the one hand, it requires a numerical

approximation of the non-linear CER; the structural parameters are subject to bound (other

than sign) constraints whose omission gives rise to the so-called ‘absurd values’ phenomenon,

on the other hand. These arguments, however, are not sufficient to discourage the use of ML

estimation. The use of grid search for the parameters which are notoriously difficult to pick

out from the data is a solution which, albeit the computational burden involving, guarantees

that all restrictions are met, and allows one to retain, if certain conditions are met, some of the

desirable properties of ML estimation.

Fifth, the claim that the parameters associated with the policy rule of a NK-DSGE model

are unidentified (in the sense of not being associated with a singular information matrix) is false

for ‘hybrid’ specifications. Obviously, in samples of lengths typically available to practitioners,

weak identification (the difficulty of estimating these parameters precisely also under the null) is

a concern that deserves attention; reliable inference in NK-DSGE models requires identification-

robust methods as suggested by e.g. Guerron-Quintana et al. (2013), among many others.

Finally, our empirical application has shown that, despite the highly constrained nature of the

model, a statistical evaluation of NK-DSGE models that account for the time series properties

of the variables does not necessarily lead to rejection. The estimation conducted using U.S.

quarterly data (and some simplyfying hypotheses) shows that the rejection of the monetary

policy NK-DSGE model used in the recent literature is only marginal. In light of the recent

developments in business cycle dynamics and the conduct of monetary policy, it will be crucial

to re-evaluate the model as soon as enough data become available, especially if a paradigm that

incorporates ‘new’ ingredients within the baseline framework will emerge.
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Appendix A Size properties of the testing strategy

To fully understand the mechanics of testing evaluation procedure of the NK-DSGE model, in

this Appendix we derive the asymptotic size properties of the ‘LR1→LR2 →LR3’ sequence.12

Denote with LRi,T , i = 1, 2, 3, the three LR test statistics and let ψi be the nominal signif-

icance level (type-I error) pre-fixed for the i-th test; moreover, let ψi,T = PH0
i,T (LRi,T ≥ crψii,T )

be the exact size of the i-th test based on a sample of length T , where PH0
i,T (·) is the probability

measure associated with the null distribution of LRi,T and crψii,T is the corresponding critical

value at nominal level ψi. Under H0 the three tests, individually considered, are correctly sized

and in particular such that

ψi,∞=lim sup
T→∞

ψi,T = ψi , i = 1, 2, 3 (A39)

where ψi,∞ is the asymptotic size of the i-th test. Let PH0
1,2,T (· ; ·) and PH0

2,3,T (· ; ·) be the

probability measures associated with the joint null distributions of the test statistics LR1,T

and LR2,T and the test statistics LR2,T and LR3,T , respectively. It turns out that the overall

asymptotic size of the test for H0 in Eq. (31) is given by

ψ∞=lim sup
T→∞

ψT (A40)

where

ψT=PH0
1,T (LR1,T ≥ crψ1

1,T ) + PH0
1,2,T (LR1,T < crψ1

1,T ; LR2,T ≥ crψ2

2,T )

+ PH0
2,3,T (LR2,T < crψ2

2,T ; LR3,T ≥ crψ3

3,T ). (A41)

The first addend of Eq. (A41) captures the probability, on a sample of length T , that the LR1

test incorrectly rejects the cointegration rank; the second addend captures the joint probability

that the LR2 test incorrectly rejects the structure of the cointegration matrix and the LR1 test

correctly selects the cointegration rank and, finally, the last addend captures the joint probability

that the LR3 test incorrectly rejects the CER and the LR2 correctly rejects the structure of the

cointegration matrix.

By using the inequalities

PH0
1,2,T (LR1,T < crψ1

1,T ;LR2,T ≥ crψ2
2,T ) ≤ ψ2,T

PH0
1,2,3,T (LR2,T < crψ2

2,T ; LR3,T ≥ crψ3

3,T ) ≤ ψ3,T ,

12We refer to Spanos (2011) for a comprehensive treatment of size in general-to-specific sequential testing

procedures.
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the limit in Eq.s (A40)-(A41) is such that

ψ∞ ≤ ψ1,∞ + ψ2,∞ + ψ3,∞ = ψ1 + ψ2 + ψ3 (A42)

hence the asymptotic size of the overall test sequence does not exceed the sum of the type I error

pre-fixed for the individual tests. This result suggests that in empirical analyses it is convenient

to fix the overall nominal significance level of the procedure at ψ =(ψ1 + ψ2 + ψ3).
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Appendix B A, B, C (and D’s) representation of the reference

NK-DSGE model

Given the representation in Eq. (3) of our NK-DSGE model, we start from the state-space

(companion) representation(
Wt

Wt−1

)
xt

=

(
F̃1 F̃2

In 0n×n

)
A

(
Wt−1

Wt−2

)
xt−1

+

(
Q̃

0n×n

)
B

uWt (B43)

where the matrices F̃1 = F̃1(θ), F̃2 = F̃2(θ) and Q̃ = Q̃(θ) depend non-linearly on the structural

parameters θ through the CER in Eqs. (4)-(6). A convenient way to summarize system (B43)

is

xt
2p×1

= A
2p×2p

xt−1
2p×1

+ B
2p×p

εt
p×1

(B44)

where the definition of the vectors xt and εt = uWt and of the matrix A = A(θ) is obvious. We

notice that in this case the covariance matrix of the error term vt = Bεt is singular. Let yt be

the m × 1 vector that contains the endogenous observable variables; a natural choice for the

measurement equation is given by

yt
m×1

= H
m×2p

xt (B45)

where H is a (known) m×2p selection matrix that picks out the endogenous observable variables

from xt, see e.g. Dave and DeJong (2007), Iskrev (2008) and Iskrev (2010).

The system given by Eq.s (B44)-(B45) represents a conventional state-space representation

of the NK-DSGE model and under the assumption that εt = uWt is Gaussian, the Kalman filter

can be used to build and evaluate the likelihood function, see, among many others, Ruge-Murcia

(2007) and Dave and DeJong (2007). However, depending on the model at hand, solution method

one uses to arrive from the structural equations to the representation in Eq. (B44), other choices

for xt and yt are equally possible, see e.g. Uhlig (1999).

By using Eq. (B44) in Eq. (B45) yields

yt = HAxt−1 +HBεt

which for C = HA and D = HB reads as

yt = Cxt−1 +Dεt. (B46)

The system obtained by coupling Eq. (B44) and Eq. (B46), reported here for convenience

xt = Axt−1 +Bεt
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yt = Cxt−1 +Dεt

captures the determinate equilibrium of the NK-DSGE model and defines the so-called ‘A, B, C

(and D’s)’ representation, see Fernandez-Villaverde et al. (2007), Ravenna (2007) and Franchi

and Paruolo (2012); see also Hannan and Deistler (1988). For the case m = p (D square) and D

non-singular, Fernandez-Villaverde et al. (2007) and Ravenna (2007) discuss conditions under

which yt has a reduced form VAR (VAR(∞)) representation with εt as input variable; Franchi

and Paruolo (2012) extend the analysis to the case of D non square and possibly singular.

Given our NK-DSGE model and the definition of yt in Eq. (B46), we face the case m < p,

hence the results in Fernandez-Villaverde et al. (2007) and Ravenna (2007) can not be applied.

A reasonable conjecture is that yt has a finite order VARMA-type reduced form representation,

as shown in e.g. Bekaert et al. (2010).
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Figure 1: Empirical marginal distribution of the ML estimators of some parameters of the
NK-DSGE model (solid lines) obtained from the Monte Carlo experiment against the Gaussian
density (dotted lines) in samples of length T = 100.
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t :=(ỹt, πt, it)

′ and LR ”one shot” Trace test for cointegration
rank r := 2 (one unit root) vs r := 3 := p (stationary system); U.S. quarterly
data 1985q1-2008q3, T:=93 (+2 initial lags). . . . . . . . . . . . . . . . . . . . . 45

4 ML estimates of the structural parameters θ of the NK-DSGE system (10)-(13) for for

W 0
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Table 1: Monte Carlo results of M = 10000 replications of the size of tests of rank (LR1), long-run
(LR2), and CER (LR3) of the NK-DSGE-model and averages across Monte Carlo simulations of the ML
estimates of the structural parameters. Two lags are used in the VAR-representation.

Panel 1: Simulated empirical sizes ψ̂i of tests of NK-DSGE model

Empirical size of tests

Tests T = 100 T = 200 T = 500

LR1 (ψ1 = 0.01): test of rank 0.006 0.009 0.011

LR2 (ψ2 = 0.02): test of beta 0.067 0.040 0.028

LR3 (ψ3 = 0.02): test of CER 0.027 0.020 0.018

LR1
(
ψ̂1

)
→ LR2

(
ψ̂2

)
→ LR3

(
ψ̂3

)
: ψ̂ =

∑3
i=1 ψ̂i 0.100 0.069 0.057

Overall rejection frequency of DSGE model 0.098 0.067 0.056

Panel 2: Means and s.e. of ML estimates of structural parameters:

ÊMC

(
θ̂i

)
(s.e.MC

(
θ̂i

)
)

Parameters T = 100 T = 200 T = 500

κ = 0.044 0.095
(0.111)

0.067
(0.058)

0.049
(0.029)

δ = 0.12404 0.149
(0.082)

0.136
(0.053)

0.129
(0.032)

γ = 0.744 0.740
(0.079)

0.745
(0.053)

0.744
(0.033)

ωf = 0.93537 0.955
(0.180)

0.932
(0.148)

0.912
(0.122)

ρ = 0.834 0.826
(0.085)

0.832
(0.060)

0.832
(0.037)

ϕy = 1.146 1.440
(1.197)

1.356
(0.841)

1.207
(0.390)

ϕπ = 1.749 2.436
(1.680)

2.155
(1.206)

1.859
(0.592)

ρy = 0.796 0.768
(0.141)

0.784
(0.079)

0.789
(0.043)

ρπ = 0.418 0.404
(0.205)

0.380
(0.079)

0.362
(0.157)

ρi = 0.404 0.394
(0.135)

0.402
(0.098)

0.404
(0.062)

σ2
ỹ = 0.055 0.072

(0.041)
0.062
(0.024)

0.058
(0.013)

σ2
π = 0.391 0.450

(0.181)
0.429
(0.108)

0.421
(0.079)

σ2
i = 0.492 0.515

(0.164)
0.508
(0.106)

0.496
(0.053)

σ2
yp = 0.020 0.020

(0.003)
0.020
(0.002)

0.020
(0.001)
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Table 2: Unrestricted reduced form estimates of

the V AR(2) for W 0
t :=(ỹt, πt, it)

′; U.S. quarterly
data 1985q1-2008q3, T:=93 (+2 initial lags)

ỹt πt it
ỹt−1 1.041

(0.121)
0.045
(0.046)

0.075
(0.020)

πt−1 -0.109
(0.297)

0.475
(0.113)

0.111
(0.049)

it−1 1.147
(0.516)

0.022
(0.196)

1.504
(0.085)

ỹt−2 -0.135
(0.116)

-0.041
(0.044)

-0.072
(0.019)

πt−2 -0.424
(0.288)

0.215
(0.110)

-0.018
(0.047)

it−2 -1.08
(0.493)

-0.021
(0.188)

-0.552
(0.081)

const 0.239
(0.190)

0.193
(0.072)

-0.035
(0.031)

Σ̂W,ε=

0.500 -0.256 0.292

0.190 0.117

0.082


Diagnostic tests

LM AR 1-5 test: 2.93
[0.02]

2.73
[0.025]

0.99
[0.43]

LM ARCH 1-4 test: 0.20
[0.93]

0.87
[0.49]

0.77
[0.55]

LM Normality test: 0.27
[0.88]

7.08
[0.03]

2.93
[0.23]

LM AR 1-5 vector test: 1.67
[0.01]

LM vector Normality test:10.07
[0.12]

NOTES: The estimated unrestricted VAR covariance
matrix SW,e is reported such that correlations appear
in the off-diagonal terms. Asymptotic standard errors
are reported in parentheses below estimates, P-values in
brackets. ‘LM AR 1-5 test’ is the test for the absence of
residuals autocorrelation against the alternative of cor-
relation uo tp 5 lags; ‘LM ARCH 1-4’ test for the ab-
sence of ARCH components in the disturbances against
the alternative of ARCH components up to lag order 4;
‘LM Normality test’ is the test for the null of Gaussian
disturbances. Estimation is carried out by considering
within-periods initial values.
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Table 3: Estimated eigenvalues of
the companion matrix associated
with the unrestricted VAR(2) for for
W 0
t :=(ỹt, πt, it)

′ and LR ”one shot”
Trace test for cointegration rank
r := 2 (one unit root) vs r := 3 := p
(stationary system); U.S. quarterly
data 1985q1-2008q3, T:=93 (+2 ini-
tial lags).

Estimated roots

real imaginary modulus

0.9091 0 0.9091

0.8189 0.1257 0.8295

0.8189 -0.1257 0.8295

0.7420 0 0.7420

-0.3202 0 0.3202

0.0495 0 0.0495

Test of rank

LR for r=2 vs r=3 [LR1&2] 4.01
[0.045]

NOTES: Estimation is carried out by con-
sidering within-periods initial values. P-
values in brackets.
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Table 4: ML estimates of the structural parameters θ of the NK-

DSGE system (10)-(13) for for W 0
t :=(ỹt, πt, it)

′; U.S. quarterly
data 1985q1-2008q3, T:=93 (+2 initial lags).

Parameters in θs Interpretation MLdet
γ AD, forward look. term 0.735

(0.092)

δ AD, inverse elasticity of sub. 0.057
(0.013)

κ NKPC, indexation 0.021
(0.036)

implied value ωf NKPC, forward-looking 0.969
(0.034)

κ NKPC, slope 0.058
(0.023)

ρ Policy rule, smoothing term 0.623
(0.404)

ϕỹ Policy rule, react. to out. gap 0.233
(0.680)

ϕπ Policy rule, react. to inflation 5.21
(3.18)

ρỹ AD, disturbance persist. 0.889
(0.179)

ρπ NKPC, disturbance persist. 0.921
(0.347)

ρR Policy rule, disturbance persist. 0.826
(0.515)

Σ̂W,u=


0.0196
(0.00029)

− 0.0018
(0.00031)

0.0014
(0.0017)

0.0029
(0.00042)

− 0.014
(0.0026)

0.148
(0.022)


LR test for CER (LR3)

Constrained log-likelihood =60.855

Unrestricted log-likelihood =69.69

LR3=17.66
[0.024]

NOTES: ML estimates have been obtained from the determinate

VAR(2) solution for W o
t := (ỹt, πt, it)

′ in Eq. (3) by maximizing the

Gaussian log-likelihood under the CER in Eq.s (4)-(6). The variables

in W o
t have been preliminarily demeaned. The constrained VAR(2)

log-likelihood function has been maximized by the BFGS method us-

ing a grid search for δ (range [0.05, 0.15]), % (range [0.03, 0.06]), κ
(range [0.02, 0.05]), ϕy (range [0.10, 1.50]) and ϕπ (range [1, 5.5]), and

estimating γ, ρ, ρỹ, ρπ and ρR freely. Asymptotic standard errors are

reported in parentheses below estimates. The LR test for the CER

(LR3) has 24-16=8 degree of freedom.
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