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Abstract 

A model of interaction between a renewable natural resource with capital limitations, as 

exemplified by the optimal investment problem of sheep farming in a Nordic context, is 

analyzed. The model builds on existing studies from the fisheries literature, but the important 

difference is that while capital is related to harvesting effort in the fisheries, capital attributes 

to production capacity to keep the animal stock during the winter in our farm model. The 

paper provides several results where both optimal steady states and the optimal approach 

paths are characterized analytically. The results are further supported by a numerical example. 
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1.Introduction 

Following the pioneering work of Smith (1968), economic models of renewable resource 

management have occasionally been extended to include investment in man-made capital. 

Even though most, if not all, contributions to this strand of literature have been related to 

fishery management problems, spurred by the seminal contribution of Clark et al. (1979), 

much of the conclusions obtained here can probably quite easily be extended into the 

management of other types of wild natural resources, like terrestrial wildlife. In this paper, we 

look at another type of renewable management problem with capital limitations, namely 

domestic livestock management. The important difference is that while capital determines the 

fishing effort in the fishery problem, capital is related to the capacity to keeping animals 

during the indoors winter season in our farm problem, which is exemplified by sheep farming 

in a Nordic context. 

 

The literature on the management of what may be viewed as two capital stocks, one man-

made and the other one biological, is quite small. Clark et al. (1979) emphasized the 

irreversibility of investment, meaning that man-made capital cannot be sold once having been 

bought, and they showed how the possible approach paths towards the optimal steady state is 

greatly affected by this property. Their model is linear in both controls, investment in fishing 

vessels and harvest of the fish stock, and the approach paths are therefore characterized by a 

combination of bang-bang and singular controls. Stochastic elements are included in a paper 

by Charles and Munro (1985), and McKelvey (1985) analyzes open access dynamics in a 

fishery with man-made capital. Boyce (1995) formulates a similar model to that of Clark et al. 

(1976), but with non-linear investment costs. He finds, not surprisingly, that the derived 

optimal approach path is no longer of the bang-bang type. Sandal et al. (2007) extend the 
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literature with a model without any non-negative constraint on investment, but where capital 

is less valuable when sold than when bought.  

 

In this paper we analyze the optimal investment and harvest, or stocking, decision problem of 

a sheep farmer. The farmer, assumed to be well-informed and rational, aims to maximize 

present-value profit generated by meat production. The market price of meat is taken as given, 

as we consider a single farm, and abstract from both exogenous price fluctuations and (other) 

stochastic factors such as climatic variations. In addition to the natural capital stock, the 

animals, the farmer must also hold a certain amount of man-made capital which adheres to the 

familiar mechanisms of investment and depreciation, to keep the animals indoors during the 

winter season. Man-made capital in this farming system is thus mainly buildings and related 

equipment which is instrumental in determining farm capacity. We are not aware of other 

theoretic domestic livestock management models that include man-made capital in addition to 

animal capital, even though capital theoretical treatments of livestock are frequently found 

within the resource economics literature, see e.g. Kennedy (1986). Farm models include 

Jarvis (1974) who formulated a timing problem of cattle grazing, and Skonhoft (2008) who 

analyzed the optimal stocking problem of Nordic sheep farming. Our model and reasoning 

builds to some extent on this last paper, but Skonhoft studied a situation with no man-made 

capital limitations and with different year classes of the animal capital. Different year classes 

are not included in the present paper. The research problem here is to find the optimal 

slaughtering and investment policy in such a Nordic farming system, and to characterize both 

the optimal steady state and approach paths.. In the subsequent analysis, natural and man-

made capital will generally be referred to merely as ‘animals’ and ‘capital’, respectively. 
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The rest of the paper is organized as follows. Section 2 describes briefly the Nordic sheep 

farming system and the model is formulated. Section 3 describes the optimal solution to the 

model while we in section 4 proceed to analyze the steady states. Having identified the 

optimal steady states, we analyze in section 5 the approach path and show that it involves a 

combination of bang-bang and singular controls. Numerical simulations are shown in section 

6, while section 7 concludes the paper. 

 

2. Model 

The following analysis is related to economic and ecological conditions found in Norway, but 

these also exist in Iceland and Greenland. There are about 2.1 million sheep in Norway during 

the summer grazing season, divided among some 16,000 family farms. The average farm size 

is therefore quite small and accounts only for about 130 animals. Sheep farms are located 

either close to mountain areas and other sparsely populated areas or along the coast, with a 

means to transport the animals to more distant alpine areas with access to areas of summer 

grazing land. Such land is typically communally owned and managed. There is a sharp 

distinction between the summer grazing season and the winter indoors season. While food is 

abundant during the summer grazing season, housing and indoor feeding is required 

throughout winter because of snow and harsh weather conditions. The indoors winter season 

is typically from mid-October to the beginning of May next year. The adult sheep and the 

newborn lambs are then released for outdoors grazing. In September- October slaughtering 

takes place. In Norway, winter feeding basically consists of hay grown on pastures close to 

farms, with the addition of concentrate pellets provided by the industry. The main product is 

meat, which accounts for about 80% of the average farmer’s income. The remainder comes 

from wool, because sheep milk production is virtually nonexistent (Nersten et al. 2003). 

However, the income from wool is neglected in the following analysis.  
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We begin with formulating the animal growth equation, given in discrete time, and where 

additions to the stock occur once a year (in the spring), as does the harvest of animals (in the 

fall). As our main focus is on the interaction between biological and man-made capital, we do 

not distinguish between different age classes of animals (but see Skonhoft 2008), but consider 

a biomass model where ‘a sheep is a sheep’. The rate of growth in animal biomass is further 

assumed constant, as is reasonable with a domestic animal stock facing controlled breeding 

and maintenance; that is, there is no density dependent growth process. The growth function 

for animal biomass is thus given as:  

(1)    1 ,t t t tX X rX H+ − = −  

where tX  is the animal stock size at time (year) t , tH  is harvest and 0r >  is the animal stock 

growth rate, assumed to be constant. A feature of Scandinavian sheep farming is that live 

animal are generally not traded. Therefore, we do not consider the possibility of restocking 

and require 0tH ≥ . 

 

Man-made capital, also assumed to be homogenous, is used as housing for the animal stock 

during the winter indoors season. Each year, a constant positive amount of investment is 

allowed, and a constant fraction of the capital stock depreciates due to wear and tear. The net 

capital growth is thus given by: 

(2) 1 ,t t t tK K K Iγ+ − = − +   

where tK  is the capital stock and tI  is the accompanying (gross) investment. 0γ > is the rate 

of depreciation, assumed to be fixed. 
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The revenue of the farmer is made up of income from meat production. With 0p > as the   

slaughtering price (net of slaughtering costs), the current meat income for the farmer simply 

reads tpH and is included as the first term in the profit equation:  

(3)     ( ) ( ) ( ), , , ,t t t t t t t t tH X K I pH V X Q X K cIΠ = − − − . 

p  is assumed fixed over time and independent of the harvest decision, as explained above 

(section 1).  

  

We then have the cost side, where we first describe at the operating cost. The operating cost 

structure differs sharply between the outdoor grazing season and the indoor feeding season. 

As explained, during the grazing period the sheep may graze on communally owned lands 

(‘commons’) or private land. Within the Nordic sheep farming system, such land may be 

available cost free, or the farmer may pay a fixed annual rent (Austrheim et al. 2008). The 

variable cost is hence simply assumed to be the indoor season operating cost. These costs, 

which include labor cost (typically as an opportunity cost), electricity and veterinary costs in 

addition to fodder, are assumed to determined uniquely by the size of the animal stock, i.e., 

( )t tV V X= , and with ' 0V > , '' 0V > , and (0) 0V = . The argument for a strictly convex cost 

function is that fodder production is constrained by the size of the available land; that is, as 

the stock becomes larger it becomes progressively more costly to provide fodder.  

 

As mentioned, in contrast to what is found in the fisheries literature where capital normally is 

equivalent to harvesting effort (e.g., Clark et al. 1979), capital in our farm system is housing 

and related equipment to keep the animal stock during the winter. We assume that there is no 

absolute constraint on the amount of animals that a given amount of capital can support, so 

that there is no such thing as 'full' capacity utilization in our farm model. However, as the 

indoor space per animal diminishes, the operating procedure becomes increasingly 
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cumbersome. We hence include the capacity utilization cost, or congestion cost, function 

( ),t tQ X K in our current profit equation (3). It increases with the number of animals, for any 

given amount of capital, such that 0xQ >  and 0xxQ > , together with 0KQ < , 0KKQ > and 

0KXQ < . In addition, we have ( )0, 0tQ K = when 0tK > and 
0

lim ( , )
t

t tK
Q X K

→
=∞for 0tX > . 

For all positive stock values this function is hence convex in tX and tK . In the numerical 

section 6 below we specify this cost function. 

 

The final cost component is the cost of buying new capital equipment. We assume that there 

is a constraint on the size of investment in each period, due to, say, limited access to credit, 

such that max
tI I≤ . The cost per unit of investment is fixed and given by 0c > , so that the 

yearly investment cost reads tcI . An alternative assumption, following e.g. Sandal et al. 

(2007) , could have been to introduce adjustment costs to limit the amount of investment 

carried out in each time period. In our model, as in reality, investment is also irreversible; the 

buildings cannot be sold once having been set up; that is, 0tI ≥ . 

 

3. Optimal management 

The farmer aims to maximize present-value profit subject to the dynamic constraints imposed 

by the growth equations for animals (1) and capital (2), and the constraints on harvest and 

investment in each period. We suppose an infinite planning horizon, meaning that we are 

looking for an optimal steady state. The planning problem of the farmer is then formulated as:  
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and where 1/ (1 )ρ δ= +  is the discount factor with 0δ ≥  as the constant discount rate. 

	
   	
  

The Lagrangean of this problem may be written as: 
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where tλ  and tµ  are the shadow prices of the animal and capital stock, respectively. The 

necessary conditions for a maximum are: 

(5) 1 0, 0t t
t

L p H
H

ρλ +

∂
= − ≤ ≤

∂
 

(6)  max
1 0, 0t t

t

L c I I
I

ρµ +

>

≤

∂
= − + ≤ ≤

∂
 

(7) ( )1' 1 0X t t
t

Q rL V
X

ρλ λ+

∂
= − − + + − =

∂
 

(8) ( )1 1 0K t t
t

L Q
K

ρµ γ µ++ − −
∂

= − =
∂

 

 

These conditions are also sufficient if the Lagrangean is concave in the states and controls 

jointly. Since the Lagrangean is linear in the controls, the sufficiency conditions boil down to 

( )'' 0, 0X X X X KK KKL V Q L Q≤− + = − ≤= 	
  and ( )2 2 0X X QQ Y KKX X X K XL L Q QL Q V + −ʹ′ʹ′− ≥= , 
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which are satisfied for the given properties of the cost functions. The transversality conditions 

for the infinite horizon problem must also hold; i.e., ( )* 0t tt
lim X Xλ
→∞

− ≥ and 

( )* 0t tt
lim K Kµ
→∞

− ≥ and where the asterisk indicates optimal steady state values. 

 

The interpretation of (5) is that harvest is set to zero whenever the price of meat is lower than 

the discounted shadow price of the animal stock, and positive otherwise. Similarly, (6) states 

that there will be positive investment only when the unit investment cost is lower than the 

discounted shadow price of capital. It can be set to its maximum value, or it can be set to the 

interior of the control region. This ’singular’ control policy is only implicitly defined from the 

first order conditions. We thus have the following alternatives for harvest policy, letting SH  

denote singular harvest: 

1

1

1

( )

0

t

t
S

t

t

when p impulse harvest
H H when p

when p
λ

ρλ

ρ

ρλ

+

+

+

>⎧
⎪

= =⎨
⎪ <⎩

∞

 

Note that, since there is no upper bound on harvest except from the size of the stock itself, 

whenever 1tp ρλ +> , the herd will be reduced immediately (that is, within one time period), to 

the level where 1tp ρλ += , and singular harvest takes over. This is often called impulse control 

in the optimal control theory literature.  

 

As for investment, we get: 

1

1

10

t

t

t

max

S
t

I when c
I I when c

when c

ρµ

ρµ

ρµ

+

+

+

⎧ <
⎪

= =⎨
⎪ >⎩  

Therefore, investment will be at its maximum or minimum level whenever the per unit 

investment cost is lower or higher than the shadow price of capital. When the shadow price 
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reaches the point where it equals the present value of the unit cost of investment, the control 

will either switch between the two control boundaries – going from maximum to zero 

investment, or vice versa - or stay at singular investment for some amount of time.  

 

Singular control relationships for both stocks can be further derived from the first order 

conditions.  If singular harvest holds, we have from equation (5) 1tp ρλ += , which means that 

the shadow price of the animal stock is constant, and equalizes * /pλ ρ= . When inserted into 

condition (7), we find the following golden rule condition for the animal stock: 

(9)                   ( ) '( ) ( , )Xr X Kp Q XVδ +− =  

Equation (9) therefore describes the relationship between X  and K  that is consistent with 

singular harvest. This condition may also be written as 

[ ](1/ ) '( ) ( , )Xp pr V X Q X Kδ= − − indicating that the market revenue from selling one animal 

should equalize the discounted net benefit from keeping it. Because both 'V and XQ are 

positive, we must require that the animal growth rate exceeds the discount rate, r δ> , which 

is a well-known condition for a positive steady state animal stock (see, e.g., Clark 1990). As 

both r  and δ  are constant this must always hold, also outside the steady state. 

 

With singular investment, we have from (6) 1tc ρµ += , which means that the capital shadow 

price is constant, * /cµ ρ= . Inserted into equation (8) gives the golden rule condition for 

capital: 

(10) ( ) ( , )Kc Q X Kγ δ+ = − . 

Equation (10) defines a relationship between X and K that is consistent with singular 

investment. It may also be written as ( , )(1/ )[ ]Kc Q X Kδ γ− −=  indicating that the unit 

investment cost should equalize the discounted marginal net benefit from holding capital.  
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4. The steady states 

In an interior equilibrium where both ( )* * *,SH H K X=  and ( )* * *,SI I K X= , the golden rule 

conditions (9) as well as (10) must hold. But in principle, one, or both, controls may also be 

set at a boundary at a steady state. From equation (1), however, as long as the rate of animal 

growth is positive and constant, the harvest rate must be positive in the steady state. Since 

there is no upper constraint on harvest, the steady state harvest policy must then be singular. 

From equation (2), steady state investment must also be positive, but may be set to its 

maximum level, where the gross investment in each year equals depreciation, keeping the 

capital stock at its optimal steady state level given the investment constraint. We therefore 

have two alternatives for the steady state, and this is stated as: 

 

Result 1. There are two steady state alternatives. The first is interior where both controls are 

singular. In the second harvest is singular while investment is at the maximum level.  

 

We first study the interior steady state in some detail and then discuss the situation where the 

investment constraint binds. At an interior steady state, the two schedules defined by 

equations (9) and (10) must intersect. Except from the very special case where the two curves 

are coinciding, there can be at most a countable number of equilibria. When differentiating (9) 

and (10) we find / / ( '' ) 0XK XXdX dK Q V Q= − + > and / / 0KK XKdX dK Q Q= − > , respectively. 

Therefore, both schedules (9) and (10) slope upwards in the ( ),K X -space, but the curvatures 

cannot be determined generally without imposing restrictions on third derivatives. This allows 

for an arbitrary number of intersection points, with a correspondingly arbitrary number of 

stable and unstable equilibria. However, we find a stable steady state *K and *X where the 

optimal harvest condition (9) intersects the singular investment schedule (10) from above, so 
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that / ( '' ) /XK XX KK XKQ V Q Q Q− + > − holds at the intersection point. Otherwise, the intersection 

point is an unstable equilibrium. This holds because a local maximum is found where the 

Lagrangean is concave around a stationary point which requires that the condition 

( ) 2 ( , )' 0' KK KX X X XV Q Q Q K− Γ= ≥+  must be satisfied. Rearranging this expression 

gives / ( ) /XK XX XX KK XKQ V Q Q Q− + > −  as claimed. When these equilibria are found, the steady 

state harvest follows from (1) as: 

(11)   * *H rX= , 

and the steady state investment from (2) as:  

(12)  * *I Kγ= . 

 

Equations (9) and (10) and the sufficiency condition can be used to derive some comparative 

static results about *X and *K . In a next step, the effects on *H and *I follow recursively 

from equations (11) and (12), respectively. We first look at the effect of a changing meat price 

and when differentiating (9) and (10) we find ( ) ( )X XX Kr p Q dX Q dKd Vδ− + +ʹ′ʹ′=  and 

0 KK K XdKQ Q dX−= − , respectively. Combing these expressions yields the partial price 

effects ( ) ( )* / ,/ 0KKX p Q r X Kδ∂ Γ∂ = − > and ( ) ( )* // 0,KXK p XQ r Kδ Γ∂ ∂ = − − > . This is 

stated as:    

                    

Result 2. An increase in the price of meat will result in a larger stock of animals and man-

made capital in an interior optimal steady state. 

 

This result is the opposite of what is found in the standard fishery model (e.g., Clark 1990) 

where a price increase leads to more aggressive harvest and a lower optimal steady state 

stock. The reason for the opposite result in our farm model is that costs here are not associated 
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with harvest, but with stock maintenance. With a higher meat price, the farmer thus finds it 

beneficial to keep a higher stock of both types of capital as the relative maintenance costs 

decreases. Differentiating (9) and (10) also gives information about the effects of a change in 

the discount rate. We find positive effects for both stocks, and this is stated as: 

 

Result 3.	
  An increase in the discount rate leads to reduced stocks of both animals and capital 

in the interior optimal steady state. 

 

This result fits conventional economic intuition, but is far from obvious when more than one 

capital stock is considered and cannot be deduced form the golden rule conditions directly. As 

shown by e.g. Asheim (2008), paradoxical effects of discounting, such as a positive 

relationship between discounting and steady state consumption, may result from multi-

dimensional models. Also, when there is a trade-off between the two stocks across alternative 

steady states, something that is typical for predator-prey models, one of the stocks must 

increase with discounting while the other goes down. However, this does not happen here. 

 

Following the same procedure with respect to the other parameters, all the time assuming that 

the sufficiency conditions are fulfilled, the other comparative static results can also be 

computed. All results are reported in Table I where the investment and harvest effects are 

included as well. An increase in the investments cost or depreciation rate means that it is 

beneficial for the farmer to reduce the steady state animal and man-made capital stocks, 

whereas an increase in the growth rate of animals leads to larger optimal stocks of both 

animals and capital. These results are more or less as expected, and the effects of the 

parameters work in the same direction for both stocks. It can also be confirmed that we find 

the combined effects * ** / 0/ /X r d XX γ δ∂ ∂−∂ = ∂ >∂ , indicating that the negative effect on 
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the animal stock of higher depreciation rate must be smaller than the negative effect of higher 

discount rate. We also find * ** / 0/ /K r d KK γ δ∂ ∂−∂ = ∂ >∂ , indicating the same different 

effects on the optimal steady state capital stock. 

 

The effects on the control variables through equations (11) and (12) are quite straightforward, 

except for the animal growth rate and rate of depreciation which both have direct and indirect 

effects on the steady state harvest and investment, respectively. For a positive shift in the 

animal growth rate, the two effects work in the same direction and lead to higher harvest in 

the steady state, since from (11) * * */ / 0H r X r X r∂ ∂ = + ∂ ∂ > . With the depreciation rate, 

however, the two effects work in the opposite direction as we find 

* * * // KI Kγ γ γ∂ ∂ = + ∂ ∂ from equation (12). The direct effect is to increase the required 

amount of investment to maintain a given amount of capital, whereas the indirect effect is to 

decrease the optimal steady state capital stock. The overall effect is ambiguous with general 

functional forms. 

 

[Table I about here] 

 

We then consider the other steady state possibility where the investment is no longer singular, 

and hence the condition 

(13) * max SI I I= <   

replaces equation (12) in the interior steady state solution. The steady state capital stock now 

follows directly through (12) as * /maxK I γ=  , which inserted into equation (9) yields the 

steady state animal stock. The amount of capital will now for obvious reasons be below what 

was found in the interior steady state. Because condition (9) yields a positive relationship 

between the two stocks, the number of animals will also be below what was found in the 
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interior steady state. The steady state harvest again follows from equation (11) as * *H rX= , 

and the number of animals slaughtered will consequently also be below the previous steady 

state.  

 

The comparative static results are now somewhat different, as indicated with brackets in 

Table I. When the investment constraint binds, the only factor that affects the steady state 

capital stock is the depreciation rate. The sign of the effects on the animal stock are as before, 

except for the investment cost which now has zero effect.  

 

5. Optimal approach paths 

We have characterized the two alternatives for an optimal steady state, both the interior 

solution and the case where the upper investment constraint binds at the optimum. The next 

task is to study the optimal approach paths. In general, approach paths in multi-dimensional 

models are often complicated to analyze, as exemplified by the predator-prey model of 

Mesterton-Gibbons (1996). For a more recent example, see Horan (2005). We find, however, 

that in our case it is possible to derive an intuitive solution which is easily explained 

graphically. As indicated above, the optimal trajectories result from a combination of extreme 

and singular controls. We know that both controls can be singular simultaneously only at an 

interior steady state, so that one of the control constraints must always bind outside an 

equilibrium. Whenever the animal stock is above the SH -schedule, it will be harvested down 

instantaneously (or more precisely, within on time period), until the SH -schedule is reached 

since tH  is unconstrained from above. Then either i) the system will follow the SH -schedule, 

with singular harvest for a period of time, or ii) harvest is set to zero, in which case the SH -

schedule acts as a switch between extreme controls. Ignoring the case where S
tH H> , which 

is impossible for any more than one time period, we now consider the various alternative 
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control regimes. The different cases can be best understood with reference to Figure 1 where a 

situation with a unique interior equilibrium is depicted. The singular control schedules are in 

accordance with the specific functional forms used in numerical section 6 (Eqs. 9’ and 10’ 

below). Four different initial states, labeled A, B, C and D, are shown along with the optimal 

approach paths originating from them. Notice that initial states A and C have the same value 

for the animal stock, whereas initial states B and D represent the same capital stock value. 

These properties are further exploited in the numerical section. Panel a) demonstrates the first 

three cases, where the upper investment constraint does not bind along the approach path. 

 

Case 1: 0H = , SI I= . The only possibility when investment is singular outside of the steady 

state is that harvest is zero. This happens when, as from an initial situation such as A or B, the 

initial capital stock is below the steady state level and the system has been controlled to reach 

the singular investment schedule. The system will then follow the SI -schedule (10) towards 

the steady state, when the investment constraint does not bind.  

 

Case 2: SH H= , 0I = . From an initial situation such as point D where both stocks are above 

their interior steady state levels, the animal stock is harvested down until the SH -schedule (9) 

is reached, and the system moves leftwards along the SH -schedule towards the equilibrium. 

Note that the SI -schedule plays no role here, and is therefore represented by a dashed line in 

the figure.  

 

Case 3: 0H = , 0I = . Here both controls are set to zero, which happens when the state of the 

system is below both singular control schedules, as at point C. This control regime continues 

until one of the two singular control schedules is reached, and one of the two above 

alternatives takes over. 
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The next two ‘intermediate’ cases, where the upper investment constraint prevents the system 

from following the SI -schedule, are shown in panel b) Figure 1. Both these cases depend on 

the system having reached either the SH -schedule or the SI -schedule below and to the left of 

the equilibrium. This may happen if the initial states are given by points A or B. 

 

Case 4: 0H = , maxI I= . When 0SH < , meaning that following the SH -schedule would 

require restocking of animals, which is omitted in our model, and S maxI I> , so that the 

maximum investment constraint does not allow the system to follow the SI -schedule either, 

the state of the system will be somewhere below the SH -schedule and above the SI - 

schedule. 

 

Case 5: SH H= , maxI I= . This situation arises when the system has reached the SH -

schedule (9), either after an initial impulse harvest, or from a situation such as in case 4, but 

the maximum per period investment is not sufficiently large to detract the system from the 

SH -schedule. The system will then follow the SH -schedule to the steady state. 

 

The last situation to consider is the alternative steady state where the upper investment 

constraint is binding. Panel c) Figure 1 demonstrates. The equilibrium can now be found as a 

point on the SH - schedule, below and to the left of the intersection point, with investment set 

to its maximum level at every point in time, * max SI I I= < . As shown in the figure, the 

approach path is along the SH -schedule from both directions in this case. However, for 

sufficiently low stock values it is still possible to follow the SI -schedule, as the animal stock 

growth is a constant share of the animal stock size, whereas the maximum investment is 

assumed to be independent of the size of the existing capital stock. 
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The different control scenarios can be further characterized by dividing the state-state space 

into three regions, with three different transitional control regimes. Region I: Above the SH -

schedule; impulse harvest, Region II: Below the SH -schedule, above the SI -schedule; 

0H = , maxI I= and Region III: Below both schedules; 0H I= = . 

 

As is evident from Figure 1, the singular control schedules act either as switch lines or 

approach paths, depending on the control constraints. The approach path is identified as a 

bold line, which in panel a) consists of the part of the SI -schedule (10) that is to the left of the 

optimal steady state, and the part of the SH -schedule (9) that is to the right of the equilibrium. 

The upper constraint on investment may also entail that the SH -schedule must be followed 

even from the left, at least when the equilibrium is sufficiently close. This situation is depicted 

in panels b) and c) Figure 1.  

 

[Figure 1 about here] 

 

Whenever the initial point is above the singular harvest schedule, a situation exemplified by 

points A and D in Region I, the stock will be slaughtered down immediately until the sH -

schedule is reached. If the state of the system is now above the singular investment schedule, 

the SH -schedule acts as a switch and harvest is set to zero, as is the case when starting from 

point A. If not, the rest of the approach path is along the SH -schedule, as with the trajectory 

from point D. When starting from below both schedules, as from points B and C, the singular 

approach path is the one of the control schedules that is encountered first, after a period with 

zero harvest and investment. As indicated in Figure 1a), the approach path is thus the lower 

one of the two singular control schedules, when feasible. As seen on Figures 1b) and 1c), 
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however, a part of this control path may not be feasible if the upper investment constraint 

binds. In this case only the leftmost part of the SI -schedule can be followed, while the 

equilibrium is encountered along the SH -schedule from both directions. The SI -schedule 

may then act partly as a switch between zero and maximum investment, which the trajectory 

from point B indicates. 

 

By taking the first order difference of eqs. (9) and (10) , and using the growth equations to 

substitute for 1t tK K+ −  and 1t tX X+ − , we can also derive explicit feedback rules for both 

stocks. Recalling that 0tH =  along the singular investment schedule, singular investment is 

given by: 

	
   S X K
t t

K K

V Q XI K r
Q

γ
ʹ′ʹ′+

+
−

= ,	
  

Where the coefficient for X  is positive. Singular investment therefore depends positively on 

depreciation, and also on animal stock growth. A higher stock of animals, and/or a higher 

animal growth rate means that investment must increase to let capital growth keep pace with 

growth in the animal stock. Singular harvest is given by: 
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⎪⎩

,	
  

where the coefficient for tK  is positive, and with a similar interpretation. Note that the 

singular harvest rule is different depending on whether the system is on the SH -schedule to 

the left or right of the equilibrium, as investment will be set to maxI  or zero in the two 

situations, respectively. 
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The next two results regard the monotonicity of the approach paths, and are related to results 

from the fisheries literature. First observe that the approach path is monotonous with respect 

to both X  and K  along the singular control schedules and in Region II (see the discussion 

above). Also note that a) In Region I there is only impulse harvest and no investment, and b) 

in Region III the monotonous part of approach path may be encountered on either side of the 

equilibrium if *
0K K>  and *

0X X< . The first of these results is stated as: 

 

Result 4. It is never optimal for capital to overshoot its optimal steady state level. However, 

capital may undershoot the steady state if *
0X X< .  

 

Proof: Positive investment cannot occur in any of the two regions outside the monotonous 

part of the approach path. Hence, overshooting is impossible. Undershooting happens if, from 

Region III with *
0K K>  and *

0X X< , the monotonous part of the approach path is reached 

where *
tK K< .  

 

Corollary: It will never be optimal to have excess capacity in the steady state. 

 

This result differs from what is found by Clark et al. (1979), where it is optimal to have 

excess capacity in the steady state if the depreciation rate is zero. The reason that this does not 

happen here is that capital plays no role in the harvesting process. Therefore, it is not 

profitable, or possible, to speed up the approach to the equilibrium by overinvesting, if the 

initial animal stock is above the equilibrium level. The next result concerns the development 

of the animal stock: 
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Result 5. The animal stock may either undershoot or overshoot the optimum, depending on 

the initial situation. 

 

Proof: When *
0X X>  and *

0K K<  in Region I, the animal stock will be reduced 

immediately until the monotonous part of the approach path is reached where *
tX X< , 

implying undershooting. From Region III with *
0K K>  and *

0X X< , overshooting occurs if 

the monotonous part of the approach path is reached where *
tX X> . 

 

This also contrasts the Clark et al. (1979) model, and subsequent contributions within the 

fisheries literature. The intuition is that a more profitable rate of capacity utilization can be 

obtained by temporarily reducing the animal stock below the steady state level if the capital 

stock is low, and expanding it beyond the steady state level if the capital stock is large. Both 

situations depend on the fact that the capital stock cannot be adjusted instantaneously in either 

direction. The next result is stated without proof as: 

 

Result 6: If the upper investment constraint is not binding on the approach path, the optimal 

steady state will almost always be approached with one control set at the interior and the other 

at zero. 

 

In principle, all control combinations are possible approaches to the equilibrium, but the case 

where *
0X X>  and *

0K K= , so that the equilibrium is reached by a one-time slaughtering 

down of the animal stock only, and the case where the equilibrium is reached by setting both 

controls to zero, can both only be satisfied by a fluke. The general approach is along one of 
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the singular control schedules, and ruling out the possibility that maxI I=  along the approach 

path, the non-singular of the controls must be zero. 

 

6. Numerical example 

To shed some further light on the above analysis, the model is now illustrated numerically1.  

We do not attempt to accurately describe the economic situation of a Nordic sheep farmer, but 

to demonstrate the workings of the model with reasonably realistic parameter values. First, we 

specify the functional forms. The congestion cost function is specified as: 

(11)  ( ) 2, ,
2t t t

t

Q X K X
K
θ

=   

where 0θ > . It is readily confirmed that this cost function satisfies the properties stated in 

section 2 above. The operating cost function is next specified as: 

(12) 2( )
2t tV X Xη

= , 

with 0η > . With these functional forms, we find the following expression for the singular 

harvest and investment schedules: 
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t

r p X
K
θ

δ η
⎛

+
⎞

− = ⎜ ⎟
⎝ ⎠ , 

and 

(10’) ( )
2

2
t

t

Xc
K

θ
γ δ

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠ .
 

It is easily recognized that both schedules start form the origin and have a positive slope.  

While the singular investment schedule (Eq. 10’) is a straight line, the singular harvest 

schedule (Eq. 9’) yields X as a strictly concave function ofK , cf. Figure 1 above. They have 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 The numerical optimization was performed using the KNITRO for MATLAB solver form Ziena Optimization, 
with MATLAB release 2011b.	
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thus one interior intersection point, provided that the SH -schedule is steeper than the SI -

schedule at the origin, which corresponds to a stable equilibrium (see also section 4 above).  

 

The numerical optimization is performed using the parameter values found in Table II. As 

indicated, the discount rate, the growth rate for the animals and the indoor feeding cost 

parameter are taken from Skonhoft (2008) while the depreciation rate is what is used by 

Statistics Norway for buildings (Statistics Norway 2011). The investment and congestion cost 

parameters are calibrated for our model such that the number of animals in the steady state 

should represent a medium sized Norwegian farm. In addition, we assume that the maximum 

yearly investment is fixed at max 20I =  (m2). 

  

[Table II about here] 

 

Table III demonstrates the steady state results. The steady state is interior, as the depreciation 

is below the investment constraint; * max8K Iγ = < , and can be found as the solution to 

equations (9’) and (10’). The results with the baseline parameter values are shown in the first 

column, while the next column shows the results of a 50% increase in the meat price, to 360 

(EUR/animal), while all the other parameters are kept at their baseline values. In the last 

column the discount rate is increased by 50%, to 0.06δ = . In the baseline calculation, the 

optimal stocking is 120 (animals), the capital stock becomes 200 (m2) while the profit is about 

9,800 (EUR). The change in the discount rate has a modest impact on the optimal steady state 

animal stock level while the effect on the capital stock is somewhat more substantial (see also 

the comparative static results Table I). The profit is only modestly affected. The slaughter 

price change, on the other hand, strongly affects the profit which is more than doubled 

compared to the baseline alternative. The optimal animal stock level is increased by 60%. 
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Note also that capacity utilization is unaffected when the price shifts up. The reason is that the 

SI -schedule (10’) is linear and not affected by the slaughter price. A change in the discount 

rate, on the other hand, shifts this schedule as well as schedule (9’) and hence the rate of 

capacity utilization changes.    

 

[Table III about here] 

 

The dynamics are demonstrated in Figures 2 and 3 where the panels to the left are for the state 

variables while the panels to the right depict the corresponding harvest and investment paths. 

Four different initial situations are considered that correspond roughly to the initial states 

depicted in Figure 1, such that ( )0 0,K X  assumes the values (50,110)  at point A, ( )210,20  at 

point B, ( )300,110  at point C and ( )210,200  at point D.  

 

In Figure 2, the approach paths from points A and C are depicted. In both these initial 

situations the animal stock size is 110 (animals), which is close to the optimum (Table III). 

The initial capital stock is either far below (A), or well above (C) its steady state level. This 

figure illustrates the possibilities for the animal stock to over- or undershoot the steady state. 

If 0 50K = , an immediate harvesting down of the animal stock is followed by a combination of 

maximum investment and singular harvest until the equilibrium is reached after about 12 

years. Since the investment constraint is binding along the approach path, but not in the steady 

state, the different trajectories corresponds to the ones depicted in panel b) in Figure 1. 

From 0 300K = , both controls are set to zero and the animal stock grows past its steady state 

level before the  singular harvest schedule is followed, with zero investment.    

 

[Figure 2 about here] 
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Figure 3 demonstrates the optimal paths when the initial states are found as points B and D. 

With 0 210K =  in both cases, the initial capital stock is close to the optimum, while the 

animal stock level is either far below (initial situation B with 0 20X = ), or far above (D with 

0 200X = ), the optimal steady state. In either case, the steady state is reached faster than in 

Figure 2, as both growth and reduction in the animal stock is faster than for the capital stock. 

Initial point B entails zero harvest and investment, followed by one period of maximum 

investment (Region II in Figure 1b) before the equilibrium is encountered. From initial 

situation D, impulse harvest and depreciation of the capital stock leads to the equilibrium after 

just two time periods. From point B, the capital stock undershoots the steady state (but may 

never overshoot, as discussed in section 5). 

 

[Figure 3 about here] 

	
  

7. Concluding remarks 

In this paper we have from a theoretical point of view, analyzed the dynamic optimization 

problem of a profit maximizing farmer who possesses both animals and man-made capital. 

The model builds on existing studies from the fisheries literature, but the important difference 

is that while capital is related to harvesting effort in the fisheries, capital attributes to 

production capacity to keep the animal stock during the winter in our farm model. The 

linearity of the model allows an intuitive graphical description that is rare in multi-

dimensional optimization problems. Both the steady state and the optimal approach paths 

have been characterized analytically, and demonstrated by a numerical example related to 

Scandinavian sheep farming.  
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The steady state was shown to be either an interior optimum with interior controls, or a 

constrained optimum with investment set to its maximum value (Result 1). The effects of 

parameter changes were studied analytically. We found that with a higher meat price the 

farmer will find it beneficial to increase the stock of animals as well as the amount of capital 

in the interior steady state (Result 2), while an increase in the discount rate yields opposite 

effects (Result 3). 

 

As the objective function is linear in both control variables, the approach path is a 

combination of bang-bang and singular controls, and along the approach path at most one of 

the controls is singular. The dynamics are different from what is found in the typical fishery 

models, as in particular there will be a gradual building up of capital, not a one-time impulse 

investment where the capital stock overshoots the steady state. With capital, only 

undershooting is possible (Result 4). The animal stock may, on the other hand, both over- and 

undershoot the optimal steady state (Result 5). In general, one of the controls will be singular 

along the approach path while the other is set to zero, if the upper investment constraint does 

not bind (Result 6). 

 

We have focused on a situation with a unique interior equilibrium. However, with different 

specifications of the cost function there may be several equlibria. With a positive discount 

rate, the choice of steady state will then in general depend on the initial situation, so that the 

system is history dependent. The dynamics of such a system will be a rather straightforward 

generalization of the system analyzed here however, once the optimal steady state is 

identified. Another possible extension is to include an absolute limit on the number of animals 

per square meter of housing, typically set by authorities to secure animal health. If this 

constraint binds along the approach path it will imply maximum investment together with 
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positive harvest of animals. If the capacity utilization constraint is binding in the steady state, 

it will imply singular steady state harvest along with maximum investment.  

 

The main contribution of this paper is related to the role of capital which is used here for 

maintaining the animals and hence plays no role in the harvesting process. In addition, we 

assume a domestic animal stock where the unit harvest cost is stock independent, and natural 

growth is density independent and hence also unaffected by stock size. Given that these 

assumptions also are valid in other types of production involving domestic renewable 

resources, the model here may have wider applications. Possible examples include other types 

of livestock management and other areas of modern agricultural production, as well as 

aquaculture.  
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Tables and figures 

 

Table I: Comparative static results interior steady state with singular harvest and 

investment. In parentheses the constrained steady state with * maxI I= . 

 p  c  δ  r  γ  

*X  ( )+ +  ( )0−  ( )− −  ( )+ +  ( )− −  

*K  ( )0+  ( )0−  ( )0−  ( )0+  ( )− −  

*H  ( )+ +  ( )0−  ( )− −  ( )+ +  ( )− −  

*I  ( )0+  ( )0−  ( )0−  ( )0+  ( )0±  
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Table II: Baseline parameter values 

Parameter Description Value 

δ  Discount rate 0.04 

r  Animal growth rate 0.7 

c  Unit investment cost (EUR/m2) 100 

η  Feeding cost (EUR/animal2) 1.1 

θ  Congestion cost (EUR/(animal2/m2)) 45 

γ  Depreciation rate 0.04 

p  Meat price (EUR/animal) 240 

Sources: r , η  and p  based on Skonhoft (2008), γ  from  

Statistics Norway (2011), c  and θ  calibrated.  
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Table III: Steady state results 

  Baseline p up 50% δ up 50% 

Animals *X  120 192 112    

Capital (m2) *K  200 322 168 

Capacity utilization (animals/m2) * *X K  0.60 0.60 0.67 

Slaughter income (EUR)

 

*prX  20,160

 

48,384 18,816 

Investment cost (EUR)

 

*c Kγ  800

 

1288 672 

Feeding cost (EUR)

 

*2

2
Xη  7,920

 

20,275 6,899 

Congestion cost (EUR)

 

*2

2
X

K
θ  1,620 2,576 1,680 

Annual profit (EUR) *π  9,820 24,245 9,565 
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1	
  a)	
  

	
  

1	
  b)	
  

 

1	
  c)	
  

 

 

1 a) Both controls singular near the steady 
state. 
  
1 b): Approach paths with maxSI I<  near the 
equilibrium, but interior steady state. 
 
1 c): Constrained steady state; m* axI I< . 
 

Figure 1: Optimal approach paths, unique steady state. 
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Figure 2. Optimal approach paths baseline parameter values. Initial situation A 

( 0 50K = , 0 110X = ) and C ( 0 300K = , 0 110X = ).   
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Figure 3. Optimal approach paths baseline parameter values. Initial situation B 

( 0 210K = , 0 20X = ) and D ( 0 210K = , 0 200X = ).  

  


