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ABSTRACT. 

Economic interdependency of wildlife or fish stocks is usually attributed to ecological 

interdependency, such as predator – prey and competitive relationships, or to density 

dependent migration of species between different areas. This paper provides another channel 

for economic interdependency of wildlife where density independent migration and market 

price interaction affect the management strategies among different landowners. Management 

is studied under three market conditions for selling hunting licences: price taking behaviour, 

monopoly market and duopoly market. Harvesting of the Scandinavian moose is used as an 

example. The paper provides several results on how economic interdependency works 

through the migration pattern. When a duopoly market is introduced, hunting license price 

interaction among the landowners plays an additional role in determining the optimal 

harvesting strategy. 

 

KEY WORDS: wildlife management, moose, migration, grazing damage, market structure 
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1. Introduction 

In most models with ecological interdependency, such as predator-prey models and models of 

competition, there is also economic interdependency; that is, the (optimal) exploitation of one 

species, e.g., a fish stock, influences the  exploitation of the other species, and vice versa (e.g., 

Hannesson [1983] and Clark [1990] ). If these species are managed by different agents, there 

will also be economic interdependency between the agents. We find the same situation if 

wildlife or fish stocks disperse in a density dependent manner between different areas, or 

patches, managed by different owners (e.g., Conrad [1999], Sanchirico and Wilen [2001], 

Armstrong and Skonhoft [2005]). Economic interdependency also can occur even without any 

direct biological, or ecological, connections. This may happen when, for example, a migratory 

fish stock is exploited sequentially over the year cycle by different agents (e.g., Charles and 

Reed [1985]), or in fisheries with imperfect selectivity (Clark [1990], Ch. 10). Another 

example is when two agents are supplying fish or wildlife products to a common market 

where the harvested products interact in the market (e.g., Halsema and Withagen [2008]). The 

same may happen in various payment for environmental service (PES) situations, for example, 

when the payment for conserving a wildlife species is related to the stock abundance and 

where the resource owner uses the size of the PES strategically (e.g., Staahler [1996], Bulte 

and van Kooten [2002]). 

 

In this paper, we show that economic interdependency also may occur even when animal 

species migrate in a density independent manner between different areas. The particular case 

under study is Scandinavian moose hunting, where the moose frequently migrate between 

different areas over the annual cycle, depending on snow and forage conditions, and are 

subject to hunting by different landowners. The most common migratory pattern among 

moose is density independent; that is, the migration, or dispersal, is not contingent upon 

species density in the various areas (Saether et al. [1992]). Moose are valuable in the hunting 

season, which takes place in the fall, but cause browsing damage to forest products during the 

winter. Therefore, the moose provides value but is also a pest. It is the browsing damage that 

may create an economic interdependency between different landowners. The moose is one 

example of a species migratory pattern that occurs seasonally over the year and is more or less 

density independent. The wildebeest migration in the Serengeti-Mara ecosystem is a famous 

example of such a pattern (e.g., Sinclair and Arcese [1995]). 
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The scope of this paper is to study the degree and strength of such economic 

interdependencies under different market and damage cost assumptions. Two landowners and 

two moose subpopulations are considered. The core of the biological model, describing 

harvest, natural growth and migration, draws on Skonhoft and Olaussen [2005], and a 

continuous time version of their model is considered. The model is also extended to a 

dynamic framework where a dynamic open loop game is generated when the market for 

hunting licences is interconnected (e.g., Dockner et al. [2000]). Various economic 

interdependency situations among the landowners are analysed. In these situations, we 

assume that both landowners aim to find hunting quotas that maximize present value net 

benefit, which equals the hunting value minus the forestry damage. Optimal harvest strategies 

in steady state as well as in transitional dynamics will be studied. The various types of 

economic interdependency considered have important management implications, as both 

unidirectional migration and market price interaction play an important role in the harvesting 

decision.  Unified management schemes (the social planner solution) are discussed in 

Skonhoft and Olaussen [2005] and hence are not covered in this paper.  Our model and 

analysis are closest to that of Halsema and Withagen [2008]. Harvest cost functions in their 

model and browsing damage cost functions in our model are both density dependent; that is, 

both models are contingent upon the number of species. The important difference is that we 

include an additional link through the density independent migration of the animals.  

 

The paper is organised as follows. In section two, the ecological model and the cost and 

benefit functions of the landowners are presented. We first study two extreme market 

conditions. The perfect competitive market for selling moose hunting licenses is considered in 

section three, while monopoly power is analyzed in section four.  We find that the 

classification of the moose as a ‘value’ or a ‘pest’ has crucial importance for the dynamics as 

well as for the steady state analysis in the monopoly case. The moose is considered valuable if 

the marginal moose harvest revenue is positive, while it is a pest when the harvest revenue is 

negative. The intermediate situation, duopoly market, which is far more complicated than the 

two extremes, is analyzed in section five. In section six, we illustrate the various 

characteristics in these models numerically and consider both transitional dynamics and 

equilibrium. As the Scandinavian moose typically will be valuable and not a pest, we focus 

basically on the value case. Finally, section seven concludes the paper. 
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2. Model   

The moose (Alces alces) is the world’s largest member of the deer family and is found in the 

northern forests of North America, Europe and Russia. It is the most important game species 

in the Scandinavian countries. In Norway and Sweden about 40,000 and 100,000 animals, 

respectively, are shot every year (Statistics Norway [2011], Svenska Jägerforbundet [2009]). 

However, the moose population also causes various costs. There is a high incidence of moose-

vehicle collisions, as well as browsing damage during the winter, when young pine trees are 

an important food source (e.g., Solstad [2007]). The browsing damage may be considerable in 

some areas. Because of large spatial variation in densities during the winter season, browsing 

damage is usually unevenly distributed between different areas. Migration and concentration 

are two important factors explaining these differences, as some subpopulations tend to leave 

their summer ranges and browse in specific winter ranges due to snow and forage conditions 

(Saether et al. [1992], Ball et al. [2001]). Hence, as hunting takes place in the fall, before 

yearly migration, there is often an asymmetry between areas obtaining benefit from 

harvesting and areas with heavy browsing damage. 

 

Two areas, areas 1 and 2, with two different landowners, owners 1 and 2, and two 

subpopulations of moose, subpopulation 1 and 2, are considered. Both landowners are 

allowed to issue and sell licenses for hunting on their own land, and the licence fee is paid to 

the landowners. For subpopulation 1, we use the most common of three migration patterns 

(distinguished by Saether et al. [1992]); this is a distinct and more or less fixed yearly 

migration pattern between a summer range and a winter range. The migration may be of a 

rather short distance, possibly between two adjoining areas, or it may be a long distance 

migration, possibly of several hundred kilometres. Snow, topographical and forage conditions 

during the winter are of particular importance (Saether et al. [1992]). This migration pattern is 

modelled by letting a fixed (exogenous) fraction of one of the subpopulations migrate during 

the winter. By convention, we assume that the dispersal runs from area 1 to area 2. These two 

areas are considered as a closed system in which, after the winter, all the migratory moose 

return to their summer range. The migration system is the same as that in Skonhoft and 

Olaussen [2005] where a real life example is also provided. The hunting season is in 

September/October, before the yearly migration. Harvesting income is therefore directly 

related to the summer range of the two subpopulations. The migrating fraction of 

subpopulation 1 causes forestry damage in area 2 during the winter season, but subpopulation 

2 does not cause damage in area 1, because it is non-migratory. See Figure 1. 
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 Figure 1 about here 

 

Neglecting any stochastic variations in environment and biology, the equations 

(1) 1 1 1/ ( )dX dt F X h= −  

 and 

(2) 2 2 2/ ( )dX dt G X h= −  

represent the populations dynamics, where iX ( 1,2i = )  is size of subpopulation i , measured 

in biomass (or number of animals) at time t  (time index is omitted), ih is harvest, and 1( )F X

and 2( )G X are density dependent natural growth functions. Natural growth is assumed to be 

logistic, where 1 1 1 1( ) (1 / )F X rX X K= −  is for subpopulation 1 and 2 2 2 2( ) (1 / )G X rX X K= −  

is for subpopulation 2. 0r > is the identical intrinsic growth rate and 0iK >  is the carrying 

capacity ( 1,2i = ), typically depending on the size of the land and habitat productivity.  

Notice that there is no ecological interdependency between the two subpopulations, as there is 

no density dependent growth process, due to, e.g., forage competition, during the winter when 

part of the subpopulations are located within the same area. Generally, there is no evidence of 

density dependent mortality of the Scandinavian moose (see, e.g., Nilsen at al. [2005]).   

 

The fraction of the population migrating from area 1 to area 2 after hunting season, depending 

on snow and food conditions, as well as topography and size of the areas, is fixed as 0 1α≤ ≤ . 

The migratory population out of area 1 is therefore 1Xα so that the remaining stock browsing 

in its home range during the winter becomes 1 1(1 )Z Xα= − . 2 2 1Z X Xα= +  is the stock 

browsing in area 2 during the winter season. As already indicated, the forest browsing damage 

on pine occurs during the winter when other food sources are restricted. The damage is 

directly related to the number of animals (Skonhoft and Olaussen [2005]; Wam and Hofstad 

[2007]). The damage cost function may vary between areas due to different quality of the 

timber stands, or simply because of different forest productivity.  Both a linear and a strictly 

convex function are considered, and the damage function is hence defined as ( )i iD Z  with 

(0) 0iD = , / ' 0i i iD Z D∂ ∂ = >  and '' 0iD ≥  ( 1,2i = ). 
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When the cost is assumed to account for a fixed fraction of the licence price, the yearly 

hunting income writes i iPh such that iP ( 1,2i = ) is the ‘net’ hunting licence price. The hunting 

licence price may be equal among the landowners, or it may be different due to different 

market and demand conditions. Two extremes, the market with perfect competition and the 

market with monopoly power, are considered, with the former situation possibly being the 

most common market structure in Scandinavia1. In addition, market interaction through 

duopoly is studied. When any further cost and benefit components are neglected2, the yearly 

net benefit for landowner 1 is: 

(3) 1 1 1 1 1 1 1 1 1( ) ((1 ) )Ph D Z Ph D Xπ α= − = − −  

while 

(4) 2 2 2 2 2 2 2 2 2 1( ) ( )P h D Z P h D X Xπ α= − = − +   

is for landowner 2.  

 

Because of the dispersal, and also because the moose is not only a value but also a pest, there 

will be economic interdependency between the two landowners. We start by analysing 

interdependency under the perfect competition assumption. 

 

3. Price taking behaviour 

With perfect competition, both owners are price takers and sell hunting licenses at the given 

market price 1 2P P P= = . When the owners aim to maximize present-value profit, the 

management problem of owner 1 is to maximize  

1 1
1 1 1 1 1

0 0

[ ((1 ) )]t tPV e dt Ph D X e dtδ δπ α
∞ ∞

− −= = − −∫ ∫  subject to the animal growth constraint (1) .  

In a similar manner, the management problem of landowner 2 is to maximize 

                                                   
1 In this paper, we are considering situations where hunting for meat is the main motive. For a more general 
discussion of institutional arrangements and factors affecting the hunting price, where hunting for trophy is also 
considered, see Naevdal et al. [2011].2 As indicated, such costs may include the cost of moose-vehicle collisions, 
while the intrinsic value of moose could have been included as a possible benefit component. 
2 As indicated, such costs may include the cost of moose-vehicle collisions, while the intrinsic value of moose 
could have been included as a possible benefit component. 
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2 2
2 2 2 2 2 1

0 0

[ ( )]t tPV e dt Ph D X X e dtδ δπ α
∞ ∞

− −= = − +∫ ∫  subject to the animal growth constraint (2). 

1 0δ ≥  and 2 0δ ≥  are the discount rates for landowner 1 and 2, respectively. Notice that 

subpopulation 1 is included in landowners 2’s objective function, but not vice versa. 

 

For landowner 1, the current value Hamiltonian reads 

1 1 1 1 1 1 1((1 ) ) ( ( ) )H Ph D X F X hα λ= − − + − , where 1λ is the subpopulation 1 shadow value. 

The first order necessary conditions for this maximum problem read 1 1 1/ 0H h P λ∂ ∂ = − = and  

1 1 1 1 1 1 1 1 1 1 1/ / (1 ) '((1 ) ) '( )d dt H X D X F Xλ δ λ δ λ α α λ= −∂ = + − − −  when assuming an interior 

solution (harvesting takes place at the steady state). As the current value Hamiltonian is linear 

in the control variable, optimal harvest strategy is a combination of a singular solution and the 

Most Rapid Approach type (MRAP).  MRAP will be adopted before the steady state is 

reached while the singular solution will be applied once the steady state arrives. Accordingly, 

it is beneficial for the landowner to use the harvesting capacity up to its maximum if the 

initial stock level ( 0t = ) is above that of steady state, *
1 1(0)X X> , and postpone harvest until 

steady state is reached when *
1 1(0)X X< (superscript ‘*’ denotes the optimal steady state 

value). The sufficient condition of the above problem is that the Hamiltonian is jointly 

concave in the control and stock variables. With a strictly concave natural growth function, 

convex damage cost function and concave (linear) hunting revenue function, we find this 

condition satisfied (see also Appendix). 

 

The singular harvest solution, or sustainable harvest, follows as * *
1 1( )h F X= , while the 

optimal steady state, or ‘golden rule’, condition can be derived by combining the first order 

conditions above. We then find: 

(5) 
*

* 1 1
1 1

(1 ) ((1 ) )( ) D XF X
P

α αδ
′− −′ = + . 

This condition says that the stock should be maintained such that the marginal natural growth 

is equal to the marginal grazing damage, evaluated at hunting license price, plus the discount 

rent. Multiplying with P and rearranging, equation (5) also indicates that stock should be kept 

at the point where marginal net benefit, namely, marginal harvesting value minus marginal 
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browsing damage, should be equal to the marginal opportunity cost of keeping the stock. In 

other words, the net marginal value of the moose ‘in the forest’ should be equal to the 

marginal value of the moose ‘in the bank’. The equilibrium *
1X will be unique as the damage 

function is convex, the natural growth function strictly concave and the hunting license price 

is fixed. It is seen that *
1 1

msyX X< (msy = maximum sustainable yield). 

 

In a similar manner, the current value Hamiltonian of landowner 2 is  

2 2 2 2 1 2 2 2( ) ( ( ) )H Ph D X X G X hα λ= − + + − . The optimal steady state stock here satisfies: 

(6) 
* *

* 2 1 2
2 2

( )( ) D X XG X
P

αδ
′ +′ = + , 

while the sustainable harvest reads * *
2 2( )h G X= . Condition (6) has the same interpretation as 

equation (5) of landowner 1. However, due to dispersal, subpopulation 1 is included here as 

this subpopulation contributes to browsing damage also in area 2.  There is hence present a 

unidirectional externality through equations (5) and (6)3. Because the adjustment of 

subpopulation 2 is contingent upon the growth pattern of subpopulation 1, this externality is 

also present through the transitional phase, before steady state is reached. For this reason, the 

dynamic path of subpopulation 2 may also be different from that of subpopulation 1. The 

economic interaction will be analysed under two damage cost function assumptions, namely 

constant marginal damage and increasing marginal damage.  

 

Case 1: Constant marginal damage 

When the marginal browsing damage of each area is constant, with 0ia > ( 1,2i = ), the 

browsing damage function is defined as ( )i i i iD Z a Z= ; that is, 1 1 1(1 )D a Xα= − for area 1 and 

2 2 2 1( )D a X Xα= + for area 2. When inserting the damage functions into the golden rule 

conditions (5) and (6), we find *
1 1 1( ) (1 ) /F X a Pδ α′ = + −  and *

2 2 2( ) /G X a Pδ′ = + , 

respectively. 

                                                   
3 In the present context, landowner 2 will typically argue that landowner 1 profits at her expense, but this 
argument is unconvincing, because harvesting of subpopulation 1 always reduces the browsing damage taking 
place in area 2. Notice, however, that a unified management scheme (social planner) will yield a smaller number 
of subpopulation 1 and hence less browsing damage in area 2 (Skonhoft and Olaussen [2005]). 
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These conditions represent two independent equations, and hence, when the damage functions 

are linear, there is no management interaction among the landowners at the steady state. 

Because MRAP will be adopted by landowner 1, and because marginal damage in area 2 is 

constant for all sizes of the migratory population in the transitional phase, landowner 2 will 

also find it beneficial to adopt MRAP.  Therefore, there will not be any management 

interaction among the landowners before reaching steady state. This is stated as: 

Result 1: With price taking behaviour and constant marginal damage costs, there is no 

economic interdependency between the landowners.  

 

However, not surprisingly, the harvest decision of landowner 1 will influence the profitability 

of landowner 2, because the steady state profit reads * * * *
2 2 2 1 2( ) ( )PG X a X Xπ α= − + . The 

profitability effect is channelled directly through the dispersal parameter, as well as indirectly 

through the size of migratory stock. Because increased dispersal means less browsing damage 

in area 1, we find  *
1 / 0X α∂ ∂ > . Therefore, a higher dispersal rate and a higher area 1 optimal 

stock work in the same direction and reduce the landowner 2 profit. On the contrary, the 

landowner 1 steady state profit, * * *
1 1 1 1( ) (1 )PF X a Xπ α= − − , increases with more dispersal. 

This is due not only to reduction in browsing damage, but also to higher harvest income when

α shifts up. We also find the effects *
2 1/ 0π δ∂ ∂ > and *

2 1/ 0aπ∂ ∂ > channelled through the 

size of the migratory stock. 

 

By inserting the logistic growth functions, explicit expressions for profit and stock size for 

both areas can be derived. The steady state stock sizes read as

( ) ( )*
1 1 1 1/ 2 1 / 1 /X K r a rPδ α= − − −    and ( )( )*

2 2 2 2/ 2 1 / /X K r a rPδ= − − while we find 

landowner 1 profit after some rearrangements as ( )* 2 2
1 1 1 1( / 4 ){ [ 1 / ] }K P r r a Pπ α δ= − − − . The 

profit expression for landowner 2 is complicated, but is available upon request from the 

authors. 
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Case 2: Increasing marginal damage 

The damage function is now specified as 2( / 2)i i iD b Z=  with 0ib >  ( 1,2i = ). The golden rule 

conditions become * 2 *
1 1 1 1( ) (1 ) /F X b X Pδ α′ = + −  and * * *

2 2 2 1 2( ) ( ) /G X b X X Pδ α′ = + + , and 

are hence no longer independent equations. Therefore, landowner 1’s harvest decision 

influences the harvest decision of landowner 2. The subpopulation 1 dynamics are still of the 

MRAP type. Following, e.g., Wilen and Brown [1986], the subpopulation 2 dynamics will 

also be of the MRAP type4. With this harvest strategy adopted in the transitional phase, there 

will also be a unidirectional management interaction among landowners before steady state is 

reached. We find a similar effect whenever the landowner 2 marginal cost is not constant 

(which suggests that the sufficient conditions hold). This is stated as:  

Result 2. With price taking behaviour and changing marginal damage cost, there is a 

unidirectional economic interdependency between the landowners in the transitional phase as 

well as in the steady state.  

 

It can easily be shown that more dispersal through a higher α unambiguously increases 

subpopulation 1 and reduces subpopulation 2. Just as in the constant marginal cost case, more 

migration also means lower profit for landowner 2 and higher profit for landowner 1. We still 

find that a more myopic harvest strategy of landowner 1 yields *
2 1/ 0π δ∂ ∂ > , but now 

*
2 1/ 0X δ∂ ∂ > .The steady state stock sizes can be found explicitly when applying the logistic 

natural growth functions as *
1 1 1 1 1( ) / [2 (1 )]X K P r rP K bδ α= − + −  and 

( ) ( )2*
2 2 2 1 2 22 1 1 1 / 2{( ) ( ) / [ 1 2 ]}K P r b r rP b KX K b a K rPδ α δ= − − +− − + . Both profit 

expressions are complicated and are available upon request from the authors. Profit 

interactions between the landowners will also be demonstrated in the numerical section six. 

 

4. Monopoly market 

So far, the market for hunting licenses is assumed to be competitive, with equal hunting price 

facing both landowners. We now turn to monopoly power as the other extreme, with the 

inverse demand functions given as ( )i i iP P h= and where ' 0iP <  ( 1,2i = ). It is further assumed 

                                                   
4 Wilen and Brown [1986] studied a one-way tropic interaction ecological system where the prey abundance 
(lower tropical level) influences the predator natural growth, but not vice versa. In their model, only the predator 
is harvested and the profit is linear in the harvest. The management of the predator harvest in this system is 
therefore, in principle, the same as the management of subpopulation 2.  
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that the hunting revenue function ( )i i iP h h of both landowners is strictly concave, i.e., 

( '' 2 ') 0i i iP h P+ < . As indicated in section two, the two areas can be neighbouring areas, or 

they can be located rather far away from each other if there is long-distance migration. 

Obviously, the possibility of monopoly pricing fits the last case best. The current Hamiltonian 

function of landowner 1 reads now 1 1 1 1 1 1 1 1 1( ) ((1 ) ) ( ( ) )H P h h D X F X hα λ= − − + −  with 

control condition 1 1 1 1 1 1 1 1/ ( ) '( ) 0H h P h P h h λ∂ ∂ = + − = . The portfolio condition is the same as 

that in the competitive case. Combining these two equations gives: 

(7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1/ [( ( ) '( ) )( '( )) (1 ) '((1 ) )] /( ''( ) 2 '( ))dh dt P h P h h F X D X P h h P hδ α α= + − + − − + . 

Therefore, this equation together with equation (1) yields the dynamics of landowner 1’s 

management problem. The golden rule stock condition now satisfies

(8) 
*

* 1 1
1 1 * * *

1 1 1 1 1

(1 ) ((1 ) )( )
( ( )) ( ( )) ( )

D XF X
P F X P F X F X

α αδ
′− −′ = +
′+

.  

This condition conveys similar a message as that in the competitive case, except that the 

marginal revenue term 1 1P P F′+ now is included to value the moose. As long as the marginal 

revenue is positive, that is, 1 1 0P P F′+ >   in the optimal solution, *
1 1

msyX X< still holds. On the 

other hand, if 1 1 0P P F′+ < , the solution can be located at the right hand side of 1
msyX (more 

details below).  

 

The 1h -isocline is defined through equation (7) and reads  1 1 1 1 1( ' )( ') (1 ) ' 0P P h F Dδ α+ − + − = . 

When taking the total differential, we find  

2
1 1 1 1 1 1 1 1 1 1/ [( ' ) '' (1 ) ''] /[( '' 2 ')( ')]dh dX P P h F D P h P Fα δ= + − − + −  after a small rearrangement. 

With 1α = and hence no browsing damage in area 1, the isocline is simply fixed by 

1( ') 0Fδ − = . Otherwise, when 0 1α≤ < , it is negatively sloped and defined for all stock 

values 1[0, ]K  except when 1( ') 0Fδ − = . Figure 2 illustrates.  It is assumed that the part of 

the isocline to the right of the asymptote 1( ') 0Fδ − =  intersects twice with the 1X -isocline 

1 1( )h F X= .  
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Therefore, the situation depicted in this figure indicates three equilibria with different 

characteristics. Equilibrium point I, where ( ') 0Fδ − < , and hence also *
1 1

msyX X< , is 

accompanied by a positive marginal hunting revenue, 1 1 1( ' ) 0P P h+ > . This follows directly 

from the above definition of the 1h -isocline. Positive marginal hunting revenue also implies a 

positive shadow price, 1 0λ > , such that this subpopulation represents a value. On the other 

hand, at the two other equilibria, II and III, where ( ') 0Fδ − > , we have 1 1 1( ' ) 0P P h+ < . The 

shadow price is then negative, 1 0λ < , and the moose may be regarded as a nuisance, or pest 5. 

Therefore, in the pest case, the equilibrium harvest II or III must be larger and the equilibrium 

price lower than in the value case where marginal harvesting revenue is positive.  

 

From the definition of the 1h -isocline, we find that equilibrium point I always will exist, 

while the occurrence of II and III depends upon circumstances, such as the demand for 

hunting licenses and the severity of browsing damage. For instance, equilibria II and III will 

exist only when the demand for hunting licenses is ‘low’. Otherwise, this part of the 1h -

isocline will not intersect with the 1X -isocline, and point I will be the only equilibrium. 

Equilibrium  I is saddle point stable, while the other ones, if existing, will either be saddle 

point stable or unstable. See Appendix for a formal proof. In the Appendix, we also show that 

the current value Hamiltonian is jointly concave in the control and stock variable at 

equilibrium point I, and hence this point is a (local) maximum. On the other hand, 

characteristics of points II and III depend on the parameter values of the damage function and 

the population growth function.  When either point II or point III is a saddle point or when 

both points are saddle points, or when the optimality of the point(s) cannot be determined, 

equilibrium point I will be the global maximum equilibrium, and there could be a control rule 

that spans the entire control-state space that leads to point I, even if point II and III exist. See 

Figure 2, and also Figure 4 numerical section below. See also the discussion in Wirl and 

Feichtinger [2005] and Brock and Starrett [2003]. In what follows, we will examine the value 

case with positive marginal revenue of the harvest, because this case fits the reality of 

Scandinavian moose hunting (e.g., Solstad [2007]). More precisely, the value case here means 

                                                   
5 Similar classifications, but in other settings, can be found in Schulz and Skonhoft [1996], Zivin et al. [2000] 
and Horan and Bulte [2004]. 
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the demand for hunting licences is ‘high’ such that equilibria II and III do not exist (see also 

below).   

 

 Figure 2 about here 

For landowner 2, the control condition reads 2 2 2 2 2 2 2 2/ ( ) '( ) 0H h P h P h h λ∂ ∂ = + − = , while the 

portfolio condition is the same as that in competitive case. The golden rule satisfies: 

 (9) 
* *

* 2 1 2
2 2 * * *

2 2 2 2 2

( )( )
( ( )) ( ( )) ( )

D X XG X
P G X P G X G X

αδ
′ +′ = +

′+
. 

The 2h -isocline is defined by 2 2 2 2 2( ' )( ') ' 0P P h G Dδ+ − + = . As for landowner 1, there can 

either be one equilibrium or three equilibria. The difference is that these equilibria may be 

contingent upon the size of subpopulation 1; in this case, only the equilibrium where the 

moose represents a value, corresponding to point I in Figure 2 for landowner 1, is a global 

maximum steady state. With a constant marginal damage cost, however, there will be no 

interaction among the stocks and hence no management interdependency (see below). The 

dynamics of landowner 2’s management problem will then not differ from that of landowner 

1. On the other hand, with increasing marginal damage, there will be economic 

interdependency. This interaction can be complex, as landowner 1’s management may 

influence the speed and circumstances under which equilibrium I of landowner 2 will be 

reached. This is stated as: 

Result 3:  With monopolistic hunting licence pricing, there may be a complex economic 

unidirectional management interdependency among the landowners. 

 

Economic interaction will now be analysed in detail under both constant and increasing 

marginal damage cost.  In both cases, the linear inverse demand curve, i i i iP hγ β= −  with 

0iγ > and 0iβ > ( 1,2i = ), is applied. Again, we start with the constant marginal case. 

 

 Case 1: Constant marginal damage 

With constant marginal damage, and the linear demand function, the 1h -isocline reads 



    15 

1 1 1 1 1 1( 2 )[ '( )] (1 ) 0h F X aγ β δ α− − + − = which may also be written as  

1 1 1 1 1 1(1/ 2 )[ (1 ) / ( '( ))]h a F Xβ γ α δ= + − − .  Differentiation yields  

2
1 1 1 1 1/ (1/ 2 ) (1 ) ''/ ( ') 0dh dX a F Fβ α δ= − − < . 1h unambiguously shifts down with shrinking 

market demand conditions through smaller 1γ and/or higher 1β . In addition, it shifts down with 

less damage and a smaller 1a when 1( ') 0Fδ − > , and does the opposite when 1( ') 0Fδ − < . 

This confirms the above discussion about potential forces making the moose a pest, with 

negative marginal hunting revenue *
1 1 1( 2 ) 0hγ β− <  and two intersections between the 1h -

isocline and the 1X -isocline when 1( ') 0Fδ − > . We also see that more dispersal shifts up the 

1h -isocline in the value case and hence the steady state stock becomes higher. The golden rule 

condition now satisfies * *
1 1 1 1 1 1( ) (1 ) / [ 2 ( )]F X a F Xδ α γ β′ = + − − . 

 

For landowner 2, the golden rule condition reads * *
2 2 2 2 2 2( ) / [ 2 ( )]G X a G Xδ γ β′ = + − . Just as 

under the perfect competition assumption, there is no stock interaction, and landowner 2’s 

management is independent of landowner 1’s management at the steady state. This will also 

be so during the transitional phase before steady state is reached. The conditions for obtaining 

one, or three equilibria, will be of a similar type. Also, for landowner 2, the equilibrium 

conveying the value case with *
2 2 22 0hγ β− >  will be the maximum, and there could be a 

control rule that spans the entire control-state space that leads to point I, even if point II and 

III exist. We may then state: 

Result 4: With monopoly pricing and constant marginal damage, there is still no management 

interaction among landowners. In the value case, more dispersal means a larger steady state 

size of subpopulation 1, while the size of subpopulation 2 is not affected.  

 

We may also compare the optimal steady state stocks and harvest under the monopoly market 

with that under the competitive market in the situation where the moose represents a value. In 

order to make the market price of a hunting license comparable under these two market 

structures, we introduce the same downward sloping linear demand schedule in both cases. 

The harvest dynamics of landowner 1 with price taking may then be written as  
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1 1 1 1 1/ [( )( '( )) (1 ) '((1 ) )] / ( )i i i idh dt h F X D Xγ β δ α α β= − − + − − − , and we find the 1h -isocline 

as ( )1 1 1 1 1 11/ [ (1 ) / ( '( ))]h a F Xβ γ α δ= + − − . It can easily be shown that the intersection of the 

1h -isocline with the 1X -axis is similar in the price taking case and monopoly case, while the 

intersection with the 1h -axis takes place at a higher value in the price taking case. Therefore, 

the 1h -isocline intersects with the 1X -isocline at a point with more animals hunted in the 

competitive case than in the monopoly case.  That is, in the competitive case, we find a higher 

number of animals hunted and hence, as suspected, a lower price. At the same time, this 

means that the equilibrium stock is higher in the competitive case than in the monopoly case. 

This result is stated as: 

Result 5: When moose is considered valuable, with a linear demand function and a linear 

browsing damage function, monopoly leads to a less stock-conserving harvest policy than that 

in the competitive case.  

 

This result contrasts with what is often found in resource economic models, but we reach 

similar results as those in Staahler [1996] and Bulte and van Kooten [2002]. The above 

reasoning could also be related to the analysis of Wirl and Feichtinger [2005] and Clark [1990, 

Ch. 6.3]. Clark also studies a situation with a falling marginal revenue curve, but no damage, 

and ends up with three equilibria, just as in Figure 2.  

 

Case 2:  Increasing marginal damage 

With increasing marginal browsing damage and the cost functions written as 2( / 2)i i iD b Z=

( 1,2i = ), we find the 1h -isocline to satisfy 

 2
1 1 1 1 1 1 1( 2 )( ( )) (1 ) 0h F X b Xγ β δ α− − + − =  while the golden rule condition becomes 

2 *
* 1 1
1 1 * * *

1 1 1 1 1

(1 )( )
( ( )) ( ( )) ( )

b XF X
P F X P F X F X

αδ −′ = +
′+

. In a similar manner, the 2h -isocline reads  

2 2 2 2 2 2 1 2( 2 )( ( )) ( ) 0h G X b X Xγ β δ α− − + + =  while  

* *
* 2 1 2
2 2 * * *

2 2 2 2 2

( )( )
( ( )) ( ( )) ( )

b X XG X
P G X P G X G X

αδ +′ = +
′+

 states the golden rule condition for landowner 2.  
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Therefore, with increasing marginal cost, just as in the price taking market situation, there is a 

unidirectional management interaction at the steady state as well as during the transitional 

phase before reaching the steady state. In the value case where demand and cost conditions 

ensure a unique equilibrium, the dynamics for both subpopulations are of the saddle point 

type.  The impact of dispersal rate change on the steady state with increasing marginal 

damage is illustrated in the numerical section six.  

 
5. Duopoly market 
 
In sections three and four, two extreme market situations have been considered. We now 

proceed to analyse an intermediate case with market interaction among the agents structured 

as a duopoly. Both landowners then face the same inverse demand function 1 2( )P P h h= +  

with ' 0P < . With an infinite planning horizon, the two landowners play a dynamic Cournot 

game. Only the value case with positive marginal revenue of the harvest is examined. 

 

We consider the open loop strategy in the Cournot game. That is, the landowners commit 

their optimal harvest (number of hunting licenses) to each other at time 0t =  over the infinite 

planning horizon, given the expectation of the entire optimal harvest path of the other player 

(Dockner et al. [2000]).  The closed loop Nash equilibrium, which conditions next period 

harvest strategy on the current state (i.e., Markovian strategies), is thus left out of our analysis. 

The main reason is that it is too complex to identify proper value functions for nonlinear 

Hamiltonians in a closed loop game. Although we may expect different harvesting levels 

under Markovian strategies, our results with open loop Nash equilibrium is sufficient to 

demonstrate that not only unidirectional migration but also the interaction of hunting licence 

prices affects harvesting strategy. Therefore, the management problem of landowner 1 under 

the open loop strategy is to maximize present-value profit

1
1 1 2 1 1 1

0

[ ( ) ((1 ) )] tPV P h h h D X e dtδα
∞

−= + − −∫  subject to the animal growth constraint (1) and 

the expected harvest 2h of landowner 2.  In a similar manner, the management problem of 

landowner 2 is to maximize 2
2 1 2 2 2 1 2

0

[ ( ) ( )] tPV P h h h D X X e dtδα
∞

−= + − +∫  subject to growth 

constraints (2) and the expected harvest 1h , but also subject to 1X .  
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The current value Hamilton of landowner 1 reads  

1 1 2 1 1 1 1 1 1( ) ((1 ) ) ( ( ) )H P h h h D X F X hα λ= + − − + −  with the control condition 

1 1 1 2 1 2 1 1/ ( ) ( ) 0H h P h h P h h h λ′∂ ∂ = + + + − =  . The portfolio condition is the same as in the 

previous market cases. When combining these equations, we find the harvest dynamics for 

landowner 1as: 

(10) 1 2 1 1 2 22 '( ) / '( ) /P h h dh dt P h h dh dt+ + + =  

1 1 1 2 1 1 2 1 1( '( ))( '( ) ( )) (1 ) '((1 ) )F X P h h h P h h D Xδ α α− + + + + − − . 

In a similar way, the harvest dynamics for landowner 2 reads: 

(11) 1 2 2 1 2 12 '( ) / '( ) /P h h dh dt P h h dh dt+ + + =

 2 2 1 2 2 1 2 2 1 2( '( ))( '( ) ( )) '( )G X P h h h P h h D X Xδ α− + + + + + .  

Equations (10) and (11), together with the population dynamics constraints (1) and (2), define 

the dynamics of the open loop game. In contrast to the competitive market and the monopoly 

market, the interaction among the agents is no longer unidirectional.  2 /dh dt as well as 2h are 

included in condition (10), while 1 /dh dt and 1h are included in condition (11). This is stated 

as: 

Result 6: Because of the market interaction, there is a reciprocal economic interaction among 

the agents. The interaction channels through the hunting market as well as through migration. 

 

The 1h -isocline found through (10) is 1 1 1( ')( ' ) (1 ) ' 0F P P h Dδ α− + + − = .  For a fixed value of 

2h , it has a similar shape to the isocline in the monopoly case (Figure 2). When the moose is 

considered valuable, which is the case here, the 1h -isocline intersects once with the 1X -

isocline and ensures a unique solution. The 2h -isocline having a similar shape which, for a 

given value of 1h , also indicates a unique intersection between this isocline and the 2X -

isocline when the moose is  considered valuable.  The golden rule stock condition for 

subpopulation 1 reads: 
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(12) 
*

* 1 1
1 1 * * * * *

1 2 1 2 1

((1 ) )( )
( ( ) ( )) ( ( ) ( )) ( )

D XF X
P F X G X P F X G X F X

αδ
′ −′ = +

′+ + +
,  

and the golden rule condition for subpopulation 2 satisfies: 

(13) 
* *

* 2 1 2
2 2 * * * * *

1 2 1 2 2

( )( )
( ( ) ( )) ( ( ) ( )) ( )

D X XG X
P F X G X P F X G X G X

αδ
′ +′ = +

′+ + +
. 

The golden rule conditions represented by these two equations also include marginal revenue 

terms to value whether the moose should be kept in the forest or in the bank. 

 

The impact of dispersal rate α on the steady state stocks and harvests in the duopoly market is 

different from that of the competitive and monopoly case. With fixed marginal damage cost, 

landowner 2’s harvest decision is unaffected by the amount of dispersal in the competitive 

and monopoly market situations. Under the duopoly market, on the other hand, we find that a 

higher dispersal rate will lower the steady stock *
2X and harvest *

2h  through the market price 

interaction.  In a first step, higher dispersal rateα  increases *
1X and *

1h . Higher *
1h  next 

lowers marginal harvest revenue of landowner 2 and reduces the steady stock *
2X and harvest 

*
2h . When browsing damage is nonlinear, dispersal rate change affects landowner 2’s decision 

through changes in both market price and marginal browsing damage. These effects are 

similar to those in the monopoly case. The numerical simulations (next section) confirm these 

analytical findings.  

  

6. Numerical Illustration 

6.1 Data and specific functional forms 

The above theoretical reasoning will now be illustrated numerically. As already specified, 

animal growth is described by the standard logistic growth function. The damage functions 

also follow previous specifications, and results with both linear and strictly convex functional 

forms are demonstrated. The same linear demand function is assumed for both monopoly and 

duopoly market.  The slope and the choke price are assumed to be similar for both landowners, 

i.e., 1 2β β β= = and 1 2γ γ γ= = . The choke price is fixed as 10,000γ =  (NOK/animal) while 

the slope is given as 1 2 6.77β β= = (NOK/animal2). The same discount rate is also assumed 

for both landowners. The value of the intrinsic growth rate of moose is based on Skonhoft and 
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Olaussen [2005], while the carrying capacity, typically depending on the size of the areas 

(section two), is assumed similar 1 2 4,550K K= = (number of animals) for both 

subpopulations. The maximum sustainable yield stock level is therefore 2,275msy
iX =  

( 1, 2i = ). The baseline dispersal rate is assumed to be 20%, that is, 0.20α = (Skonhoft and 

Olaussen [2005]). Browsing damage, cost data and price data are adopted from Solstad [2007]. 

Table 1 summarizes the baseline data used in the simulations. For these baseline data, the 

harvest isoclines intersect with the natural growth functions only once in the monopoly and 

duopoly market situations (again, see Figure 2). Hence these data convey information only 

about the case in which moose are regarded as valuable. We examine the robustness of other 

results by changing some of the key parameter values such as the dispersal rate. We also 

examine what happens in the monopoly case when the demand for hunting licence is ‘low’, 

such that the pest case and three steady states are included. The effect of the changed initial 

situation in the monopoly case is also studied to confirm whether there is a control rule that 

spans the entire control-state space leading to point I, even if point II and III exist. 

 

 Table 1 about here 

  

6.2 Results 

Tables 2-4 report optimal steady state stock levels and harvest under the three different 

market assumptions. Results with different dispersal rates are included to illustrate different 

migration patterns. Price taking behaviour is first considered in Table 2. The results confirm 

that the degree of dispersal has no effect on the size of subpopulation 2 when marginal 

browsing damage cost is constant (Result 1). The opposite happens for landowner 1, who 

finds it beneficial to keep a larger subpopulation and harvest more with more dispersal. It is 

also seen that more dispersal means higher profit for landowner 1 and less profit for 

landowner 2. With increasing marginal damage, more dispersal means a larger subpopulation 

1, which spills over to a lower subpopulation 2 (Result 2). As expected, the population sizes 

are always below that of msy
iX ( 1, 2i = ). 

 

Table 2 about here 
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Table 3 demonstrates what occurs under monopoly pricing. We find that 1 1'( ) 0F X δ− = and 

2 2'( ) 0G X δ− = yield 1 2 2,033X X= = . Therefore, for the baseline demand conditions, all 

optimal stock values in Table 3 (and Table 4, see below) are below the critical number, 

indicating that we have the value case. In the baseline case with 0.2α = , landowner 1 charges 

the monopoly price * *
1 1 1 1 10,000 6.77 499P hγ β= − = − ⋅ =6,622 (NOK/animal) while 

landowner 2 charges 6,683 (NOK/animal). The marginal revenues are *
1 1 12 hγ β− = 3,243 and 

*
2 2 22 hγ β− =3,367 (NOK/animal), respectively.  With constant marginal damage, there is still 

no management interaction among landowners (Result 4). However, just as in the competitive 

market price case, the profit for landowner 1 increases with a higher dispersal rate, while it 

decreases for landowner 2. With a linear demand function and a linear browsing damage 

function, we found that monopoly leads to a less stock-conserving harvest policy than in the 

competitive case when moose is considered as a value (Result 5). However, as the price is 

fixed as 5,000P = (Table 1), and hence no downward sloping demand function is introduced 

in the competitive case reported in Table 2, stock values as well as harvest are not comparable 

in that respect here.  

 

Table 3 about here 

 

The steady state results of the duopoly market are reported in Table 4, where only the value 

case is considered. Steady state stock of subpopulation 2 decreases with higher dispersal rate 

even under the constant marginal damage cost assumption (Result 6). With baseline dispersal 

rate 0.2α =  and linear damage functions, market price for the hunting licence equals 
* * *

1 1 1 2( ) 10,000 6.77(428 406) 4353P h hγ β= − + = − + = (NOK/animal).  The marginal revenue 

for the landowner 1 and 2 are 1,453 NOK and 1,605 NOK, respectively. Impacts of dispersal 

rate change on the profit for the two landowners work in the same manner as those in the 

competitive and the monopoly market cases. 

  

Table 4 about here 
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We then look at the dynamics. The dynamics under the competitive market are of the MRAP 

type. Accordingly, if the initial stock 1(0)X is lower than the steady state stock, no harvest 

will take place. The dynamic path of subpopulation 1 then simply follows the solution of 

1 1 1 1/ (1 / )dX dt rX X K= − ,  or 1 1 1 1 1/{ [( (0)) / (0)] 1}rtX K e K X X−= − + . The subpopulation 2 

dynamic path has a similar pattern.   

 

Figure 3 shows the dynamics for the two subpopulations under the monopoly market and the 

duopoly market for baseline value of 0.2α = , and for 0.4α =  when the marginal damage is 

constant6. We again only consider the value case with a ‘high’ demand and 10,000γ =

(NOK/animal) and hence with only one steady state equilibrium and with saddle path 

dynamics under both market forms. In the linear damage case, the possibility of a complex 

unidirectional management interdependency among the landowners is not present, unlike the 

general monopoly situation (Result 3). Figure 3 indicates that a higher dispersal rate yields a 

higher stock size of subpopulation 1 at every point of time along the transitional phases as 

well as in the steady state (see also Tables 3 and 4) under the monopoly market and the 

duopoly market. For subpopulation 2, there are no changes with increasing dispersal in the 

monopoly case (Result 4), while the steady states as well as the transitional paths shift down 

with more dispersal in the duopoly market.  

 

 Figure 3 about here 

 

Although the following results are not presented in the paper, but are available upon request 

from the authors, we find that, with increasing marginal browsing damage, the dynamic paths 

of subpopulation 1 will exhibit similar pattern as those under constant marginal damage. For 

subpopulation 2, the transitional dynamics will be similar to that of the duopoly market under 

constant marginal damage; that is, the stock will be affected by dispersal rate in both markets 

with nonlinear browsing damage. In the monopoly market, the impact channels only through 

increased marginal damage. A higher migration rate will raise marginal damage both directly 

                                                   
6 The dynamic optimization was performed with the Boundary Value Problem (BVP) of Sumlink tool box in 

Matlab 7.0.   
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and indirectly by increasing subpopulation 1 and by reducing the stock of subpopulation 2. In 

the duopoly market, however, the impact operates through both market factors and marginal 

browsing damage.  

 

Figure 4 presents the 1 1X h− phase plane and dynamic paths for subpopulation 1 with 

different initial stock values under the monopoly market. The upper panel shows the baseline 

case situation when the demand for hunting licence is ‘high’ with 1 10,000γ = (NOK/animal), 

the moose is valuable, and point I is the only steady state. The parabola describes the saddle 

path of an initial point starting from the left side of the steady state with 1(0) 800X = . See 

also Figure 3.  The lower panel demonstrates the situation when demand for hunting license is 

‘low’ with 1 4,000γ =  (NOK/animal) and there exist three equilibra (see also Figure 2). The 

saddle path demonstrates that when subpopulation 1 initially has a relatively high  value as 

given by 1(0) 3,500X = , the stock value may decrease over time and reach equilibrium I even 

if point II and III exist. 

 

 Figure 4 about here 

 

7. Concluding remarks  

Using Scandinavian moose as an example, we have analyzed the economic interdependency 

of exploitation of two subpopulations of wildlife located in two areas with two landowners, 

and have considered three market situations with both linear and nonlinear damage cost 

assumptions.  Just as in models with ecological interconnections, and models where wildlife 

or fish populations disperse in a density dependent manner between different areas, we find in 

this paper that damage associated with density independent dispersal and market price 

interaction can create economic interdependency between different agents.  

 

Table 5 about here 

Our main findings may be summarized as follows (Table 5). Under price taking behaviour, 

the combination of MRAP and singular path at equilibrium is the optimal harvest strategy for 

both landowners. Harvest along the singular path at equilibrium is the optimal strategy in both 
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monopoly and duopoly markets when moose are regarded as valuable. The stock and the 

harvest of the subpopulation that migrates in our model increases with dispersal rate in all the 

three markets, regardless of cost specification. Under price taking as well as monopoly 

pricing, when a linear damage function is assumed, optimal stock and its dynamic path for the 

non-migratory subpopulation whose landowner suffers from dispersal-associated browsing 

damage is not affected by the dispersal rate change of the other migratory subpopulation. The  

non-migratory subpopulation will decrease with a higher dispersal rate when the damage 

function is nonlinear. In the duopoly market, the stock and dynamic path of this subpopulation 

shift down under both linear and nonlinear cost functions, due to the effect of price interaction 

in addition to change in browsing damage. The result is robust in both equilibrium and 

dynamic states.  We reach similar results as those in Staahler [1996] and Bulte and van 

Kooten [2002], showing that the market with perfect competition works in a more stock-

conservative manner than does a monopoly market. Nevertheless, our results are different 

from the findings in Halsema and Withagen [2008] due to the different type of stock-

dependent cost assumed in our model.  
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FIGURE 1: The moose migration pattern.  

Figure note: Notice that our model (Equations (1)-( 4))  is formulated in continuous time 

indicating that all events over the year cycle take place simultaneously. 
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FIGURE 2. Isoclines of landowner 1’s management problem under monopoly pricing. Solid 

lines with arrows indicate saddle paths. 
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 Monopoly market   Duopoly market 

 Subpopulation 1X   Subpopulation 1X  

 
 Monopoly market Duopoly market 

 Subpopulation 2X  Subpopulation 2X  

  
FIGURE 3. Transitional stock dynamics. Monopoly market and duopoly market.  Constant 

marginal costs and different dispersal rates. Initial stock size 1 2(0) (0) 800X X= = . Straight 

lines: baseline value with dispersal rate, 0.2α = . Lines with asterisk: high dispersal rate, 

0.4α = . 
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FIGURE 4. The 1 1X h− phase planes with and saddle paths for subpopulation 1 with different 

initial points under monopoly market.  Linear damage function is assumed. Upper panel: 

Moose regarded as valuable and demand for hunting licenses is ‘high’: 1 10,000γ =

(NOK/animal). Lower panel: Moose regarded as a pest and  demand for hunting licenses is 

‘low’: 1 4,000γ = (NOK/animal). The straight dash-dot line: asymptote 1( ') 0Fδ − = .  Curving 

dash-dot lines: 1h -isoclines.  The dashed line: 1X -isocline. Lines with asterisk: saddle paths. 

Contours with solid line: current value Hamilton.   
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TABLE 1. Baseline ecological and economic parameter values 

Parameter description 

 

Value 

Intrinsic growth rate 0.47r =  

Carrying capacity 

 
1 2 4,550K K= = (number of 

animals) 

Discount rent 
1 2 0.05δ δ= =  

Market price (price taking behaviour) 5,000P = (NOK/animal) 

Slope parameter demand curve  
1 2 6.77β β= = (NOK/animal2) 

Choke price demand curve 
1 2 10,000γ γ= = (NOK/animal) 

Constant marginal damage coefficient 
1 2 290a a= = (NOK/animal) 

Increasing marginal damage coefficient 
1 2 1.6b b= = (NOK/animal2) 

Dispersal parameter 0.2α =  

 

 

TABLE 2. Steady states under price taking behaviour. Optimal harvest *
ih (number of 

animals), stock level *
iX  (number of animals) and profit *

iπ (in 1,000 NOK)  

 Constant marginal damage Increasing marginal damage 

0α =  0.2α =  0.4α =  0α =  0.2α =  0.4α =  
*
1X  1,752 1,808 1,865 798 1,021 1,305  

*
2X  1,752 1,752  1,752 798 674 480 

*
1h  506 512 517 309 372 437 

*
2h  506 506 506 309 270 202 

*
1π  2,024 2,141 2,262 1,037 1,327 1,697 

*
2π  2,024 1,919 1,808 1,037 732 206  
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TABLE 3. Steady states monopoly market when moose are regarded as valuable. Optimal 
harvest *

ih (number of animals), stock level *
iX  (number of animals) and profit *

iπ (in 1,000 
NOK)   

 Constant marginal damage Increasing marginal damage 

 0α =  0.2α =  0.4α =  0α =  0.2α =  0.4α =  
*
1X  1,616 1,687 1,764 852 1,018 1,231 

*
2X  1,616 1,616 1,616 852 767 654 

*
1h  490 499 508 326 371 422 

*
2h  490 490 490 326 300 263 

*
1π  2,806 2,913 3,026 1,960 2,248 2,578 

*
2π  2,806 2,708 2,601 1,960 1,637 1,110 

 

 

TABLE 4. Steady statesduopoly market when moose are regarded as valuable. Optimal 
harvest *

ih (number of animals), stock level *
iX  (number of animals) and profit *

iπ (in 1,000 
NOK)  

 Constant marginal damage Increasing marginal damage 

0α =  0.2α =  0.4α =  0α =  0.2α =  0.4α =  
*
1X  1,181 1,260 1,354 718 880 1,104 

*
2X  1,181 1,158 1,133 718 618 481 

*
1h  411 428 447 284 334 393 

*
2h  411 406 400 284 251 202 

*
1π  1,480 1,572 1,672 1,336 1,619 1,995 

*
2π  1,480 1,358 1,221 1,336 1,012 527 

 
 
 
 
 
 
 
 
 
 



    33 

TABLE 5.Summary of optimal harvest strategies and impacts on optimal steady state stocks. 
Moose are considered as valuable in the monopoly as well as duopoly market situation. 
 Optimal harvest 

strategies 
The impact of migration rate on optimal stocks for 
subpopulation 1 and subpopulation 2 
Constant marginal 
damage 

Increasing marginal 
damage 

*
1X  *

2X  *
1X  *

2X  
Market with 
fixed price 

Combination of 
MRAP and singular 
path 

 
+ 

Not 
affected 

 
+ 

 
- 

Monopoly 
market 

The singular path 
 
 

 
+ 

Not 
affected 

 
+ 

 
- 

Duopoly market The singular path + - + - 
Table note: + indicates positive impact; - indicates negative impact.  
 
 
 
 
 
 
 
Appendix 
 
In this appendix we look at the properties of the Hamiltonian and stability conditions in the 
monopoly case for landowner 1 (area 1). We first find 

2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1/ '( ) ''( ) '( ) 2 '( ) ''( ) 0H h P h P h h P h P h P h h∂ ∂ = + + = + < due to concavity of the 

revenue function. With linear demand function, it simplifies further to 
2 2

1 1 1 1/ 2 '( ) 0H h P h∂ ∂ = < . We next find 2 2 2
1 1 1 1 1 1/ (1 ) ''((1 ) ) ''( )H X D X F Xα α λ∂ ∂ = − − − + .  

 
When the moose are regarded valuable and 1 1 1 1 1 1( ) '( ) 0P h P h hλ = + > , we have 2 2

1 1/ 0H X∂ ∂ <
as the damage function is convex and the natural growth function is concave. Because of

2
1 1 1/ 0H h X∂ ∂ ∂ = , the determinant of the Hessian matrix is positive and the Hamiltonian is 

concave in the stock and control variables, and hence equilibrium point I represent a (local) 
maximum point.  
 
In the pest case with 1 1 1 1 1 1( ) '( ) 0P h P h hλ = + < , the sign of 2 2

1 1/H X∂ ∂ is general unclear. 
However, under the assumption of linear damage function, i.e. 1 1''((1 ) ) 0D Xα− = , we find

2 2
1 1 1 1/ ''( ) 0H X F Xλ∂ ∂ = > . Therefore, the determinant of the Hessian is negative and the 

extremes II and III representing the pest case are not maximums, but of the saddle type. When 
damage is nonlinear, i.e. 1 1''((1 ) ) 0D Xα− > , the sign of 2 2

1 1/H X∂ ∂ depends on the parameter 
values of the damage function and the population growth function. If the damage function is 
weakly convex, we also reach the conclusion that the Hamiltonian is not concave but has 
saddle point properties. If the damage function is strongly convex, the Hamiltonian could still 
be concave in the stock and control variables. Similar reasoning applies to landowner 2 and 
area 2. 
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We now  analyze the stability properties of the dynamic system in the neighbourhood of  the 
three equilibrium points, I, II and III. The Jacobian matrix of the stock and harvest dynamic 
system reads 

( )
1

1 1 1 1 1 1 1 1 1 1 1
1 1

1 1

'( ) 1
( , ) ( ( ) '( ) ) ''( ) (1 ) '' (1 )

'( )
2 '( )

F X
J X h P h P h h F X D X

F X
P h

α α
δ

− 
 = − + + − − −
  

 . The eigenvalues 

are found through   

[ ][ ] ( )1 1 1 1 1 1 1 1
1 1 1

1 1

( ( ) '( ) ) ''( ) (1 ) '' (1 )
'( ) '( ) 0

2 '( )
P h P h h F X D X

F X F X
P h

α α
λ δ λ

− + + − −
− − − + =  , or

 
[ ] ( )1 1 1 1 1 1 1 12

1 1 1 1
1 1

( ( ) '( ) ) ''( ) (1 ) '' (1 )
'( ) '( ) 0

2 '( )
P h P h h F X D X

F X F X
P h

α α
λ δ λ δ

− + + − −
− + − + =

 
 
When moose are regarded as valuable, 1'( ) 0F X > , 1 1'( ) 0F Xδ − < and the marginal revenue 
satisfies 1 1 1 1 1( ) '( ) 0P h P h h+ > . Since the three inequalities hold, i.e. 1''( ) 0F X < , 

( )1 1'' (1 ) 0D Xα− ≥ and 1 1'( ) 0P h < , we reach 
 

[ ] ( )1 1 1 1 1 1 1 1
1 1 1

1 1

( ( ) '( ) ) ''( ) (1 ) '' (1 )
( ) '( ) '( ) 0

2 '( )
P h P h h F X D X

Det J F X F X
P h

α α
δ

− + + − −
= − + <

 
This implies that one eigenvalue is positive and the other is negative. Therefore, the system in 
the neighbourhood of  equilibrium point I shows saddle path dynamics.  
 
When moose are regarded as nuisance, 1 1'( ) 0F Xδ − > and the marginal harvesting revenue 
satisfies 1 1 1 1 1( ) '( ) 0P h P h h+ < . For equilibrium II, when 1'( ) 0F X >  and the damage function 

1 1''((1 ) )D Xα− is linear or just weakly convex, ( ) 0Det J > . 1 2 1Since 0λ λ δ+ = > , both 
eigenvalues are positive. The

 
system near point II will then be unstable. If and only if the 

damage function is  strongly convex, the system near point II will exhibit saddle path 
dynamics.  
 
When 1'( ) 0F X < , the dynamics near equilibrium II and equilibrium III will share similar 
characteristics With linear damage function, ( ) 0Det J > if the marginal revenue has large 
negative value or the demand has a gentle negative slope. The system near point II and III will 
then be unstable. When damage function 1 1''((1 ) )D Xα− is strongly convex or marginal 
revenue is slightly negative, ( ) 0Det J < . This implies that both points are saddle point stable. 
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