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Abstract 
This paper investigates the allocation decision of an investor with two projects. Separate managers 

control the mean return from each project, and the investor may or may not observe the 

managers’ actions. We show that the investor’s risk-return trade-off may be radically different 

from a standard portfolio choice setting, even if managers’ actions are observable and enforceable. 

In particular, feedback effects working through optimal contracts and effort levels imply that 

expected terminal wealth is nonlinear in initial wealth allocation. The optimal portfolio may 

involve very little diversification, despite projects that are highly symmetric in the underlying 

model. We also show that moral hazard in one of the projects need not imply lower allocation to 

that project. Expected returns are generally lower than under the first-best, but the optimal 

contract shifts more of the idiosyncratic risk in the hidden action project to the manager in charge 

of it. The minimum-variance position of the investor’s (net) terminal wealth would in most cases 

involve a portfolio shift towards the hidden action project, and there are plausible cases where this 

would dominate the overall effect on the second-best optimal portfolio when comparing with the 

first-best. 
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1. Introduction 

 

Investors commonly delegate the management of their resources to several professional 

managers. Examples include mutual fund investors that spread their holdings between 

different fund managers, venture capitalists that allocate capital to many entrepreneurs, 

and direct investments in firms governed by different CEOs. The allocation decision 

faced by an investor in such cases can be described as a portfolio choice where the return 

on available assets is, in part, determined by the actions of different agents. Indeed, one 

may argue that the purpose of delegated investment management is to realize a rate of 

return that managers, but not the investor, can possibly achieve. As a large literature on 

optimal contracts makes clear,1 the actions of managers under such investment 

arrangements are influenced by the compensation schemes offered to them. In a delegated 

investment setting, a rational investor must thus choose the optimal managerial 

contracts, in addition to the optimal portfolios. 

Despite the frequent occurrence of delegated investment arrangements, standard 

models of portfolio choice usually assume that investors manage their own wealth,2 

making them unsuitable for analyzing the type of investment decisions discussed here. 

Models of optimal contracts have been applied to portfolio choice (Sung, 1995; Dybvig et 

al., 2001; Ou-Yang, 2003; Westerfield, 2005), but these applications analyze how the 

portfolio choice of agents (i.e., managers) responds to contractual incentives; they do not 

discuss how an investor’s portfolio selection interacts with optimal contracts.3 

                                                 
1 See, e.g., Holmstrom and Milgrom (1987), Schättler and Sung (1993, 1997), Sung (1995, 2005), Müller 

(1998), Ou-Yang (2003), and Westerfield (2005). 
2 See Campbell and Viceira (2002) for a synthesis of modern theories of portfolio choice. 
3 The contract literature referred to here discusses models with one principal and one agent, which obviously 

precludes an analysis of how an investor optimally should allocate wealth among several managers. 



 3

This paper investigates the portfolio decisions of an investor that can allocate her 

wealth between two projects. The mean rate of return from each project is determined by 

the actions (effort) of the manager in charge of it. These actions may or may not be 

observed by the investor, and are affected by the contract between investor and the 

managers. The model draws on the analysis of dynamic principal–agent problems by 

Holmstrom and Milgrom (1987), Schättler and Sung (1993, 1997), Sung (1995), and 

Müller (1998). That is, we explore a continuous-time model where output follows a 

Brownian motion and both the principal (the investor) and the agents (the managers) 

have constant absolute risk aversion, defined over terminal wealth4. This is a natural 

point of departure as, unlike the static principal–agent problem, the continuous-time 

version admits relatively easily interpreted solutions. 

Upon presenting the model in Section 2, we analyze the first-best case of 

observable and enforceable actions in Section 3. We show that, even in this case, the risk-

return trade-off involved in the investor’s portfolio decision is quite different from that in 

a standard portfolio choice model. First, the investor’s risk aversion is effectively lower 

than her CARA-coefficient, because some of the terminal wealth risk is carried by the 

managers, according to the optimal contracts. Second, there are important feedback 

effects, working through optimal contracts and efforts, that make expected terminal 

wealth nonlinear in initial wealth allocation. Depending on the shape of managers’ cost 

functions, the investor may have incentives to choose a highly “nondiversified” portfolio, 

even if the projects are completely symmetric. A general insight is that, in a principal–

agent setting, the rate of return on a given investment is endogenous to the level of 

                                                 
4 Williams (2004) and Sannikov (2004) study moral hazard models where the (single) agent can consume 

continuously. Williams’s model is very general, but in most cases the solution can only be characterized and 

not solved explicitly. Sannikov assumes a risk neutral principal, making that model less suitable for studying 

an investor’s portfolio choice. 
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investment in that project; standard portfolio choice models treat the rate of return (and 

risk) on available assets as exogenous. 

In Section 4, we investigate the case where there are hidden actions in one of the 

projects.5 This introduces an asymmetry where, a priori, one perhaps would expect a tilt 

in the portfolio away from the hidden action project. We do indeed show that the 

expected return in this project is generally lower than in the first-best. However, the 

relevant risk in the project, as seen from the investor’s point of view, may be lower with 

moral hazard. This is because the investor uses the output from the project where actions 

can be observed as a signal to be included in the contract with the other manager 

(Holmstrom, 1982). The optimal contract then implies that the manager with hidden 

actions must carry more of the idiosyncratic risk associated with his project. 

Consequently, the minimum-variance allocation of the investor’s wealth is in most cases 

tilted towards the hidden action project. Even if expected returns generally would be 

lower in this project, there are therefore plausible cases where the investor would in fact 

invest more in it than if she had full information. 

Section 5 concludes the paper, and proofs are in the appendix. 

 

2. The principal–agent framework 

 

                                                 
5 Think of a fund that employs some managers “in-house”, with the possibility of internal monitoring, and 

delegates some of its assets to external managers, where the possibilities of monitoring are limited. Another 

example can be taken from the literature on the “home-bias puzzle” (see Lewis, 1999, for a survey), where it 

is sometimes argued that investors hold the lion’s share of their portfolios domestically because there is 

asymmetric information across countries. A possible interpretation of the setup in Section 4 is that of an 

investor who can make direct investments in imperfectly correlated domestic and foreign projects, and where 

it is easier to monitor the actions of a domestic manager. 



 5

We investigate the principal–agent relationship on the time interval [0,1]. At time 0, the 

principal (the investor) decides how to allocate initial wealth W(0) = W0 between two 

projects, A and B. The investment decision is assumed to be irreversible; the allocation is 

fixed until time 1.6 The output from the projects is publicly observable and governed by 

the processes 

 ( )0 0( ) ( ), , ( ), ,i i i i i idX t f u t X t dt X dz t i A B= + σ = , (1) 

where Xi0 is the amount invested project i, XA0 + XB0 = W0. Furthermore, σi is a diffusion 

parameter and dzi is a standard Wiener process that represents a project-specific shock. 

The instantaneous correlation coefficient ρ of these shocks is obtained from dzAdzB = ρdt, 

ρ ∈ [–1,1). Throughout, we will assume that the production function f is given by 

 0 0( , , ) ( ) , ,i i i if u X t u t X i A B= = . (2) 

The variable ui (later referred to as “effort”) is controlled by the manager in charge of 

project i (manager i), and may or may not be observed by the investor. In any case, the 

expected rate of return on invested resources in project i is controlled by manager i. 

This setup implies that the investor accumulates wealth according to 

 ( ) 0 0( ) ( ) ( ) ( ) ' ( )A B BdW t u t u t u t W dt W d t⎡ ⎤= ω − + + Σ⎣ ⎦ w B , (3) 

where 

 
2

0

1

A

B B

σ⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥σ ρ σ − ρ⎢ ⎥⎣ ⎦

, 

ω is the fraction of initial wealth invested in project A, ' [ 1 ], [ ]'Ad dz dh≡ ω −ω ≡w B , 

and dh is a standard Wiener process with the property that it is independent of dzA. 

                                                 
6 This assumption is imposed to obtain tractability, as allowing for continuous reallocation would introduce 

time-dependent drifts in the processes for XA and XB. Schättler and Sung (1997) show that introducing time-

dependent drifts of the Brownian motions would destroy the result that sharing rules are linear in output, 

and therefore the tractability of the model. 
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At time 0, the investor and the managers individually agree on sharing rules 

specifying payment from the investor to the managers at time 1. The sharing rules 

specify salaries SA and SB for manager A and B, respectively, and these are stochastic via 

dependence on the outcome of the stochastic process for W. The managers’ control 

variables, uA ≥ 0 and uB ≥ 0, can be revised continuously during the time interval [0,1] 

and may depend on the history of W in [0,t], but not on the future (t,1]. 

The managers incur costs of effort, assumed, for simplicity, to be quadratic in the 

level of effort 

 ( ) 21
20 0( ), , ( ) , ,i i i ic u t X t u t X i A Bθ= = , 

where θ ≥ 0. The assumptions of linear output and convex costs in effort are sufficient 

for well-defined solutions to both the first- and the second-best problems discussed below; 

see Theorem 4.2 in Schättler and Sung (1993). Observe that cost functions are 

symmetric: for a given allocation of resources, the cost of effort is equal for the two 

managers; for given effort, the cost of managing wealth is equal. 

Finally, both the investor and the managers have exponential utility functions. 

The investor’s constant coefficient of absolute risk aversion is R while the two managers 

are equally risk averse with a CARA-coefficient r. 

 

3. Full information 

 

We shall first characterize the optimal sharing rules, effort levels, and resource allocation 

in the first-best setting; that is, when both managers’ controls are observable and can be 

enforced at no cost. This analysis demonstrates that the trade-offs involved in the 

diversification decision are quite different from a standard portfolio choice model, even 
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when the investor can observe the actions of the managers. In addition, the analysis 

provides a benchmark for the case of asymmetric information considered below. 

 

3.1. General solution 

Ignoring time discounting, the investor’s first-best problem at time 0 is 

 ( ){ }
{ , }, , ,

max exp (1)
A B A B

A Bu u S S
E R W S S

ω
⎡ ⎤− − − −⎢ ⎥⎣ ⎦ , (4) 

subject to (4) and to the managers’ participation constraints: 

 ( ) { }
1

0 0
0

exp ( , , ) exp , ,i i iE r S c u X t dt rU i A B
⎧ ⎫⎡ ⎤⎪ ⎪⎪ ⎪− − − ≥− − =⎢ ⎥⎨ ⎬⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭∫ , (5) 

where U0 is the managers’ certainty equivalent at time 0, assumed to be identical for the 

two managers. The solution to this problem is summarized in the first result. 

 

Proposition 1: Under full information, the effort levels are constant, unique, and 

determined by the equality between the marginal productivity and the marginal cost of 

effort: 

 1
0 , ,i iu X i A B−θ= = . (6) 

Moreover, the salaries of the two managers are linear in combined output: 

 (1)
2i i

RS K W
r R

= +
+

, (7) 

where 

 ( )2 2 21 1
2 20 0 0 0

1 ln , , ;
2i i i i i j j

rK RW ru X R u X u X i A B i j
r R R

θ θ θ⎡ ⎤⎛ ⎞λ ⎟⎜⎢ ⎥≡ − + + − = ≠⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥+ ⎣ ⎦
, 

is a constant. Finally, the investor allocates a fraction 

 
( )2 1 2 1 21

2 0 0
2 2 2 2 2 2

0 0

2 2
( 2 ) ( 2 ) 2

B B A AA B B AB

A B AB A B AB A B AB

u X u Xu u r R r R
W R r W R r

θ− θ−⎡ ⎤⎡ ⎤ θ −− σ −σ+ +⎢ ⎥⎢ ⎥ω = + +⎢ ⎥⎢ ⎥σ + σ − σ σ + σ − σ σ + σ − σ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (8) 

of initial wealth to project A. 
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Proof: See the appendix. 

 

The effort levels uA and uB are constant because ω is constant and W0 is given. 

We note from (6) that the first-best effort levels generally depend on the investor’s 

allocation decision. Managers’ effort is increasing (decreasing) with resources under 

management if θ is smaller (greater) than one. This is because the managers’ marginal 

productivity of effort increases faster (more slowly) in allocated resources than do 

marginal costs when θ < (>) 1, giving incentives to increase (decrease) effort. Note also 

that, given the optimal effort levels, the production functions in (2) are increasing in Xi0 

if θ < 2, and have increasing returns in Xi0 if θ < 1. 

The optimal sharing rules given in (7) are similar to the corresponding rule in the 

one-agent model of Müller (1998). One difference is that the coefficient before W(1) gives 

more weight to the principal’s risk aversion, as she now shares the final output with two 

agents. Moreover, the first-best sharing rules imply full risk sharing between the two 

managers. They receive a fixed share of total output, independent of the relative output 

from the project of which they are in charge. The constant amounts paid to the two 

managers differ to the extent that their effort costs differ. The agent with the highest 

effort cost receives the biggest constant amount. 

The demand function (8) describes the investor’s optimal diversification with full 

information. The first term on the right-hand side represents demand arising from 

potentially higher return on one of the projects. Relative to a standard portfolio selection 

problem (see Ch. 2 in Campbell and Viceira, 2002, for a recent exposition), this demand 

is adjusted by a factor (r + 2R)/r: the inverse of the share of final wealth retained by the 

investor according to the optimal contracts. Any given expected return difference has a 
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bigger impact on the allocation decision, the higher the share of final wealth retained by 

the investor. The second term is new, compared to standard portfolio choice problems. It 

reflects possible differences in managers’ marginal wealth management costs. If, for a 

given allocation, manager A’s marginal cost is higher than B’s, it will contribute to 

lowering the allocation to project A. This is due to the properties of the constant 

amounts specified in the optimal contracts, as discussed above. The last term in (8) is the 

portfolio share that minimizes the variance of time 1 wealth. If marginal expected returns 

and marginal costs are equal across projects, the minimum-variance portfolio is optimal. 

 

3.2. A mean-variance interpretation 

Proposition 1 does not give a closed-form solution to the first-best problem; this is 

possible for a few values of θ only (to be discussed below). The proposition does however 

characterize the trade-offs involved in the investor’s allocation decision.  

To see how, we first recall that the investor derives utility from net final wealth. 

We can use Proposition 1 to write net final wealth as 

 ( )2 21
2 0 0(1) (1)

2A B A A B B
rW S S W u X u X

r R
θ θ⎡ ⎤− − = − +⎢ ⎥⎣ ⎦+

. (9) 

Next, observe that constant first-best effort levels imply that the wealth process (3) 

follows an arithmetic Brownian motion. It follows that the gross return on wealth over 

the time interval [0,1] is normal with mean 1 + ωuA + (1-ω)uB and standard deviation 

w’Σ. With normally distributed returns, maximizing (4) is equivalent to maximizing the 

mean-variance utility function 

 [ ] [ ]1
2(1) var (1)A B A BE W S S R W S S− − − − − . 

Taking the expectation in (9) and using (6), we have 

 [ ] ( )221 1
2 20 0 0(1) ( ) (1 )

2A B
rE W S S W W W

r R
−θ−θ⎡ ⎤− − = + ω + −ω⎢ ⎥⎣ ⎦+

, (10) 
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while the variance is 

 [ ]
2

2
0var (1) ' '

2A B
rW S S W

r R
⎛ ⎞⎟⎜− − = ΣΣ⎟⎜ ⎟⎜⎝ ⎠+

w w . (11) 

We can thus write the investor’s mean-variance utility as 

 2 2 21 1 1
2 2 20 0 0 0( ) ((1 ) ) ' '

2
rRW W W W

r R
−θ −θ⎡ ⎤+ ω + −ω − ΣΣ⎣ ⎦ +

w w . (12) 

This is an indirect utility function, characterizing the investor’s risk-return trade-off after 

incorporating the first-best effort levels and contracts. 

The mean-variance function in (12) highlights two differences from a standard 

portfolio choice model. First, the effective risk aversion is rR/(r+2R) < R. Some of the 

final wealth risk is carried by the managers, implying less aversion to a given wealth 

variance of the investor. The investor’s risk tolerance, or risk-bearing capacity, is (r + 

2R)/rR, compared to 1/R in the standard model. The difference in risk tolerance between 

the two models is thus 2/r; the less risk averse the managers, the higher is the investor’s 

tolerance of final wealth variance compared to the standard model. 

Second, expected net final wealth is generally a nonlinear function of initial 

wealth allocation (it is linear in the standard model). This nonlinearity occurs because of 

feedback effects from wealth allocation to expected net final wealth; allocation of wealth 

determines effort and salaries, which in turn determines expected net final wealth. 

Let the function F(ω) denote expected net final wealth, as given in the square 

brackets of (12), defined over the interval ω ∈ [0,1].7 The properties of F(ω) depend on 

the size of θ, as does accordingly the investor’s portfolio choice. 

Suppose first that θ ∈ [0,1). We can then establish that F(ω) is strictly convex in 

ω ∈ [0,1] and that it is symmetric around ω = ½. This implies that expected net final 

                                                 
7 From (6), short positions in any of the projects would violate the assumptions of nonnegative effort levels. 
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wealth is maximized by investing all initial wealth in either A or B. Underlying this 

property is that, by (6), effort levels are increasing in Xi0 and, by (2), there are increasing 

returns in the projects. The consequence for portfolio choice depends on the relative size 

of σA and σB. If σA < σB, the minimum-variance position requires more than 50% of initial 

wealth in project A. In addition, however, there is now a net expected portfolio return to 

be gained by investing even more in A. The investor is generally willing to trade some 

final wealth variance against this increase in expected returns and the optimal portfolio is 

thus in the interval between the minimum-variance portfolio and ω = 1. Analogously, σA 

> σB implies that the optimal portfolio share ω is in the interval between 0 and the 

minimum-variance position. In summary, when θ ∈ [0,1) the endogenous responses of 

effort levels imply that the optimal portfolio is tilted beyond the composition that 

minimizes final wealth variance.8 

The next case is θ = 1. Equation (6) now implies that effort levels are 

independent of wealth allocation, implying constant expected returns in the two projects. 

This corresponds to a standard portfolio choice model. Moreover, as uA = uB = 1, 

expected returns are equal in A and B, implying that the minimum-variance portfolio is 

optimal. 

Now turn to the case where θ ∈ (1,2). We can show that F(ω) is symmetric 

around ω = ½ in this case as well, but it is now strictly concave over ω ∈ [0,1]. Expected 

net final wealth is therefore maximized by investing equal amounts in A and B. This is 

because effort levels are decreasing in Xi0, giving decreasing returns of the production 

functions in (2). Hence, any reallocation towards, for example, A from ω = ½ gives a 

                                                 
8 If σA = σB and θ ∈ [0,1), the model gives ambiguous predictions as to whether the portfolio would be tilted 

towards A or B. 
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smaller gain in terms of increased expected output from A than the loss of expected 

output from B. The optimal portfolio is between ω = ½ and the minimum-variance 

portfolio, with the tilt being towards A (B) if σA < (>) σB. The minimum-variance 

portfolio is the optimal portfolio if σA = σB. 

With θ = 2, F(ω) is a constant. Expected net final wealth is thus independent of 

the allocation decision, and the optimal portfolio is the minimum-variance portfolio. 

Finally, consider the case where θ > 2. Equations (2) and (6) now imply that 

output from both projects falls with invested resources, making this case perhaps less 

interesting. Anyway, we can show that expected net final wealth is again maximized by 

investing all resources in one project only. The optimal portfolio is accordingly located in 

the same intervals as in the case with θ ∈ [0,1). 

 

3.3. Closed form solutions in three special cases 

If managers’ costs are either independent of wealth (θ = 0), linear in wealth (θ = 

1), or quadratic in wealth (θ = 2), we can solve the investor’s portfolio in closed form. 

The latter two cases were discussed above; they both imply that the minimum-variance 

portfolio is optimal. 

With θ = 0, we can use (8) to show that the optimal share of initial wealth 

invested in project A is 

 
2

2 2

( ) ( 2 )
( 2 ) 2( 2 )

B AB

A B AB

rR r R
rR r R

σ −σ − +ω =
σ + σ − σ − +

. (13) 

When σA = σB, the optimal and minimum-variance portfolios coincide at ω = ½. If σA ≠ 

σB, the optimal portfolio is tilted beyond what is implied by the minimum-variance 
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portfolio. The intuition was explained in the last subsection: as θ < 1, the investor can 

increase expected returns by investing in one project only. 

 

4. Diversification with asymmetric information 

 

We now turn to the case where the investor cannot observe the actions of manager B. 

The investor faces asymmetric information along two dimensions: she knows less about 

the actions of manager B than does the manager himself, and she knows more about the 

actions of manager A than of B’s. We are primarily interested in the consequences of 

these asymmetries for diversification and portfolio choice. In particular, does less 

information necessarily mean less investment? 

 

4.1. The second-best problem 

With moral hazard in project B, the investor faces an additional constraint: 

 ( ){ }1

0
0

arg max exp ( , , )
B

B B B B
u

u E r S c u X t dt
⎡ ⎤
⎢ ⎥∈ − − −
⎢ ⎥⎣ ⎦∫ . 

This is the familiar incentive compatibility constraint, which says that manager B 

chooses the uB that is in his best interest. We follow Schättler and Sung (1993), and use 

the so-called first-order approach to solve the investor’s problem. In this approach, the 

incentive compatibility constraint in the principal’s problem is relaxed to the first-order 

necessary condition for optimality in the agent’s problem. 

As the investor has full information on the actions of manager A, and as the 

managers do not control variances of the Brownian processes, the output from project A 

serves as a signal to be included in the contract between the investor and manager B. In 
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particular, following Holmstrom and Milgrom (1987, pp. 324–25), we assume that the 

salary to manager B is conditioned on the aggregate performance index 

 

( )
( )

0

0

cov ( ), ( )
( ) ( ) ( )

var ( )

( ) ( ).

A B
B A

A

B B
B A

A A

X t X t
Y t X t X t

X t
XX t X t
X

= −

ρσ= −
σ

 

Using (1), (2), and (3), we can show that this index evolves according to: 

 [ ]0 0( ) ( ) ( ) ' ( )B
AB B A BdY t X u t u t dt X d tρσ

σ= − + Σm B , (14) 

where ' [ 1]B
A

ρσ
σ≡ −m . 

Now, the problem of manager B is 

 ( ){ }1

0
0

max exp ( , , )
B

B B Bu
E r S c u X t dt

⎡ ⎤
⎢ ⎥− − −
⎢ ⎥⎣ ⎦∫ , 

subject to (14), taking as given the actions of manager A and the allocation decision of 

the investor. Applying the representation given in Schättler and Sung (1993), we can 

show that the solution to this problem gives the optimal sharing rule: 

 
1 1 1

2 21 1
2 20 0 0 0

0 0 0
' ( ) ( ) ' 'B B B B B B BS U u X dt u X d t r u X dtθ θ θ= + + Σ + ΣΣ∫ ∫ ∫m B m m . (15) 

The first two terms on the right-hand side of (15) provide manager B with his certainty 

equivalent plus compensation for the cost he actually incurs. The next term is the 

compensation error, arising because the investor’s compensation is based on realized 

outcome rather than the manager’s actual effort. Finally, to compensate manager B for 

the risk he carries, a risk-premium is paid, given by the last term in (15). 

The investor’s relaxed problem can then be written as 

 ( ){ }
, , ,
max exp (1)

A B A
A Bu u S

E R W S S
ω

⎡ ⎤− − − −⎢ ⎥⎣ ⎦ ,  

subject to (3), (15), and manager A’s participation constraint. The solution is 

summarized in the second proposition. 
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Proposition 2: Suppose that manager B’s effort cannot be observed. Manager A’s optimal 

effort level is still given by condition (6). Manager B’s optimal effort is constant and 

fulfills: 

 1
0 0( )B B Bu X g X−θ= , (16) 

where 

 

2 2
0

0
2 2

0

1 (1 )
( ) 1( 2 )1 (1 )

B B

B

B B

rR X
r Rg X r r R X
r R

θ

θ

+ σ − ρ
+≡ ≤++ σ − ρ
+

. (17) 

The optimal salary contract with manager B is linear in output from each of the projects: 

 0
0

0

( ) (1) (1)B B
B B B B A

A A

XS g X X X
X

⎛ ⎞ρσ ⎟⎜ ⎟= κ + −⎜ ⎟⎜ ⎟⎜ ⎟σ⎝ ⎠
, (18) 

where 

 2 2 2 2 21 1
2 20 0 0 0 0(1 )[ ( )] ( ) [ (1)]B B B B B B BU u X g X X g X E Yθκ ≡ + + σ − ρ −  

is a constant. The salary of manager A is given by 

 ( )0
0 0

0

1 ( ) (1) 1 ( ) (1)B B
A A B A B B

A A

XRS g X X g X X
r R X

⎡ ⎤⎛ ⎞ρσ ⎟⎜⎢ ⎥⎟= κ + + + −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟+ σ⎝ ⎠⎢ ⎥⎣ ⎦
, (19) 

with 

 21
20 0

1 ln A
A A A B

r RW ru X R
r R R

θ⎡ ⎤⎛ ⎞λ ⎟⎜⎢ ⎥κ ≡ − + − κ⎟⎜ ⎟⎜⎝ ⎠⎢ ⎥+ ⎣ ⎦
 

being another constant. Finally, the investor allocates a fraction 

 

( )

( )

2 1 2 1 21
2 0 0

2 2 2 2
0

2 2 12
0 0

2 2
0

[ 2 ] 2

(1 ) 1
,

[ 2 ]

A B A A B B B AB

A B AB A B AB

r R
RB B B B B

A B AB

u u u X u X r R
W R r

u X u X

W

θ− θ−

θ θ−+

⎛ ⎞− − θ − σ −σ+⎟⎜ ⎟⎜ω = +⎟⎜ ⎟⎜ σ + σ − σ σ + σ − σ⎟⎟⎜⎝ ⎠
⎛ ⎞σ − ρ + θ − θ ⎟⎜ ⎟⎜− ⎟⎜ ⎟⎜ σ + σ − σ ⎟⎟⎜⎝ ⎠

 (20) 

of initial wealth to project A. 

Proof: See the appendix. 
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As expected, manager B’s effort is (weakly) lower than A’s for given investments 

in the respective projects; see equations (16) and (6). The variable g(XB0), defined in (17), 

can be interpreted as a wedge between the first- and second-best efforts, conditional on 

the amount invested in B. We can show that 0'( )Bg X  ≤ 0, where the equality holds if θ 

= 0 or ρ = –1. Except in these two special cases, manager B’s effort level will be lower 

relative to the first-best the more the investor allocates to project B. Whether more 

investment yields higher effort in absolute terms depends on the sign of 

 1
0 0 0

0

(1 ) ( )B
B B B

B

du X g X g X
dX

−θ −θ ′= − θ + . (21) 

As long as 0'( )Bg X  < 0, we now need θ �  1 for manager B’s effort to respond positively 

on investment. Compared to the first-best, there is thus smaller range of θ’s for which 

effort increases with investment. 

The sharing rule (18) resembles the relative evaluation scheme discussed by 

Holmstrom and Milgrom (1987, p. 324), but here the shares of output accruing to the 

investor and the managers are endogenous to the allocation of initial wealth. Note that 

(18) can be written as 

 ( )0( ) (1) [ (1)]B B BS g X Y E Y= κ + −� , 

where [ (1)]B B gE Yκ = κ +� . Manager B is given a constant amount plus a share g of the 

surprise in the aggregate performance index Y. The third term in the definition of κB is 

the risk-premium that is optimally paid to manager B. Note that it depends on the 

idiosyncratic risk 2 2(1 )Bσ − ρ  associated with project B. Finally, (18) and (19) show that 

risk sharing between the two managers is generally imperfect when there is moral hazard. 

Turning to portfolio choice, we see that the upper line in (20) bears close 

resemblance to equation (8). The term in the lower line, however, is new and 

conceptually different. It occurs because initial wealth allocation affects the risk-premium 
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and the expected value of the performance index (the last two terms in the definition of 

κB). In turn, this feeds back to the expected value and variability of investors’ net final 

wealth, and therefore their portfolio decisions. To give a more thorough interpretation of 

portfolio choice, it is again helpful to recast the portfolio decision within a mean-variance 

setting. 

 

4.2. The risk-return trade-off with moral hazard 

We can use (18), (19), and the performance index Y to express the investor’s net 

final wealth as (we suppress the argument in g(.) to simplify notation): 

 
( ) ( )2 2 2 2 2 21 1

2 20 0 0

(1)

(1) [ (1)] (1) (1 ) .

A B

A A B B B B

W S S
r W g E Y Y u X u X rg X tip

r R
θ θ

− −

⎡ ⎤= + − − + − σ − ρ +⎢ ⎥⎣ ⎦+
 (22) 

Now, as both managers’ efforts are constant also in the second-best, the processes (3) and 

(14) both follow arithmetic Brownian motions. It follows from equation (22) that net 

final wealth is normally distributed over the time interval [0,1]. 

Maximizing (4) is thus again equivalent to maximize 

[ ] [ ]1
2(1) var (1)A B A BE W S S R W S S− − − − − . 

Taking expectations in (22) and substituting from (6) and (17), we find: 

 

[ ]

( )

2 2 2 2 2 21 1 1
2 2 20 0 0 0

2 2 2 2 21 1 1
2 2 20 0

(1)

( ) (1 )((1 ) ) (1 ) ((1 ) )

( ) (1 ) ((1 ) ) (1 ) ((1 ) ) ,

A B

B

B

E W S S
r W W g g W r g W

r R
r F g g W r g W

r R

−θ −θ

−θ

− −

⎡ ⎤= + ω + − −ω − σ − ρ −ω⎣ ⎦+
⎡ ⎤= ω − − − −ω − σ − ρ −ω⎣ ⎦+

 (23) 

where the function F(ω) was defined and analyzed in Section 3. Comparing (10) and (23), 

we see that the link between the initial allocation and expected net final wealth is quite 

different in the two cases. The last two terms in the lower line of (23) are new relative to 

the first-best. The first of these shows the loss in expected output net of management 



 18

costs in project B, compared to the first-best. We can show that this loss is strictly 

increasing over ω ∈ [0,1], as long as θ ≤ 2. When θ > 2, the loss is not necessarily 

monotonic over ω ∈ [0,1], but still reaches its minimum of zero at ω = 1. The final term 

in (23) is the risk-premium paid to manager B. It enters with a minus in front, so it 

contributes to lowering the investor’s net expected wealth. The risk-premium also has a 

minimum of zero at ω = 1, and can be shown to be strictly decreasing over ω ∈ [0,1] 

when θ ≤ 1. 

These observations allow us to deduce the following on wealth allocation and 

expected net final wealth in the second-best. Starting with the cases where θ ∉ [1,2], we 

recall from Section 3 that F(ω) then has maxima at 0 and 1. However, as the last two 

terms in the lower line of (23) both have a unique maximum at ω  = 1, expected net final 

wealth is greatest when investing in project A only. The cases with θ = {1,2} are 

analogues; F(ω) is independent of wealth allocation, and hence expected net final wealth 

with moral hazard is maximized by setting ω  = 1. The last possibility is θ ∈ (1,2), where 

we recall that F(ω) has its maximum at ω  = ½. The last term in the upper line of (23) 

gives an incentive to invest more in project A. However, as the risk-premium to manager 

B is possibly non-monotonic in ω for these values of θ, the overall link between initial 

wealth allocation and expected net final wealth is theoretically ambiguous.9 

Turning to the risk of net final wealth, we observe that (22) implies 

[ ] [ ]
2

var (1) var (1) (1)A B
rW S S W gY

r R
⎛ ⎞⎟⎜− − = −⎟⎜ ⎟⎜⎝ ⎠+

. 

                                                 
9 Numerical calculations by the author indicate that, for plausible parameters, expected net final wealth is 

maximized for ω > ½ also when θ ∈ (1,2). 
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The optimal contract with manager B leaves the investor exposed to the risk of gross 

final wealth less a (endogenous) share g of the aggregate performance index Y. This risk 

exposition is in turn shared with manager A (the investor carries a share r/(r+R)); hence 

the above expression. Using equation (14), we have 

 [ ] ( )
2

22 2 2
0 0var (1) ' ' (2 ) (1 ) (1 )A B B

rW S S W g g W
r R
⎛ ⎞ ⎡ ⎤⎟⎜− − = ΣΣ − − −ω σ − ρ⎟⎜ ⎢ ⎥⎟⎜ ⎣ ⎦⎝ ⎠+

w w .  

An implication of this equation is that, unlike with full information, the portfolios that 

minimize gross and net final wealth variance, respectively, are not equal. Interestingly, 

we can show that the net final wealth minimizing share invested in project A is smaller 

than 2 2 2( ) ( 2 )B AB A B ABσ −σ σ + σ − σ  unless θ �  2. The most plausible cases of the model 

thus imply that the relevant minimum-variance position is tilted towards project B when 

there is moral hazard. 

The implications for portfolio choice of the above discussion are straightforward. 

Relative to the first-best, expected returns can generally be increased by tilting the 

portfolio towards project A. On the other hand, the minimum-variance position would in 

most cases be tilted towards project B. The combined effect on portfolio choice is 

therefore generally ambiguous. Interestingly, we cannot rule out that the investor should 

optimally increase allocation to the project with moral hazard compared with the case of 

full information. 

We close this section by illustrating the latter point using an example with θ = 0, 

the only case where the portfolio rule can be expressed in closed form. For simplicity, we 

set σA = σB = σ (implying an optimal first-best rule ω = ½; see the discussion in Section 

3.3), and assume that ρ = 0. When θ = 0, the wedge g is a constant given by 

 
2

2( )
r R rRg

r R r r R R
+ + σ=

+ + + σ
. 
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Substituting into (20), we can show that the optimal share invested in A is 

 
( ) ( )

( ) ( )

22 2 2 2

22 2 2 2 3 23 3
2 22 2

rR r r R rR r R

rR r r R rR r R r

σ σ − − + σ − +
ω =

σ σ − − + σ − + − σ
.  

It is straightforward to show that this share can be less than half for plausible parameter 

values. 

 

5. Conclusions 

 

We have studied the resource allocation of investors that delegate the management of 

their wealth to two different managers. Managers’ effort levels determine the expected 

return from the projects that they govern, but these effort levels are affected by the 

contracts offered by investors. We show that even when managers’ actions are observable 

and enforceable, the investors’ diversification decision involves trade-offs other than a 

standard portfolio problem. This is because, in a principal-agent setting, expected returns 

are endogenous to the allocation of initial wealth. Depending on the shape of managers’ 

cost functions, the expected final wealth net of managerial compensation can exhibit both 

increasing and decreasing returns to invested wealth. In the former case, optimal portfolio 

holdings may be highly undiversified despite the symmetry between projects in the 

underlying model. 

If managers’ actions cannot be observed, additional mechanisms come into play. 

We explore the case with moral hazard in one of the projects. Relative to the first-best, 

expected returns net of managerial costs can generally be increased by tilting the 

portfolio away from the moral hazard project. However, the optimal contract with the 

manager of this project transfers more of the idiosyncratic risk associated with the 
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project to the manager. As a consequence, the minimum-variance position of the 

investors’ net final wealth would in most cases be tilted towards the moral hazard 

project. There are plausible cases of the model where the allocation to the project with 

hidden actions is higher than in the first-best.  
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Appendix 

 

A.1. Proof of Proposition 1 

We start by deriving the optimal sharing rules in terms of the optimal controls uA 

and uB, following Müller (1998). Net compensation to manager i is 

1
21

2 0
0

( )i i i iy S X u t dtθ= − ∫ . Then, integrating (3) and inserting the result in (4) imply that 

the investor’s problem can be expressed as 

 
({

)}
,

0 0 0{ , }, ,

1
2 21 1

2 20 0 0 0
0

max exp ' ( )

( ) ( )( ) ( )(1 ) ( )((1 ) ) ,

A B A B
A Bu u y y

A A B B

E R W W y y

u t W u t W u t W u t W dt

ω

θ θ

⎡− − + Σ − − −⎢⎣
⎤⎡ ⎤ ⎥+ ω − ω + −ω − −ω⎣ ⎦ ⎥⎦∫

1w B B
 

subject to (5). Pointwise maximization with respect to yA and yB gives the first-order 

conditions 

 ( )
1

2 21
20 0 0

0

1 ln (1) ( ) ((1 ) )i
i A B j

r R Ry W W u W u W dt y
r R R r R r R

θ θ⎛ ⎞λ ⎡ ⎤⎟⎜= + − − ω + −ω −⎢ ⎥⎟⎜ ⎟⎜⎝ ⎠+ + +⎣ ⎦∫ , 

where i,j = A,B, i ≠ j, and λi is the Lagrange-multiplier associated with (5). Solving these 

two equations for yA and yB and using the two participation constraints to demonstrate 

that λA = λB, we find 

( )1
2 21

20 0 0
0

1 ln
2

(1) ( ) ((1 ) )
2

A
A B

A A

ry y
r R R

R W W u W u W dt
r R

θ θ

⎛ ⎞λ ⎟⎜= = ⎟⎜ ⎟⎜⎝ ⎠+

⎡ ⎤+ − − ω + −ω⎣ ⎦+ ∫
.  (A.1) 

The optimal sharing rules are ( )
1

0
0

( ), , ,i i iS y c u t X dt i A B= + =∫ , where y is given in 

(A.1). 

Next, we substitute the optimal salary functions into (4). The investor’s problem 

can then be simplified to 
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 ( ){ }1
2 21

2 0 0{ , }, 0
max exp (1) ( ) ((1 ) )
A B

A Bu u
E a W b u W u W dtθ θ

ω

⎡ ⎤⎡ ⎤⎢ ⎥− − − − ω + −ω⎣ ⎦⎢ ⎥⎣ ⎦∫  

subject to (3), where a ≡ rR/(r+2R) and b ≡ (r/2R)W0 − (r/2)ln(λAr/R) are constants. 

Let V(t,W(t)) be the investor’s value function, giving the optimal remaining utility at 

time t. By Lemma A1 in Sung (1995), the value function solving the above problem 

satisfies the following dynamic programming equation: 

 
[ ]{ 0 0{ , },

2
2 2 21 1

2 20 0 02

0 max (1 )

' ' ( , ) ( ) ((1 ) ) ,

A B
A Bu u

A B

V V u W u W
t W

V W aV t W u W u W
W

ω

θ θ

∂ ∂≡ + ω + −ω
∂ ∂

⎫∂ ⎪⎪⎡ ⎤+ ΣΣ + ω + −ω ⎬⎣ ⎦⎪∂ ⎪⎭
w w

  (A.2) 

with the terminal condition being V(1,W(1)) = −exp[−a(W(1)−b)]. From (A.2), the 

first-order conditions with respect to uA(t), uB(t), and ω are 

 0 0
/( ) , ,

( , ( ))i i i
V Wu h X X i A B

aV t W t
−∂ ∂= =  (A.3) 

2 1 2 11 1
2 20 0

0 2 2 2 2 2 2 2 2

2

02 2

/ ( , ) ( ) ((1 ) )
/ 2 / 2

.
2

A B A B

A B AB A B AB

B AB

A B AB

V W u u aV t W u W u WW
V W V W

W

θ− θ−⎡ ⎤ ⎡ ⎤∂ ∂ − θ ω − θ −ω⎢ ⎥ ⎢ ⎥ω = − −⎢ ⎥ ⎢ ⎥∂ ∂ σ + σ − σ ∂ ∂ σ + σ − σ⎣ ⎦ ⎣ ⎦
σ − σ+

σ + σ − σ

 (A.4) 

Finally, we conjecture that the value function has the form 

 
({

) }
0 0

21
2 0 0 0

( , ( )) exp ( ) (1 ) ( , ) ( ,(1 ) )

' ' ( , ) ( ,(1 ) ) .

A B

A B

V t W t a W t b t f u W f u W

aW c u W c u W

⎡= − − − + − ω + −ω⎣
⎤− ΣΣ − ω − −ω ⎥⎦w w

 (A.5) 

Using (A.5) in (A.3) and (A.4), we obtain equations (6)–(8). Substituting (A.5) into 

(A.2) confirms that (A.5) solves the investor’s dynamic problem. 

 

A.2. Proof of Proposition 2 

We can proceed as under full information to find the optimal sharing rule between 

the investor and manager A in terms of the optimal control uA. The first-order condition 

with respect to SA for the investor’s relaxed problem is thus 
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 ( )
1

21
20 0

0

1 ln (1)A
A B A A

r R rS W W S X u dt
r R R r R r R

θ⎛ ⎞λ ⎟⎜= + − − +⎟⎜ ⎟⎜⎝ ⎠+ + + ∫ . (A.6) 

Given the optimal sharing rules in (15) and (A.6), the investor’s (stochastic) net terminal 

wealth can be expressed as 

 
( )

1
2 21

20 0 0 0
0

1 1 2
1
20 0

0 0

1(1) (1) ln

' ( ) ' ' .

A
A B A A B B

B B B B

rr RW S S W W U u X u X dt
r R r R r

u X d t r u X dt

θ θ

θ θ

⎡ ⎛ ⎞λ ⎟ ⎡ ⎤⎜⎢− − = − + − − +⎟⎜ ⎟ ⎣ ⎦⎜⎝ ⎠⎢+ ⎣
⎤− Σ − ΣΣ ⎥⎦

∫

∫ ∫m B m m
 

It follows that the investor’s problem can be reduced to 

 
({

( ) )}

1

0{ , }, 0

1 22 21
2 0 0 0

0

max exp (1) ( )

' ' .

A B
B Bu u

A A A B B B

E W u X d t

u X u X r u X dt

θ

ω

θ θ θ

⎡
⎢− −α − β− Σ
⎢⎣

⎤⎡ ⎤ ⎥− + + ΣΣ⎢ ⎥⎣ ⎦ ⎥⎦

∫

∫

m' B

m m
 (A.7) 

subject to (3), where /( )rR r Rα ≡ +  and 0(1/ ) ln( / ) ( / )Ar r R R r Uβ ≡ λ − +  are 

constants. 

The dynamic programming equation becomes 

 

( ){

( ) }

0 0 0 0{ , },

2
21

2 02

22 21
2 0 0 0

0 max ' '

' '

( , ( )) ( ) ' ' ,

A B
A A B B B Bu u

A A B B B B

V V u X u X u X W
t W
V W

W

V t W t u X u X r u X

θ

ω

θ θ θ

∂ ∂ ⎡ ⎤≡ + + + α ΣΣ⎢ ⎥⎣ ⎦∂ ∂
∂+ ΣΣ
∂

⎡ ⎤+ α + + + α ΣΣ⎢ ⎥⎣ ⎦

w m

w w

m m

 (A.8) 

with the terminal condition being ( ) ( )1, (1) exp (1)V W W⎡ ⎤= − −α − β⎣ ⎦ . The first-order 

conditions with respect to uA, uB, and ω, respectively, read: 

 0 0
/ ,
( )A A A

V Wu X X
V

θ −∂ ∂=
α i

 (A.9) 

 0 0 0
0

0

/ ' '
( ) 1 ( ) ' '

B B
B B

B

V W X X Wu X
V r X

θ
θ

θ

⎡ ⎤−∂ ∂ + α ΣΣ⎢ ⎥= ⎢ ⎥α + + α ΣΣ⎣ ⎦

w m
m mi

, (A.10) 

   ( )

2 2
0

0 2 2 2 2

2 1 2 1 2 2 2 2 1 21
2 0 0 0

02 2 2 2 2 2

/ (1 ) (1 )
/ 2

( ) (1 )( , ) .
/ 2 2

A B B B B

A B AB

A A B B B B B B AB

A B AB A B AB

V W u u u XW
V W

u X u X r u XV t W W
V W

θ

θ− θ− θ−

⎡ ⎤∂ ∂ − −α + θ σ − ρ⎢ ⎥ω = − ⎢ ⎥∂ ∂ σ + σ − σ⎣ ⎦
⎡ ⎤θ − − θ + α σ − ρα σ −σ⎢ ⎥− +⎢ ⎥∂ ∂ σ + σ − σ σ + σ − σ⎢ ⎥⎣ ⎦

 (A.11) 
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We use  

 
({

( ) ) }
0 0 0 0

22 2 21 1
2 20 0 0 0

( , ) exp ( ) (1 ) ' '

' ' ( ) ' ' ,

t A A B B B B

A A A B B B

V t W W t t u X u X u X W

W u X u X r u X

θ

θ θ θ

⎡ ⎡ ⎤= − −α −β + − + + α ΣΣ⎢ ⎣ ⎦⎣
⎤⎡ ⎤− α ΣΣ − + + + α ΣΣ ⎥⎢ ⎥⎣ ⎦ ⎦

w m

w w m m
 

as a trial solution for the value function. Taking the appropriate derivatives and 

substituting into (A.9)–(A.11) gives (16) and (20). Equations (18) and (19) are obtained 

by combining (16) and (6) with (15) and (A.6), respectively. Substituting the trial 

solution into (A.8) confirms that it solves the dynamic programming equation. 
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