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Abstract

High false alarm rates are a problem in anti-submarine warfare in littoral waters using active
broadband sonars. Automatic classification procedures may help combat this problem by filtering
out detections due to non-threatening targets. An interesting feature for classification purposes is
the depth of the target. Using sonars with vertical beamforming capabilities, the received signal from
a target can be used to find a plausible estimate of the target’s depth given an initial guess of the
target’s horizontal distance from the ship, the bottom profile and a profile for the speed of sound.

The estimation is done by an optimization procedure which varies the relevant parameters and
models signals based on these parameters, then comparing the modelled signals with the received
signal to find which parameters fit the received signal best. The modelling is based on a ray tracing
procedure to find eigenrays for a proposed target depth, storing vertical arrival angles and arrival
times for these eigenrays and synthesizing a signal based on the arrival angles and arrival times for
comparison with the recorded signal. The ray tracing procedure is done numerically using Lybin,
a platform developed by the Norwegian Defence Logistics Organization (NDLO). The validity of
the eigenray finding procedure is confirmed, and results from testing the optimization procedure on
synthetic data are presented.

Introduction

Sonar (SOund Navigation And Ranging) equipment is used, among other things, to detect underwater
objects by propagation of sound waves. Active sonar systems are often able to obtain more information
about their surroundings than passive systems, especially due to their ability to measure travel times
(the time from a ping is emitted until an echo is heard), which is vital to distance estimation. They
are therefore often used in anti-submarine warfare. When using active sonars in anti-submarine warfare,
classification of targets is a key issue - if the ping elicits a response from the surroundings in the form
of an echo from a target, is the target a shoal of fish, an oil pipeline, a submarine, rock formations or
something entirely different? Such questions often arise when using active sonar in littoral waters. Alarms
from non-threatening objects are a problem since they complicate the tactical picture, and automatic
classification schemes that can identify the source of an echo and filter away such false alarms are needed
in order to simplify the work of the operator [4].

Regular sonar processing focuses mainly on estimating the range and bearing of a target. A drawback
with this approach is that large objects such as oil pipelines could be considered moving targets. A ship
moving in parallel with the pipeline emitting pings at different points in time would place the pipeline
at different points in space, thus creating the illusion of a moving target and causing a false alarm.
Therefore, one important clue in automatic classification is estimating the target depth, as knowing the
depth of the target could eliminate some options; if the target is located on the sea bottom, chances are
that it is, in fact, a pipeline or some other large bottom litter object and thus not hostile, such that it
may be deprioritized in favor of targets located closer to the surface.

Determining the directionality of the signals is usually done by the beamforming technique. This is
usually done in the horizontal plane to determine the North-South-East-West directionality of the signal,
but although horizontal beamforming is standard in most sonar systems, some sonars also have good
vertical beamforming capabilities, meaning that one can obtain vertical directionality for the signal as
well. Knowing the vertical directionality of a signal allows us to determine not only the range of the
target, but also its depth [3]. After beamforming, the signal is matched filtered to increase the SNR of
the recording.
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The result of this processing is a data set containing digital acoustic data sampled over a period of
time and distributed over several channels corresponding to the beamformed angles. Depth estimation of
a target now becomes part of the inverse problem of determining the properties of the ship’s surroundings
from the recorded acoustic data. The proposed method for solving the inverse problem is by modelling
and optimization. If a sufficiently accurate mathematical model is available, one may simulate the
propagation of sound in the ocean and use this to synthesize signals. Working with the assumption
that a modelled signal resembles the recorded signal if the model parameters resemble the real world
parameters, one could try to fit the model parameters for the environment, including target depth, sound
speed profile and bottom depth, to create a modelled signal that resembles the recorded signal as closely
as possible. Here, we shall use a ray backpropagation scheme [1] for modelling signals. This entails using
ray tracing to obtain eigenrays.

Calculating the path of sound rays in sea water is a non-trivial task. However, this problem has been
thoroughly analyzed, leading to tools such as Lybin, a platform developed by the Norwegian Defence
Logistics Organization (NDLO) which, among other things, can compute ray paths accurately and effec-
tively [2]. Lybin is therefore used for this purpose here. Another point of interest is the determination
of a proper objective function for use in the optimization procedure. The inverse problem should not be
ill-posed, that is, there should exist a unique, stable solution to the problem. The choice of objective
function will influence the problem’s properties in this respect. In addition, the optimization procedure
should not be too costly in terms of computational power, meaning the objective function should not be
too time consuming to evaluate. Some objective functions will be presented which try to address these
issues. The optimization procedure itself should be chosen so as to effectively and reliably produce sat-
isfactory results. Since the objective function will have local minima, which should be avoided, there is
also a need for an initialization procedure, in which a suitable starting point close to the global minimum
is obtained with as little effort as possible.

Finally, the procedure’s accuracy and stability in the presence of noise must be tested. The results
presented here in this regard were obtained by use of synthesized data - signals created by means of
the acoustic model. Hopefully, the synthesized signals are modelled with sufficient fidelity so as to be
interchangeable with real signals when it comes to testing.

Theory

Problem formulation

Assume that a set of digital acoustic data is given, and that it is sampled at times {t; };V:* 1» beamformed

in the directions {6;}%, and matched filtered to yield a set of measurements {S;;} = {S(6;,t;)} for the
acoustic intensity S at the receiver. This set of measurements is what we consider as the signal emitted
by the system. Thus, we have a signal recorded in the directions 6; and at the times ¢;. Given that the
signal contains echoes from a ping, our problem now consists of finding the target depth z; the ping was
reflected from.

Complications arise due to the recorded intensity being dependent upon other quantities. In order
to estimate the target depth, these quantities must either be known beforehand or estimated along with
the target depth. Thus, our problem of target depth estimation is an inverse problem that is intractable
unless certain other parameters can be determined simultaneously, such as the target range r; and the
depth of the sonar system, z;. Another important factor, the sound speed profile ¢(z), will generally be
a function varying with depth. We shall consider only flat bottom profiles, and denote the bottom depth
only as z, henceforth.

Whereas z; is completely unknown beforehand, some assumptions may be made about the remaining
environmental parameters:

e 1, can be estimated by regular horizontal beamforming and processing, providing an initial guess.

e 2, may vary slightly according to sea activity; in rough seas, the ship will bob significantly up and
down and so will the sonar system, as it is fixed onto the vessel. The sonar will, however, have a
certain expected depth which may be used as an initial guess.

e The sound speed profile, ¢(z), will depend on depth, and is not known exactly. However, sound
speed profiles can be estimated satisfactorily from historical observations, and by representing
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them as piecewise linear functions, we can optimize with respect to sound speed profiles by use of
Empirical Orthogonal Functions (EOFs) [1].

Solution approach

We shall determine z; and the other parameters by a method based on comparisons of the recorded signal
and signals obtained by use of a mathematical model. It is therefore important to obtain an accurate
mathematical model of sound propagation and a good method of modelling signals based on this, so that
the modelled signals closely resemble real signals. The modelling is based on finding arrival times and
arrival angles for the reflected ping. With knowledge of these, a signal can be constructed. The arrival
times and angles are calculated by use of eigenrays [5]. For a set of candidate parameters, including
zt, we want to find eigenrays for z; at r;; we know that the sound must follow the eigenray paths to
reach the target, and once reflected from it, must follow eigenray paths back toward the receiver. Hence,
all possible paths for the ping are given by combinations of eigenrays. Using the arrival angles and
travel times we can synthesize signals by assuming that each arrival results in a Gaussian shaped signal
centered at the arrival time and angle, and superpositioning these signals. The solution procedure can
be separated into five subsections, visualized in figure 1:

Model parameters

v

Ray Tracing

v

Eigenrays

v

Modelled signal

v

Optimization —

Figure 1: Flowchart of the solution process.

Finding eigenrays

An equation to model the propagation of sound in the ocean can be found by following [5], applying
a high frequency approximation to the wave equation for pressure, and describing the paths taken by
the ping by rays perpendicular to the wave fronts of the pressure wave by means of characteristics of
the eikonal equation. The resulting ray equation for range independent sound speeds profiles c is as
following;:

d?z 1 0c dz\ 2
7= —E% [1 + <d7“) ] ) 2(0) = z5, 2'(0) = tan(fy), (1)
where r is the range from the vessel, z is the range dependent depth of the ray, zs is the source depth
and 6y is the initial angle of the ray [5].

By means of the ray equation, eigenrays can be found either analytically or numerically, depending
on the complexity of the environment. For constant or linearly depth dependent sound speed profiles,
solving the ray equation analytically is possible, and this is used to verify the numerical eigenray proce-
dures. However, for general sound speed profiles, it is necessary to use numerical methods for obtaining
eigenrays. We will used numerical schemes which depend on ray tracing procedures. These procedures
have been studied extensively, and several good programs for this purpose are available, one of which is
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Lybin, a platform developed by the Norwegian Defence Logistics Organization [2]. Lybin allows for two
different approaches to calculating eigenrays numerically, which we will name method 1 and method 2.

Method 1 relies heavily on Lybin, which through a built-in function can report all families of rays
that enter a certain depth cell encompassing the target depth at the target range. The function passes
information about these families; the rays’ mean travel time, mean exit angles, transmission losses and
certain other statistics, such as maximum and minimum angles within each family. The mean exit angle
and mean travel time of a family is considered as the exit angle and travel time of the eigenray belonging
to that family.

Method 2 relies on Lybin only for tracing the paths of a multitude of rays leaving the source at
increasing exit angles. Each ray is then inspected to see whether it lands closer to the target depth at
the target range than the preceding ray and the next ray. If this is the case, the travel times of the three
rays under consideration are calculated numerically, and the exit angles and travel times of the three
rays are interpolated to obtain an approximation to the exit angle and travel time of the eigenray they
enclose. This leaves us more in control of the process, although the method is slower and may run into
some issues with target depths that lie close to the surface or the bottom.

Modelling and pre-processing of signals

After N eigenrays have been found, we may construct a synthesized signal based on these, to use for
comparison with the recorded signal. The ping will follow all possible combinations of eigenrays to the
target and back to the ship, resulting in N? distinct arrivals, whose arrival times are the travel times
along the eigenrays followed toward the target in addition to the travel times along the eigenrays followed
back toward the source. The arrival angles are the exit angles of the eigenrays followed back to the source.
Using this, all arrivals are assumed to result in a Gaussian signal given by

(5) +(45)])

where the t,, are the arrival times, 60, the arrival angles, o; the signal’s standard deviation in time
and oy its standard deviation in angle. Typically, oy = 1/B, where B is the signal’s bandwidth, and
o9 = 0w /2, where Oy is the beamwidth of the receiver [4]. The amplitudes, A,,, are chosen depending
on the desired signal-to-noise ratio if noise is present. Superpositioning all these signals into one yields
the noiseless synthesized signal:

Sm(ei,tj) = Am exp (;

S=>" Sm. (2)

This is the basis for the model signals which we try to fit to the recorded signal. If we are to use the
signal as a substitute for a real signal for testing the solution method, it can be subjected to additive
white noise to create a more realistic signal:

N2

S = ’I”L(,U,n,O'n) + Z Sma

m=1

where n(uy,,0p) is a random Gaussian process with expectation p,, and standard deviation o,,.

After synthetization of a test signal, or after a real signal has been obtained, ambient noise is removed
as the optimization procedure may become unstable in the presence of noise. This is done by employing
a normalisation scheme such as cell-averaging constant false alarm rate filtering [6] before thresholding,
leaving only signal entries with a higher SNR than a certain noise threhold. Here, the noise threshold
used was 13 dB.

Representing the sound speed profile by use of EOFs

There is some difficulty in optimizing with respect to the sound speed profile ¢(z), the main challenge
being that it is a function, implying the need for variational methods whereas standard numerical opti-
mization methods optimize with respect to scalar quantities. We therefore want to represent the sound
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speed profile by means of scalars, preferably as few as possible, to simplify optimization. Extracting Em-
pirical Orthogonal Functions (EOFs) from a data set of historical observations of sound speed profiles,
we may represent the sound speed profile as [4]:

m

c=¢cC+ Z’kak
k=1

where the vy are the EOFs and +y; their weighting coefficients. If the data is well correlated, the first few
EOFs will account for most of the variation in the data, and we may therefore truncate the expansion
of ¢ after the first few EOFs; typically, three EOFs will account for >95% of the total variation in the
data. This is an acceptable error, and we therefore let

c==c¢c —+ Y1V1 —+ Y2V2 —+ Y3Vs.

Now, by varying 71,72 and s, we also vary ¢(z) in an efficient manner which is susceptible to ordinary
optimization methods.

Optimization

The third and final part of the solution procedure, optimization, is done by comparing the recorded signal
to a modelled signal, then attempting to modify the optimization parameters in the modelled signal in
order to obtain a better fit. The choice of which parameters to optimize with respect to is a matter of
complexity and accuracy. Of course, z; should be among the optimization parameters. Other suitable
candidates for optimization parameters are 1, 2p, zs and ¢, as these parameters influence the eigenray
paths used in the modelled signal.

In order to compare the two signals, we need an objective function. First, since the signal is sampled
at discrete Vy discrete points in time and beamformed in Ny discrete angles, it can be represented in a
matrix S = {5;;}, where each S;; is the intensity sampled at the time ¢; and in direction ¢;. Similarly,
the modelled signal is given by M = {A;;}. The most obvious objective function for comparing the two
signals, which we will name the full objective function, is now given by

Nt Ny

FOM;8) = |3 " [My; — Siy2, (3)

i=0 j=0

effectively finding the root-mean-square distance between the two signals. A problem with the full
objective function is that it is computationally expensive, since each evaluation requires the formation
of a full model signal M. An approximation can be done by considering the signal in vector form. Let

Sll Mll
SNtl MNtl
S1a M,
s = . and m = .
S1ne Ming
SN, N, | | MN, N, |
We now have
f(M;8) =|ls—ml|5=s"s - 2s"m +m’m.

Since the term s”'s is independent of m, it can be considered constant and therefore irrelevant to opti-

mization. Moreover, the modelled signal M is a superposition of signals from the arrivals, as explained
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in (2), so we may write
N2
m = E my,
k=1

where each my corresponds to the partial signal resulting from the k’th arrival. From this, we see that
by disregarding the s”'s term, we can form the equivalent objective function

N2
f(M;8) = —2s"m +m’m=m"m -2 kaTs.
k=1

If the m”'m term could now be disregarded, we would arrive at a much more computationally efficient
objective function. Since each of the my, due to the Gaussian shape of the signal they contain, are
mostly zeroes, we can compute the sum term very quickly by simply truncating the my to a smaller
size containing only nonzero entries and computing the inner product of the truncated vector with the
corresponding entries in the recorded signal, essentially exploiting the sparsity of the my signals. We
therefore introduce the objective function, which we will name the simplified objective function, given by

N2
g(M;S) = —s"m = — kaTs (4)
k=1

as an inferior, yet more efficient alternative to the full objective function.

The black box nature of Lybin makes partial derivatives of any objective function with respect
to the problem parameters impossible to obtain, leaving us with the choice of either a derivative-free
optimization algorithm or using numerical gradients in a more sophisticated algorithm. As the objective
functions are generally computationally expensive to compute, we would like to limit the amount of
evaluations needed. Calculating numerical gradients calls for several evaluations per approximation, thus
favouring derivative-free algorithms. Due to its robustness and ease of implementation, the algorithm
chosen here is the derivative-free Nelder-Mead algorithm [7].

To avoid local minima, the Nelder-Mead algorithm requires that the optimization start reasonably
close to the global minimum. To find such an initial guess, an exhaustive search method is employed,
computing the objective function values with different problem parameters and choosing the parameters
that yield the lowest objective function value.

Test setup
Verification of numerical eigenray estimates

A test was done to check whether the eigenray candidates produced numerically in fact reach the specified
depth at target range, and in which cases the eigenray estimates might fail. Five eigenrays were calculated
by use of Lybin for each set of environment parameters (14, 2, and z;). The target range was varied from
1000 m to 10 000 m in steps of 1000 m, the bottom depth from 100 m to 1000 m in steps of 100 m, and
the target depth was varied from 50 m to 850 m in steps of 200 m. The source depth z; was kept constant
at 50 m throughout the test. A linear sound speed profile was used, in which sound speed varied from
1480 m/s at the surface to 1500 m/s at the bottom.

The numerical eigenray procedure produced five exit angles {6;}>_, for each set of parameters; these
exit angles were used as initial conditions in an analytical ray tracing. The resulting analytical depth at
target range given the numerical exit angles, z(r;6;), was compared with the desired target depth z;,
giving the mean error in eigenray depth at target range:

5
1
E = 5; |zt — z(r4; 6;)].
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Optimization test on synthesized data

Due to a lack of real acoustic data to test the procedure on, it was necessary to test the procedure on
synthesized data with added Gaussian noise. To obtain a more realistic signal and to test the method’s
sensitivity to disturbances, the arrival angles and arrival times used in synthesizing the received signal
were considered Gaussian distributed random processes, as proposed in [4]:

~ Opw -1
oi = oia ) t’L = tia .

Here, n(u, o) specifies a Gaussian process with expected value p and standard deviation o; 6; and #;
are the arrival angles and arrival times as found by the numerical eigenray scheme, 0py is the vertical
beamwidth of the sonar, B is the bandwidth of the sonar and s = 105V%/10 ig the linear signal-to-
noise ratio of the echoes. The 6; and t; were obtained by first calculating 0; and ¢; numerically, then
adding Gaussian noise to these values. By varying the SNR values, s is also varied, allowing us to
test the method’s stability in the presence of different levels of noise in the signal and inaccuracies in
measurements.

For all tests, the nonlinear sound speed profile shown in figure 2 was used. The parameters used
in the tests were target ranges from 2000 m to 10 000 m in steps of 2000 m, bottom depths from 200
m to 1000 m in steps of 200 m, and target depths from 50 m to 50 m above bottom depth in steps of
100 m. The source depth was held constant at 5 m. In addition, all tests were done with use of three
eigenrays, then redone with five eigenrays, in an attempt to determine how many eigenrays should be
used in modeling signals to achieve a reasonable estimate of target depth. Due to time constraints, no
tests were carried out in which the sound speed was varied as outlined in section 77, and as such, these
tests are a priority in future work.

For each set of parameters, five iterations were done in which a signal was synthesized by the method
described above, and the optimization procedure applied to this signal in order to estimate the target
depth. The mean error of these target depths estimates were then calculated. Both objective functions
were used in the test, to see whether they yielded different results. While applying the simplified objective
function (4), both methods of estimating eigenrays were used. Only method 1 was used while applying
the full objective function (3). Again due to time constraints, the parameter range was shortened for the
runs with full objective function; target ranges were varied from 2000 m to 10 000 m in steps of 4000 m,
bottom depths from 200 m to 1000 m in steps of 400 m, and target depths from 50 m to 150 m above
bottom depth in steps of 200 m.

Sound speed profile
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Figure 2: Sound speed profile used for testing.
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Results and discussion

Verification of numerical eigenray estimates

Figure 3 shows the results of the verification test. Note that it is impossible that target depth is greater
than bottom depth, and so the mean error in these cases is presented as 0 in the figures. From looking
at the the figure, it is evident that method 1 is slightly less accurate than method 2. Note, however, that
method 1 seldom produces a mean error larger than 5 m, which is acceptable.

Optimization test on synthesized data
Number of eigenrays for signal modelling

Figure 4 shows an example of the maximum, minimum and mean estimates of target depth obtained by
use of the simplified cost function with numerical eigenray method 2. From the figure, we see that using
five eigenrays for calculating arrivals on which to model signals provides more consistent and correct
estimates for the target depth than using three eigenrays. For the sake of brevity, we shall henceforth
consider only results obtained with the use of five eigenrays.

Estimation error as a function of SNR and target range

The plots in figure 5 show the error in the target depth estimation as a function of SNR and target range
for four different target depths. First, we may observe that the errors are mostly within acceptable range
for classification purposes; we only need an approximate estimate for target depth to say whether it is
close to the bottom or not, and estimates with errors of less than 50 m are good enough for this purpose.
Second, we may note the markedly better performance obtained by use of method 2, as compared to
method 1, in nearly all cases but those with target depth 50 m and target range 2000 or 10 000 m, along
with the case where the target depth is 350 m and the target range is 10 000 m. This may be attributable
to the slightly more inaccurate eigenray estimates provided by method 1, as observed from figure 3. The
sound speed profile chosen for this test is more irregular than a linear sound speed profile and as such,
the differences in eigenray accuracy between method 1 and method 2 could be exacerbated in this case,
leading to poor performance in estimating target depth.

Looking at the results from method 2, we see two irregular events with range 2000 m and target
depths 50 and 150 m; with these parameters we recieve poor estimates of the target depths, whereas
with all other ranges and the same target depths we find good estimates. This may be due to the sound
speed profile being used which, due to its shape in the section 0-200 m, may make depth estimation in
this depth range difficult. Rays will tend to curve toward areas of lower sound speed, meaning that in
the channel between 0 and 200 m, there will be many eigenrays with small differences in exit angles and
arrival times, making it hard to determine the exact depth of the target[5]. However, despite high errors
we can conclude that a target is in this channel, giving important information for classification purposes.

Estimation error as a function of SNR and bottom depth

The plots in figure 6 show the error in the target depth estimation as a function of SNR and bottom
depth for four different target ranges. Again we see that although most estimates using both methods are
suitable for classification purposes, method 2 is superior to method 1 in most cases, with the exception
of the cases where target range is 4000 m and bottom depth is 200 m or 800 m. As before, this may be
attributable to the inaccuracy in eigenray calculation when using method 1.

Comparison of objective functions

Figures 7 and 8 show the error in target depth estimation as a function of SNR and bottom depth, and as
a function of SNR and target range, respectively. In figure 7, we can see that the full objective function
outperforms the simplified objective function. Note that the simplified objective function with eigenray
method 1 actually performs better than the one evaluated by use of method 2 here, giving acceptable
estimates of target depth in all cases, which would imply that the eigenray estimations work correctly
for method 1 in this case. These results are to be expected, as the simplified objective function is an
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Figure 3: Mean error in eigenray depth at target range.
Left column: Method 1. Right column: Method 2.
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Figure 4: Estimates of target depth as a function of SNR. Target depth: 350 m.
Bottom depth: 800 m. Target range: 6000 m. Left: 3 eigenrays. Right: 5 eigenrays.
Obtained by use of simplified cost function with numerical eigenray method 2.

approximation to the full objective function, and we would expect the full objective function to perform
better, given reliable eigenray estimates.

However, in figure 8 we see that although all three methods show mostly acceptable results, the
simplified objective function with eigenray method 2 works best in all but two cases; with target range
2000 m and target depth either 250 m or 450 m. Also note that the full objective function and the
simplified objective function with eigenray method 1 have similar patterns in where their estimates

break down, which may be interpreted as further proof that numerical eigenray method 1 is somewhat
unsound.

Execution time

An important part of the solution method is its execution time. Using the simplified objective function
evaluated with method 2, the optimization procedure took 8 minutes on average in the worst cases
(large target range), and 2.5 minutes in the best cases (small target range). This is mostly due to the
need to call on Lybin many times to find the ray paths while modeling signals to evaluate the objective
function. In contrast, evaluating with method 1, while inaccurate (as seen above), is 20-30 times faster
than method 2 due to it needing only one call to Lybin. Therefore, if method 1 could be made more
accurate, it would provide a faster alternative to method 2.

The optimization procedure took 90 minutes on average to finish when using the full objective func-
tion, making this option prohibitively slow. This is attributable to the need for a fully formed model
signal for comparison with the received signal. In any case, an optimization procedure requiring less
function evaluations would be useful. Specifically, the initial guess routine is quite slow due to the
high amount of function evaluations involved. A more effective way of producing initial guesses would
probably speed up the execution time considerably.

Conclusion

Estimation of target depth has been carried out on synthesized acoustic data using two different objective
functions. The results obtained are acceptable for classification purposes, and the best results were
obtained while using the simplified objective function evaluated using numerical eigenray method 2.
It remains to be seen whether this method is successful when optimizing with respect to sound speed
profile and source depth and if so, whether the success transferable to real scenarios. The anomalies
encountered while employing numerical eigenray method 1 during estimation need to be investigated
further, as alleviating these would result in a faster procedure.

10
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Figure 5: Mean error in estimates of target depth as a function of SNR and target range.
Bottom depth: 400 m. Left column: Method 1. Right column: Method 2.
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Figure 6: Mean error in estimates of target depth as a function of SNR and bottom depth.
Target depth: 150 m. Left column: Method 1. Right column: Method 2.

12



Prodeedings of the 37th Scandinavian Symposium on Physical Acoustics 2 - 5 February 2014

Target range: 2000 Target range: 2000 Target range: 2000
50 50 50
40 40 40
r 30 30 30
Z
» 20 20 20
10 10 10
0 500 1000 0 500 1000 0 0 500 1000 0
Bottom depth Bottom depth Bottom depth
Target range: 6000 Target range: 6000 Target range: 6000
50 50
40 40
r 30 r 30
z z ¢
n 20 n N 20
10 10
0 0 0
0 500 1000 0 500 1000 0 500 1000
Bottom depth Bottom depth Bottom depth
Target range: 10000 Target range: 10000 Target range: 10000
50
40
T r 30
' » 20
10
0 500 1000 0 0 500 1000 0 0 500 1000 0
Bottom depth Bottom depth Bottom depth

Figure 7: Mean error in estimates of target depth as a function of SNR and bottom depth.
Target depth: 50 m. Left: Full objective function. Middle: Simplified objective function, method 1.
Right: Simplified objective function, method 2.

13



Prodeedings of the 37th Scandinavian Symposium on Physical Acoustics 2 - 5 February 2014

Target depth: 50 Target depth: 50 Target depth: 50

50
40
. 30
» 20
10
0 0

5000 10000

o

5000 10000
Target range

Target depth: 250

o

5000 10000
Target range Target range

Target depth: 250 Target depth: 250

F
R
E
-

o

5000 10000
Target range

Target depth: 450

o

5000 10000 5000 10000
Target range Target range

Target depth: 450 Target depth: 450

50
40
. 30
» 20
10
0

5000 10000
Target range

Target depth: 650

50
40
. 30
n 20
10
0 0

o
o

5000 10000
Target range

Target depth: 650

o

5000 10000
Target range

Target depth: 650

0 5000 10000 0 0 5000 10000 5000 10000
Target range Target range Target range
Target depth: 850 Target depth: 850 Target depth: 850
50 50
40 40
r 30 r 30
z z ¢
» 20 * » 20
10 10
0 0 0
0 5000 10000 0 5000 10000 5000 10000
Target range Target range Target range

Figure 8: Mean error in estimates of target depth as a function of SNR and target range.
Bottom depth: 1000 m. Left: Full objective function. Middle: Simplified objective function, method 1.
Right: Simplified objective function, method 2.
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