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Abstract

High false alarm rates are a problem in anti-submarine warfare in littoral waters
using active broadband sonars. Automatic classification procedures may help
combat this problem by filtering out detections due to non-threatening targets.
An interesting feature for classification purposes is the depth of the target. Using
sonars with vertical beamforming capabilities, the received signal from a target
can be used to find a plausible estimate of the target’s depth given an initial
guess of the target’s horizontal distance from the ship, the bottom profile and
a profile for the speed of sound.

The estimation is done by an optimization procedure which varies the rele-
vant parameters and models signals based on these parameters, then comparing
the modelled signals with the received signal to find which parameters fit the
received signal best. The modelling is based on a ray tracing procedure to find
eigenrays for a proposed target depth, storing vertical arrival angles and arrival
times for these eigenrays and synthesizing a signal based on the arrival angles
and arrival times for comparison with the recorded signal. The ray tracing pro-
cedure is done numerically using Lybin, a platform developed by the Norwegian
Defence Logistics Organization (NDLO). The validity of the eigenray finding
procedure is confirmed, and results from testing the optimization procedure on
synthetic data are presented along with a plan for further development.
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1 Introduction

Sonar (SOund Navigation And Ranging) equipment is used, among other things,
to detect underwater objects by propagation of sound waves. Two main kinds
of sonar systems are in use - passive sonars only record environmental sound
without disturbing the surroundings, while active sonars work by emitting a
pulse of sound (called a ping) into the ocean and recording the resulting envi-
ronmental sound [?]. If one considers the ocean as a system, these approaches
are equivalent to either observing the system passively, or by actively exciting
the system with some input (the ping) and observing the response (the recorded
sound). Active sonar systems are often able to obtain more information about
their surroundings than passive systems, especially due to their ability to mea-
sure travel times (the time from a ping is emitted until an echo is heard), which
is vital to distance estimation. They are therefore often used in anti-submarine
warfare.

When using active sonars in anti-submarine warfare, classification of targets
is a key issue - if the ping elicits a response from the surroundings in the form of
an echo from a target, is the target a shoal of fish, an oil pipeline, a submarine,
rock formations or something entirely different? Such questions often arise when
using active sonar in littoral waters - oceanic regions with a high occurrence of
disturbing elements. Alarms from non-threatening objects are a problem since
they complicate the tactical picture, and automatic classification schemes that
can identify the source of an echo and filter away such false alarms are needed
in order to simplify the work of the operator [?]. Automatic classification may
also prove useful in the development of navigational systems for autonomous
underwater vehicles, helping them navigate successfully in littoral waters.

Regular sonar processing focuses mainly on estimating the range (horizontal
distance from sonar) and bearing of a target. A drawback with this approach
is that large objects such as oil pipelines could be considered moving targets.
A ship moving in parallel with the pipeline emitting pings at different points
in time would place the pipeline at different points in space, thus creating the
illusion of a moving target and causing a false alarm. Therefore, one important
clue in automatic classification is estimating the target depth, as knowing the
depth of the target could eliminate some options; if the target is located on the
sea bottom, chances are that it is, in fact, a pipeline or some other large bottom
litter object and thus not hostile, such that it may be deprioritized in favor of
targets located closer to the surface.

Active sonar systems work by having a transmitter emit a ping of known
frequency and amplitude into the ocean, then recording acoustic data through a
receiver consisting of an array of underwater microphones called hydrophones,
essentially listening for echoes of the emitted ping. The transmitter and the
receiver are often assumed to be located at the same place, although they may
be located on different parts of the ship. Once recorded, the acoustic data is
processed to determine where the sound came from and at what times echoes
of the ping return to the ship.

Determining the directionality of the signals is usually done by the beam-
forming technique — analogous to the human ear, the hydrophone array may
be used to identify the direction from which a sound originates by observing
time delays and phase shifts between recordings from different hydrophones.
This is usually done in the horizontal plane to determine the North-South-East-
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West directionality of the signal, but although such horizontal beamforming
is standard in most sonars, some sonars also have good wvertical beamforming
capabilities, meaning that one can obtain vertical directionality for the signal
as well. Knowing the vertical directionality of a signal allows us to determine
not only the range of the target, but also its depth [?]. After beamforming,
the acoustic data is processed to minimize noise and increase the Signal-to-
Noise Ratio (SNR) of the recording. This is often accomplished by the use of
matched filtering, essentially looking for the known form of the emitted ping in
the received signal by means of convolution [?].

The result of this processing is a data set containing digital acoustic data
sampled over a period of time and distributed over several channels correspond-
ing to the beamformed angles. The problem of depth estimation of a target
now becomes part of the inverse problem of determining the properties of the
ship’s surroundings from the recorded acoustic data. If no other information
about the ocean were given, this would prove to be quite a hard problem, as the
inverse problem would encompass ab initio estimation of the shape and prop-
erties of the ocean floor, the target’s range (horizontal distance from the ship),
the sound speed dependency on depth, et cetera, in addition to the estimation
of the target depth. However, assumptions can be made about these additional
parameters from previous measurements, giving at the very least an initial guess
for the properties of the surroundings.

The proposed method for solving the inverse problem is by modelling and
optimization. If a sufficiently accurate mathematical model is available, one
may simulate the propagation of sound in the ocean and use this to synthesize
signals. Working with the assumption that a modelled signal resembles the
recorded signal if the model parameters resemble the real world parameters,
one could try to fit the model parameters for the environment, including target
depth, sound speed profile and bottom depth, to create a modelled signal that
resembles the recorded signal as closely as possible. Due to the nonlinear nature
of sound wave propagation in water, some care must be taken in creating such a
mathematical model. Here, we shall use a ray backpropagation scheme [?]. This
entails using ray tracing to obtain eigenrays. Ray tracing is a procedure in which
the path of sound rays are calculated from an approximation of the nonlinear
wave equation, similar to the tracing of light rays done in optics, to determine
the different paths taken by the emitted ping and its echoes. FEigenrays are
sound rays that reach a certain depth at a certain range, and are pivotal to
determining the times at which and directions in which the echoes from a ping
are recorded.

Calculating the path of sound rays in sea water is a non-trivial task. Due
to differences in salinity and temperature at different ocean depths, the speed
of sound will vary accordingly, producing refraction effects [?]. Matters are fur-
ther complicated due to reflection of rays at the sea bottom and the surface.
Obtaining an analytical solution for the path of a sound ray will therefore be an
impossible problem in all but the simplest cases, introducing the need for nu-
merical methods for obtaining these paths. This problem has been thoroughly
analyzed, leading to tools such as Lybin, a platform developed by the Norwe-
gian Defence Logistics Organization (NDLO) which, among other things, can
compute ray paths accurately and effectively [?]. Lybin is used extensively for
this purpose in this project.

Another point of interest is the determination of a proper objective function
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for use in the optimization procedure. The inverse problem should not be ill-
posed, that is, there should exist a unique, stable solution to the problem.
The choice of objective function will influence the problem’s properties in this
respect. In addition, the optimization procedure should not be too costly in
terms of computational power, meaning the objective function should not be
too time consuming to evaluate. Some objective functions will be presented
which try to address these issues.

The optimization procedure itself should be chosen so as to effectively and
reliably produce satisfactory results. Since the objective function will have
local minima, which should be avoided, there is also a need for an initialization
procedure, in which a suitable starting point close to the global minimum is
obtained with as little effort as possible.

Finally, the procedure’s accuracy and stability in the presence of noise must
be tested. Unfortunately, obtaining real life acoustic test data is hard. This
research is carried out in collaboration with the Norwegian Defense Research
Establishment (FFI), who have extensive amounts of acoustic data to test the
procedure on. However, due to the classified nature of this data, results obtained
when using it cannot be presented here. Instead, we shall use synthesized data
- signals created by means of the acoustic model - for testing the procedure.
Hopefully, the synthesized signals are modelled with sufficient fidelity so as to
be interchangeable with real signals when it comes to testing.

2 Theory

This section will provide a theoretical background for the problem - first formu-
lating the problem in a general manner and giving an overview of the proposed
solution method. We then expand on some key subjects, providing a deriva-
tion of the mathematical model for wave propagation, a presentation of how
to obtain eigenrays from this model, and some considerations on the effect of
signal attenuation and reflection on signal strength. Furthermore, we present
how to model a signal on the results of ray tracing, and how to remove noise
from recorded signals. Lastly, the optimization method is presented, discussing
the choice of objective function and how to represent the sound speed profile in
a manner that is susceptible to ordinary optimization methods.

Some topics that are vital to the full problem will not be explored; beam-
forming and matched filtering will not be explained further, as we assume that
the data obtained is already processed using these techniques. Technical details
regarding the sonar equipment are not discussed, and neither are environmental
effects such as absorption and reflection coefficients. This is because neither
of these topics are directly connected to the numerical experiments carried out
later, in contrast with topics such as analytical methods for finding eigenrays,
which are used to verify the numerical eigenray finding scheme and therefore
explored in greater detail.

2.1 Problem formulation and overview

Assume that a set of digital acoustic data is given, and that it is sampled at

times {tj}j-v:t |» beamformed in the directions {6;}~°, and matched filtered to

yield a set of measurements {S;;} = {S5(6;,¢;)} for the acoustic intensity S at
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the receiver. This set of measurements is what we consider as the signal emitted
by the system. Thus, we have a signal recorded in the directions 6; and at the
times ¢;. Given that the signal contains echoes from a ping, our problem now
consists of finding the target depth z; the ping was reflected from.

Complications arise due to the recorded intensity being dependent upon
many other quantities such as the geometry of the surroundings, sound speed,
absorption coefficients of the bottom and so forth. In order to estimate the
target depth, these quantities must either be known beforehand or estimated
along with the target depth. Thus, our problem of target depth estimation is
an inverse problem that is intractable unless certain other parameters can be
determined simultaneously, such as the target range r, and the depth of the
sonar system, z;. Another important factor, the sound speed profile ¢(z), will
generally be a function varying with depth. The bottom profile, z(r), is in
reality a function varying with the distance from the ship. However, we shall
consider only flat bottom profiles, and denote the bottom depth only as z,
henceforth. A simplified drawing of the problem and the geometric quantities
involved is given in figure 1.

Other parameters of importance are associated with the sonar system itself
and the characteristics of the emitted ping, for example the ping’s bandwidth, B,
and the sonar’s vertical beamwidth, Ogy,. These parameters can be considered
as known, and are important in determining statistical quantities such as the
uncertainty in measurements of arrival angles and arrival times.

r
r, T =
_ 6
— |
- Z
Zb

Figure 1: Simplified overview of geometric parameters. The line from the ship
to the submarine shows the direct path taken by sound waves as a ray perpen-
dicular to the wave fronts.

Whereas z; is completely unknown beforehand, some assumptions may be
made about the remaining environmental parameters:

e 7; can be estimated by regular horizontal beamforming and processing,
providing an initial guess.

e 2,(r) can also be considered known to a certain extent if historical bathy-
metric observations are available, providing an initial estimate. It is typi-
cally represented as a piecewise linear function. However, as stated earlier,
we will consider only constant bottom depths z,(r) = zp, i.e. flat seabeds.
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e 2, may vary slightly according to sea activity; in rough seas, the ship will
bob significantly up and down and so will the sonar system, as it is fixed
onto the vessel. The sonar will, however, have a certain expected depth
which may be used as an initial guess.

e The sound speed profile, ¢(z), will depend on depth, and is not known
exactly. As is the subject of a later discussion, sound speed profiles can be
estimated satisfactorily from historical observations, and by representing
them as piecewise linear functions, we can optimize with respect to sound
speed profiles by use of Empirical Orthogonal Functions (EOFs) [?].

Note that these additional parameters could, as a rough approximation, be con-
sidered as known and thus excluded from the optimization procedure. However,
this would put the algorithm at considerable risk of mismatching, an undesir-
able situation in which reliable solutions cannot be obtained due to discrepancies
between the modelled situation and the real physical situation [?].

2.2 Solution approach

We shall determine z; and the other parameters by a method based on com-
parisons of the recorded signal and signals obtained by use of a mathematical
model; if the modelled signal resembles the received signal closely enough, the
parameters used in the modelling should be close to the correct parameters, and
should yield a good estimate of the real parameters. It is therefore important
to obtain an accurate mathematical model of sound propagation and a good
method of modelling signals based on this, so that the modelled signals closely
resemble real signals.

The modelling is based on finding arrival times, the time delays from the ping
is emitted until the echoes are recorded at the receiver, and arrival angles, the
directions in which the echoes are recorded after beamforming. With knowledge
of these, a signal can be constructed. The arrival times and angles are calculated
by use of eigenrays, paths which the sound follows to get to a specified depth
at a specified distance from the ship [?]. For a set of candidate parameters,
including z;, we want to find eigenrays for z; at r;; we know that the sound
must follow the eigenray paths to reach the target, and once reflected from it,
must follow eigenray paths back toward the receiver. Hence, all possible paths
for the ping are given by combinations of eigenrays.

Figure 2 shows an example of five eigenrays. Consider the sound travelling
along any of the five rays from the source to the target. Upon reflection, it
may follow either of the five eigenrays back toward the source again. In total,
this gives 25 possible combinations of eigenray paths for the sound to follow.
The eigenrays’ exit angles at the source then become the arrival angles when
propagated backward, and the arrival times become the times needed for the
sound to travel along eigenrays forward and backward.

Using the arrival angles and travel times we can synthesize signals by as-
suming that each arrival results in a Gaussian shaped signal centered at the
arrival time and angle, and superpositioning these signals. A typical signal is
shown in figure 3. Note that this is a synthesized signal, thus containing more
visible arrivals and less noise than a real recorded signal would, as reverberation
and other environmental effects that would diminish signal strength are not ac-
counted for. Also note that the signal is stronger in some places due to several
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Eigenrays with constant sound speed profile
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O Target
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Figure 2: Five eigenrays with constant sound speed profile. z; = 50 m, z; = 150
m, 7y = 4000 m.

close arrivals superpositioning on top of each other. The solution procedure can
be separated into five subsections, visualized in figure 4:

e Guessing model parameters - Obtain a guess for the relevant model pa-
rameters.

e Ray tracing - Based on the model parameters, calculate the trajectories
of sound rays.

e Finding eigenrays — Given the results from the ray tracing and a guess for
the target depth and range along with all other environmental and sonar
parameters, find the exit angles and travel times of the eigenrays.

e Modelling signals — Using the eigenrays, calculate arrival angles and times.
Use these to synthetize signals.

e Optimization — Compare the modelled signal to the recorded signal, and
search for parameters that yield a modelled signal that resembles the
recorded signal even more.

2.3 Mathematical model of sound propagation

Some assumptions must be made in order to obtain a feasible mathematical
model. First, we may assume that the speed of sound in the ocean greatly
exceeds the speed of both target and source, such that target and source can be
considered stationary. Next, we assume that the time scale of sound propagation
is so small that temporal variations in ocean conditions are negligible, and thus
that sound speed is independent of time. We also assume that source and target
can be considered as point masses, disregarding their geometrical shape. This
assumption is valid for purposes of calculating the propagation of sound, but
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Figure 3: Synthesized signal.

as we shall see, corrections must be made to account for the surface area of
the target when the strength of the reflected signal is taken into consideration.
Next, we assume that source and receiver are located at the same position (a
reasonable assumption for hull mounted sonars) and that signals are emitted
omnidirectionally - that is, sound is emitted spherically from the transmitter.
Finally, the matched filter used in preprocessing the data compresses pulses in
time to a width of 1/B, where B is the signal’s bandwidth |?]. Thus, a signal
will be of millisecond duration. We therefore assume that the ping’s duration
is so short as to be considered instantaneous. This yields a mathematically
tractable yet still physically feasible model for propagation of the signal.
Considering the case without bottom or surface collision, i.e. the source
and target being submerged in an infinitely deep body of water, the signal will
expand outward with time, finally hitting the target. The ping is then reflected

Model parameters -+

I A

Ray Tracing

I 2

Eigenrays

I 2

Modelled signal

v

Optimization —

Figure 4: Flowchart of the solution process.
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from the target, which acts as a new source, and propagates back toward the
receiver, following the same path as the forward propagating sound wave. The
signal finally reaches the receiver at a certain angle, the arrival angle, and a
certain amount of time after the ping was emitted, the arrival time.

If the signal should hit the surface or the bottom, it will reflect and continue
propagating as if emitted from a source located at the point of reflection, al-
beit with a weaker signal due to absorption effects. This additional signal will
also propagate toward the target, reflect and return to the point of reflection,
from which it continues propagating back toward the transmitter/receiver. This
yields an alternative path for the signal to travel, adding an arrival angle and
an arrival time.

2.3.1 The ray equation

To obtain an equation to model the propagation of sound in the ocean, we follow
[?] and start with the wave equation for pressure, which we assume the sound
waves will act according to. From this, we shall describe the paths taken by the
sound by rays perpendicular to the wave fronts of the pressure wave by means of
characteristics of the eikonal equation. The wave equation for pressure is given
by:

1 0%

P29 T
Given proper boundary and initial values, this could be solved numerically by
finite difference or finite elements methods, but such methods are ineffective at
the scale of underwater acoustical problems; a tractable solution would require
a discretization with many nodes, and since our approach relies on determin-
ing the propagation of sound for many different configurations of the problem
parameters, these methods would be too computationally expensive [?]. How-
ever, further assumptions and modifications can be made that yield simpler,
more effective ways of solving the problem numerically. The first of these is us-
ing the one-dimensional Fourier transform as explained in [?] to eliminate time
dependency and arrive at the Helmholtz equation:

0.

2
w
Ap+—5p=0 (1)
C

As w, the angular frequency of the signal, is known, this becomes a problem in
the spatial variables, represented in the vector r. We now seek a solution to the
Helmholtz equation in the form of a ray series:

p(r) _ eiwr(r) Z Aj (I‘) (2)
=0

(iw)?

yielding for the gradient:

L AwT . - Aj - VAJ
Vp=e szTjZ::O (i) + jz::() (i) (3)
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and for the Laplacian:

o0
Ap=e™T | (=w?|VT|* +iwAT) Z
j:O 7=0

8
8

Inserting (2) and (4) into (1) now gives

A s > AAJ w2 ad Aj
(i) +2iw( VT Z ,:—C—QZ ——
=0

Mg

(—w?|V7|? +iwAT)

Il
=]

J

and by equating terms of equal order in w, we get:

O(W?) : |VT]? = ci

2
O(w) : ATAg +2(VT)TVA; =0
OW'9) : ATA; +2(VT)TVA; + AAj_; =0 j=12.

The first of these is called the Eikonal equation, while the rest are called the
transport equations - the eikonal equation describes the propagation of the pres-
sure wave, while solving the transport equations yields the amplitude of the
pressure wave. Typically, as a high-frequency approximation (w > 0), all equa-
tions but the eikonal and the first transport are neglected. In this case, as we
are only interested in the path taken by the ray, so we disregard all transport
equations and turn to the eikonal equation to obtain these paths. The equation
may be solved by the method of characteristics. As can be seen from (3), Vp is
proportional to V7, meaning V7 is perpendicular to the wave fronts, and so we
introduce the characteristic, or ray trajectory, x(s) = [z(s),y(s)]*, by

& _vr = d—X2—2|V|2—1 (5)
as 7 ds| — VT TR

where s is the arc length along the ray. Differentiating once more with respect
to s and applying the chain rule now yields:

827' 827' 827' 32’7'
d 1dx . w 6x8y dx . @ 8.7383/
s(ea)=| 8 o= W
oxdy  Oy? 0xdy  Oy*
_cdgp_cdl 1
T 2ds | T 2dse? C2Vc

Changing to cylindrical coordinates, x(s) = [r(s) z(s)]?, and defining

1dr 1dz
£=-

cds’ M=tds
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we get a system of ODEs:

_ 1dr d¢ 1 0c
ST @ 2o ©
1dz dp 1 0c

cds ds 20z

This system is solvable, given the right initial values, but is not very descriptive.
To get a solution of the more intuitive form z(r) we may observe that

’[7:

_ _ dgar 4% _n

M=% T awas @ T ar
dr_ e ] _dedr A6 10c dE_ 1 dc
ds ds drds T“dr  c2or dr &3 0r
dg _dndr _ ,dn _ 10c _ dp_ 1 0c
ds  drds  Cdr | 20z dr &30z

These three equations can be further manipulated to form one second-order

ODE by differentiating the first equation with respect to r and substituting the
remaining two:

@:dr _775_ 0z §or _

dn de _8c+nac dc  dzde

0z dror
dr2 52 5203 - 5203 : (7)

Next, note that from (5) we have:

() () () (e - () (- (5))

Using this, we may rewrite £2 by:

e L(V_1 1
2 \ds) dz

2 /a2
1 -
(@)

and finally, by substituting this into (7) we arrive at the ray equation:

&71 1+ % ’ —@—F%%
drz ¢ dr 0z dror|’

We can easily impose initial conditions for this. Any ray trajectory must start
at the source depth, so 2(0) = z,. In addition, we require z'(0) = tan(fy),
where 6 is the exit angle of the ray [?]. Assuming c to be invariant within the

10
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geographical region surrounding the sonar, meaning that c is independent of r,
the equation is simplified and our initial value problem becomes:

22’ C z 2

Additionally, if the path is known, we can calculate the travel time by

. / VitEe)?
0

* 9
Gy ©)

2.3.2 Modelling signal strength

A propagating signal is subject to several gain and loss mechanisms altering
the signal’s strength - the magnitude of its intensity - upon arrival at the re-
ceiver. Knowledge of these is needed to synthesize a realistic signal and for other
purposes, such as estimating the probability of detection of a signal.

The ping is emitted with a certain intensity called the Source Level (SL)
[?]. The energy contained in the ping when emitted will be spread out as
time goes on, thus reducing the intensity of the signal as it propagates. Some
events, like bottom collisions or surface collisions, will accelerate this intensity
loss by absorption or scattering of the acoustic waves. These losses, along with
the attenuation loss due to geometric spreading of the signal, constitute the
Transmission Loss (TL) [?].

As the target is, in reality, a reflecting surface and not a point mass, it
will reflect a larger portion of the signal that reaches it, in effect acting as an
amplifier for the reflected signal. This is represented by a gain called Target
Strength (TS), which acts as a correction to the assumption that target and
receiver are point masses [?]. Furthermore, due to the beamforming done at
the receiver, there will be a gain in signal strength due to the amalgamation of
several recorded signals into one directed signal [?]. This gain is represented in
the Directivity Index (DI).

We must also consider that the signal is recorded in the presence of noise,
which has an intensity called the Noise Level (NL). The logarithmic sonar equa-
tion combines all of these quantities to estimate the important Signal-to-Noise
Ratio [?]:

SNR=SL-2I'L+7TS—-NL+ DI,

which attempts to capture the effect of the different gain and loss mechanisms.
Alternatively, for detection purposes, one could calculate the Signal Excess (SE),
the strength of the recorded signal compared to some value for the Noise Thresh-
old (NT). The NT is a preset level for separating noise from signal; if the SNR,
of some part of a signal is below this threshold, that part is considered noise.
The SE is given by:

SE=SNR—NT =SL—2TL+TS— NL+ DI — NT. (10)

Thus, if SE < 0 for some part of the signal, that part is considered noise. The
SE is used to estimate the probability of detection of individual arrivals, and to
remove noise from signals [?].

11
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2.4 Finding eigenrays

The next problem at hand is using the ray equation to find the sound rays that
reach the target depth at the target range - the eigenrays. For the proposed
method, the most important aspect of the eigenrays is their arrival angles, so
the problem consists of finding all 8y such that for a solution of the initial value
problem (8) with 2/(0) = tan(fy), we have z(r;) = z;. The exact paths traced
by the eigenrays are not of importance to this application - the other quantities
of interest are the travel time and number of bottom and/or surface reflections
of the eigenrays, as these may be used in the synthetization of signals. These
quantities can be found, if only 6 is known.

Eigenrays can be found either analytically or numerically, depending on the
complexity of the environment. For example, if the speed of sound is constant
and the bottom perfectly flat, it is a simple geometric problem to find exit
angles of the eigenrays given environmental parameters. However, if the bottom
is irregular and the speed of sound varying with depth (as is the case in the
ocean), analytical solutions are more or less impossible to obtain, and numerical
strategies must be employed. The forward problem of calculating the path of a
sound ray in the ocean, given initial angle, initial depth and sound speed profile,
can be done quite comfortably by means of numerical ray tracing procedures.
[?] However, the backward problem of calculating the initial angle from the
target depth and range, i.e. finding which initial angles result in rays hitting
the target, is a harder task. We here present first some analytical solutions
to the ray equation (8) along with some considerations about eigenrays before
introducing a numerical backpropagation scheme to identify eigenrays based on
the forward propagation of several rays.

2.4.1 Analytical solutions

In most cases, ¢(z) is of such a form that finding an analytical solution to (8)
is virtually impossible. However, for some choices of ¢(z), analytical solutions
can be found, providing a useful basis for testing the accuracy and stability of
the numerical eigenray schemes. Two such choices are the constant sound speed
profile and the linear sound speed profile.

Constant sound speed profile:
In this case, since ¢ is constant, equation (8) has a simple solution:

o
dr?
= z(r) = rtan(y) + zs.

=0, 2(0) = z5, 2'(0) = tan(fo)

Thus, the exit angle for a direct eigenray (with no surface or bottom reflection)
is given by

2t — 2
2(r) =2z = tan(fy) = Z—=2.

Tt
Note that this result is easily obtained by geometric means - the path follows a
straight line from (0, z;) to (1, z¢), and the above formula follows by trigonome-
try. Taking into account bottom and surface reflections is not very difficult. We
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know that the ray will follow a straight line path before and after reflections.
Assuming that reflections are specular, the slope of the path is the same before
and after, and so we may find the initial angle through geometric considerations.

The ray will have to travel the same distance horizontally for all possible
combinations of reflections, and it is the vertical distance traveled that varies. If
the first reflection is a surface reflection, the ray will have to travel an additional
distance of 2z vertically, or an additional 2(z, — 2;) if the first reflection is a
bottom reflection. For each subsequent surface reflection, the ray will travel an
additional vertical distance of 2z;, and for each bottom reflection an additional
2(zp — 2¢), such that for a ray with m surface collisions and n bottom collisions,
we find for the exit angle Gém’n):
2 — 2+ 225 +2(m — 1)z + 2n(2p — 2¢)
= -

(2(m —mn) — D)zt + 25 + 2nzy

)

tan(6™™)

Tt

if the first collision is a surface collision, and

tan (6™ = 2 — 25 +2(2 — 21) + 2mz 4+ 2(n — 1) (20 — 21)
Tt
(2(m — n) + 1)Zt — Zs + 2n2zp

Tt
if the first collision is a bottom collision. Also, finding the travel time ¢t is
simple — from equation (9) we get:
Tt
(m,n)y "
ccos(y ")
An example of eigenrays found with a constant sound speed profile is shown in

figure 5. We may note that the reflected rays in this case follow a strict pattern
of subsequent surface and bottom reflections.

t(m,n) —

Linear sound speed profile:
In this case, ¢(z) = %z + ¢g, where ¢ is the sound speed at the bottom,
=< Thus, equation (8) becomes

yielding % =

d*z 1 dz\"
S = 0) = z,, '(0) = tan(fy),
T +(dr)], 0=z 0) = tan(00)
where y = 2. This can be rearranged to find:
dQZ(Z_|_ )+ % 2_d72 i_f_ 2l = =1
dr? 7 ar) “arz|2 "7 T
22 r?
:>?+’yz:—?+Ar+B. (11)

By imposing initial conditions, we find
A =tan(6y)(zs +7),
Zs
B=z,(y+ 5)

13
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Eigenrays with constant sound speed profile

O Source/Receiver
O Target

400

1000 1500 2000 2500 3000 3500 4000
Range

0 500

Figure 5: Five eigenrays with constant sound speed profile. z; = 50 m, z; = 150
m, 7y = 4000 m.

Substituting this into (11), rearranging and solving a quadratic equation with
respect to z now yields

2(r) = =y £ /(25 +7)2 + 2tan(fg) (zs +7)r — 12,

where the choice of sign depends on which convention for the sign of z is used,
and the sign of v. We shall adopt the convention that z > 0, such that the
positive solution is used if v > 0 and the negative if v < 0, i.e.

2(r) = =y +sgn(7)V/(zs + 7)% + 2tan(6o) (25 +7)r — 12,

where sgn is the sign function.

Dealing with reflections is somewhat more intricate for the linear sound speed
profile than for the constant sound speed profile. We first need to find the ranges
{r,}_, at which reflections occur, determine whether the reflection is from the
surface or the sea bottom, and then find reflection angles before determining
the further propagation of the ray. It is now suitable to generalize somewhat.
We look for a solution of the ray equation on several intervals {I,}Y_,, where
I, = [rp,mne1) and 79 = 0. Let {z,})_, be the collection of the z(r,), and
{0,}N_, be the angles which the ray path forms with the horizontal at the
points {(r,, 2,)})_,. Repeating the preceding calculations on each interval and
imposing the initial conditions z(r,) = zn, 2’'(r,) = tan(f,) gives us the path
restricted to an interval I,, as

2(r)r, ==v+sgn(0)V/ (20 +7)% + 2tan(0n) (20 +7)(r = 70) = (r = 10)2. (12)

Assuming that 2,41 is known, we now find an expression for which range the
reflection occurs at by solving z(rn41)|1, = znt+1 With respect to 7,41, which
gives:

Tny1 = Tn +tan(0,)(z, +7) £ \/tan2(9n)(zn + 92+ (20 +7)2 = (2ng1 +7)2

14
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Again, some care must be taken in order to choose the right sign. There are
two possible values of z,11: 211 = 25 and z,41 = 0. Also note that we require
Tnt1 > Tn. If 2,41 = 0 and v > 0, we have

(Zn + 7)2 - (Zn+1 + 7)2 > 0»

such that the positive solution must be chosen to satisfy r,1 > r,. Conversely,
if 2,41 =0 and v < 0, we have

(zn +7)% = (2n41 +7)* <0,

such that r,, 1 > r, for either solution. We then choose the negative solution,
since we want the first point of contact with the surface. In summary, if z,, 1 =
0, we have:

Tna1="n+tan(0,)(z, + 'y)—l—sgn('y)\/tanQ(Hn)(zn +9)2+ (20 +7)2—72. (13)

A similar calculation for the case z,11 = 2 yields

rn+1=rn+tan(9n)(zn+w>—sgn(v)\/tan2(9n)(zn+fy)2+(zn+v)2—(zbﬂ)? (14)

From the last result, we observe that given an exit angle 6,, such that

Zp + 1y 2
tan?(6,) < [ =—L ) —1,
an(6) <zn+7)

there can be no bottom reflection. In addition, it can be shown that sgn(z”(r)) =
—sgn(7), so that if v > 0, a bottom reflection will happen before a surface
reflection if possible. Also note that if v > 0 and tan(6,,) < 0, we have r,41 < 7y,
which is non-admissible. Thus, we know that if v > 0 and

2y + 7y 2
tan(6,) > —1, 15
an0,) > /(257 (19

we will have z, 1 = 2. Otherwise, z,4+1 = 0. A similar calculation can be done
if v < 0; we will have 2,41 = 0 if

tan(6n) < — ( ) )2—1, (16)

Zn + 7y

otherwise, 2,41 = 2.
To obtain the angles 6,, 1 at each reflection point, we use the law of specular

reflection, 0,,+1 = —6;,, where 6;, is the incoming angle from the left, given by
tan(6i,) = lim  2'(r)|s,.
r%r;_H

This leads to the condition

tan(fp+1) = — lim  2'(r)
e d s

1 I,
n+1
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from which we find

tan(fp41) = \/(tan2(9n) +1) <zn;|—'y> -1, Zny1 =0 (17)

2
tan(fn 1) = —\/(tan2(9n) +1) (W) 1, =2 (18)

zp + 7y

We have now fully determined the propagation of the rays in the linear sound
speed case - given initial angle 6y along with initial depth zg = z;, we can
determine the first reflection depth z; by use of condition (15) or (16), then find
the first reflection range range r1 by use of (13) or (14) and the first reflection
angle 0; by use of (17) or (18). These may again be used to find 22,72 and 65,
etc. The path the ray will follow between these points is given by (12).

An example of eigenrays for the linear sound speed profile case is given in
figure 6. Comparing this with figure 5, we see that the rays are quite similar,
yet curved in the linear sound speed profile case. This allows for rays that follow
paths of surface reflections only, in contrast with the constant sound speed case,
where rays had to follow a pattern of surface reflections followed by bottom
reflections. This is important since bottom reflections absorb more energy from
the signal than surface reflections, and we can see that it is now possible for a
signal to follow a path of significantly less loss than with constant sound speed.
In fact, this is possible for any sound speed profile in which the sound speed is
increasing over a certain depth interval [?].

Eigenrays with linear sound speed profile

T T
O Source/Receiver
O Target

300

350

400

1000 1500 2000 2500 3000 3500 4000
Range

0 500

Figure 6: Eigenrays with linear sound speed profile. z; = 50 m, z; = 150 m,
ry = 4000 m.

Using equations (12-14) and (17-18), it is now possible to solve for the initial
angle 0, given target depth z;, source depth zy, and target range ;. The angle
at which the ray hits the target is irrelevant. The direct path should pose no
problems — we have one equation and one unknown, so the solution should be
readily available. For each additional reflection, we introduce three unknowns;
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an additional z,, 6,, and r,. We now look for rays with certain histories - the
number, order and type of reflections (bottom or surface). Assuming knowledge
of a ray’s history, we know all the z,. In addition, we have one equation for
each of the 6, and r,, leaving us with as many equations as unknowns and
the possibility of solving the set of equations recursively. However, although
interesting, this is considered out of scope for this project, and we shall not
attempt to solve these equations here.

The travel time is given by (9), which may be split this into several integrals
if the number of reflections, N, of the ray is known:

A/ 14 (2'(r) 2 N— 17”“\/14— 2'(r)) /14 (2 (r
t—/ dr— / d7‘+/
c(z(r) o r)

Once again, attempting to obtain an analytical expression for these integrals is
considered outside the scope of the project, although it may be possible.

2.4.2 Numerical solutions

As can be seen from the preceding section, for all but the simplest choices of
sound speed profile and bottom profile, numerical schemes are needed to find
eigenrays due to the nonlinear nature of the ray equation making analytical
solutions exceedingly hard to obtain.

Most numerical eigenray finding schemes are based on a procedure in which a
large number of ray paths with varying exit angles are calculated by use of some
numerical method such as a Runge-Kutta method or a linear multistep method
on the set of ODEs given in (6). The rays that reach the specified target depth
at the specified target range are then identified as eigenrays. These rays’ exit
angles are stored along with their histories, and their travel times are calculated
by use of a numerical approximation to (9). Ray tracing procedures have been
studied extensively, and several good programs for this purpose are available,
one of which is Lybin, a platform developed by the Norwegian Defence Logistics
Organization, which will be used here [?].

Lybin is a black box system, meaning its inner workings are not generally
known. It allows for two different approaches to calculating eigenrays numer-
ically, which we will name method 1 and method 2. Method 1 relies heavily
on Lybin, which through a built-in function can report all families of rays that
enter a certain depth cell encompassing the target depth at the target range. A
ray family is a collection of rays that share the same history. The function passes
information about these families; the rays’ mean travel time, mean exit angles,
transmission losses and certain other statistics, such as maximum and minimum
angles within each family. The mean exit angle and mean travel time of a family
is considered as the exit angle and travel time of the eigenray belonging to that
family.

Method 2 approach relies on Lybin only for tracing the paths of a multitude
of rays leaving the source at increasing exit angles. Each ray is then inspected
to see whether it lands closer to the target depth at the target range than the
preceding ray and the next ray. If this is the case, the travel times of the three
rays under consideration are calculated numerically, and the exit angles and
travel times of the three rays are interpolated to obtain an approximation to
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the exit angle and travel time of the eigenray they enclose. This leaves us more
in control of the process, although the method is slower and may run into some
issues with target depths that lie close to the surface or the bottom.

We thereby have two methods for finding eigenrays numerically - one that
is fast, but not directly controllable and one that is slow, but allows for more
transparency.

2.5 Modelling the signal

Infinitely many eigenrays can be found, but most of these result in arrivals that
are so weak as to be indiscernible from noise. We therefore search for a large
number of eigenrays, but keep only a few of them, typically those with least
transmission loss. The optimum number of eigenrays to use must be decided
as a trade-off between accuracy and speed; more eigenrays will result in better
accuracy, at the expense of execution time. This is the subject of one of the
tests done, as presented in section 4.

After N eigenrays have been found, we may construct a synthesized signal
based on these, to use for comparison with the recorded signal. Recall that the
signal consists of intensity measurements recorded in the directions ; and at the
times t;. Each eigenray presents a path the sound will follow from the source to
the target and, by the assumption of stationary conditions, a path the sound will
follow from the target back to the source after reflection. Thus, the sound will
follow all possible combinations of eigenrays forward and back again, resulting in
N? distinct arrivals, whose arrival times are the travel times along the eigenrays
followed toward the target, in addition to the travel times along the eigenrays
followed back toward the source. The arrival angle, the direction in which each
arrival is recorded, is thereby the exit angle of the eigenray followed back to the
source. Intuitively, one may consider standing in a cave and shouting; one may
hear several echoes coming from different locations, due to the different times
used by the sound to travel toward the walls before reflecting and the different
arrival angles from the paths taken by the sound.

Furthermore, all arrivals are assumed to result in a Gaussian signal given by

L/t —tm\" | (0 =0\
Sl01185) = A e (2 [(%) () D |

where the ¢, are the arrival times, 6,, the arrival angles, o; the signal’s stan-
dard deviation in time and oy its standard deviation in angle. Typically,
o = 1/B, where B is the signal’s bandwidth, and oy = 0y /2, where Opy is
the beamwidth of the receiver [?]. The amplitudes, 4,,, are chosen depending
on the desired signal-to-noise ratio if noise is present, by letting

s

A =100 NL, (19)

where SNR is the logarithmic signal-to-noise ratio and NL is the noise level.
Superpositioning all these signals into one yields the noiseless synthesized signal:

S=>" Sm. (20)
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This is the basis for the model signals which we try to fit to the recorded signal.
If we are to use the signal as a substitute for a real signal for testing the solution
method, it can be subjected to additive white noise to create a more realistic
signal:

N2

S = n(ﬂnyon) + Z S’ﬂh

m=1

where n(u,, o,) is a random Gaussian process with expectation u,, and standard
deviation o,. We can use an acoustic model to calculate expected noise and
reverberation levels given the surroundings, however, we shall use the simplifying
assumption that p, = 70 dB and o, = 60 dB re 1 uPa, respectively. Bear in
mind that acoustic levels under water differ from those above water, and that
this noise level therefore is not excessive. Now, the amplitudes A,, serve a
purpose. They should be chosen as in (19). Typically, the SNR will lie in the
range 10-30 dB. Also, if needed, individual differences can be made in the A,,
to simulate the effects of signal attenuation from reflections. This is not done
here, but may be an interesting topic for further improvement of the method.

2.6 Signal processing

After synthetization of a test signal, or after a real signal has been obtained, one
should try to remove ambient noise as the optimization procedure may become
unstable in the presence of noise. Since noise levels may vary with time due
to engine noise etc., one should first try to normalize noise levels by making a
local in time estimate of noise levels. This is done by employing a normalisation
scheme called cell-averaging constant false alarm rate (CFAR) filtering [?]. The
CFAR filter normalizes the signal levels against a local estimate of noise levels;
proceeding entrywise through the signal, each entry is, in turn, considered a Cell
Under Test (CUT). A local estimate of the noise around the CUT is obtained
as the average of the surrounding cells; the closest cells, or guard cells, are not
included in this estimate as they may be corrupted by the signal contained in
the CUT. Figure 7 gives an illustration; only the cells marked WINDOW are
used in the noise level estimates.

The size of the guard band and the windows are chosen according to which
type of signal the CFAR filter is applied to. In our case, we shall use 40 entries
in each window and a guard band of size 1000, to ensure that the guard band is
large enough to contain a full arrival. These sizes are chosen heuristically, and
have not created problems thus far. A better choice may be found, but this is
outside the scope of this project, and may be followed up in later work.

CUT
WINDOW  GUARD CELLS GUARD CELLS WINDOW

Figure 7: Illustration of CFAR filtering

A
J

After a local noise level estimate is obtained, the CUT is normalized by
dividing the recorded intensity by the noise level estimate. This yields an es-
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timate of the SNR levels in the signal, which can be used for estimating the
signal excess as described in (10). The noise threshold used here is 13 dB. The
SE estimate can in turn be used for thresholding, essentially removing all signal
entries with an SE estimate lower than 0. This should remove most of the noise,
and the remaining signal should be well suited for optimization afterwards.

2.7 Representing the sound speed profile by use of EOFs

Due to temperature and salinity fluctuations caused by seasonal variations and
geographical differences such as ocean currents and sea depth, the sound speed
profile, which dictates much of the propagation behaviour of sound, will vary be-
tween geographical regions and with time. Also, ocean temperature and salinity
is strongly dependent on depth, leading to depth dependent sound speed. This
complicates the matter of choosing the correct sound speed profile to match
the environment. However, we shall assume range- and time independent sound
speed profiles for the ranges considered here (0-10 km), as this simplifies matters
considerably.

There is some difficulty in optimizing with respect to the sound speed profile
¢(z), the main challenge being that it is a function, implying the need for vari-
ational methods whereas standard numerical optimization methods optimize
with respect to scalar quantities. We therefore want to represent the sound
speed profile by means of scalars, preferably as few as possible, to simplify op-
timization. We begin by approximating ¢(z) by a continuous, piecewise linear
function:

zZ1— Z z
Co + 01; 0<z<2n
1 1
zZ9 — Z zZ— 2z
c1 + co 21 <2< 20
C(Z) — zZ9 — 21 Z9 — 21
Zn — X% Z — Zn—1
Cn—1 +cn Zn—1 <2< 2y
Zn — Zn—1 Zn T Zn—1

where {z;}_; is some partition of the ocean depth and {c;}7_; the sound

speed at these depths. This function is completely determined by the depth
partitioning {2;}7_, and the coefficients {c;}}_,, such that we may represent
c(z) by a vector ¢ = [coc1 ... ¢,]T and a vector z = [zg 21 ... 2|7

Changing the sound speed profile now amounts to changing the ¢; coeffi-
cients. However, there may be impractically many of these. In addition, an
initial guess for the ¢; is needed. Both these issues can be solved by the use
of historical data and EOFs. Extracting EOFs from a data set is equivalent
to using Principal Components Analysis on the data set, in which the most
vital characteristics of the data is isolated by means of a Singular Value Decom-
position (SVD) [?]. Assume that m measurements of the sound speeds at the
specified depths have been made and are recorded in the vectors cq, ca...cy,. We
may calculate the mean of these recordings, ¢, and use an SVD on the matrix
formed by zero-mean column vectors, [c; — €,C2 — C, ..., Cyy — €] to obtain the
EOFs vq,va...vy, as specified in [?]. Using these, we can represent the sound
speed profile as
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m
c=CcC+ Z YeVk
k=1
where the v, are the weighting coefficients for the EOFs. If the data is well
correlated, the first few EOFs will account for most of the variation in the data,
and we may therefore truncate the expansion of c after the first few EOFs;
typically, three EOFs will account for >95% of the total variation in the data.
This is an acceptable error, and we therefore let

c=cC+7V1+Y2Ve +73Vs.

Now, by varying v1, 72 and ~3, we also vary ¢(z) in an efficient manner which is
susceptible to ordinary optimization methods.

2.8 Optimization

The third and final part of the solution procedure, optimization, is done by
comparing the recorded signal to a modelled signal, then attempting to modify
the optimization parameters in the modelled signal in order to obtain a better
fit. The choice of which parameters to optimize with respect to is a matter of
complexity and accuracy. By optimizing with respect to too few or inconsequen-
tial parameters, we risk obtaining a sub-optimal fit, and as a result, an incorrect
target depth estimate. On the other hand, if too many parameters are included,
the computational complexity of the problem may become insurmountable. The
parameters to optimize with respect to should therefore be chosen carefully.

Of course, z; should be among the optimization parameters. Other suitable
candidates for optimization parameters are r, zp, 25 and ¢, as these parameters
influence the eigenray paths used in the modelled signal. As explained in the
preceding section, optimization with respect to c entails optimizing with respect
to two or three weighting coefficients 1, v and ~s.

2.8.1 Objective function

In order to compare the two signals, we need an objective function. First, since
the signal is sampled at discrete Ny discrete points in time and beamformed in
Ny discrete angles, it can be represented in a matrix:

Si11 Sz ... SlN@
g_ Sa1 Sao :
SNtl . e SNtNe

where each S;; is the intensity sampled at the time ¢; and in direction 6;.
Similarly, the modelled signal is given by

M11 M12 MlNg
M= My Moo
MNtl MNtNG
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The most obvious objective function for comparing the two signals, which we
will name the full objective function, is now given by

FM;8) = IS - M, (21)
for some matrix norm || - ||. We shall use the Frobenius norm, effectively finding

the root-mean-square distance between the two signals,

Allr =

If the observed signal can be exactly reproduced, the function will have a unique
minimum when S = M, a desirable property. However, when dealing with
real world signals and in the presence of random noise it is almost certainly
impossible to obtain a perfect reproduction of the recorded signal by modelling,
and so the unique minimum will not be attained. Nevertheless, this objective
function remains a viable option.

A problem with the direct comparison mentioned above is that it is compu-
tationally expensive, since each evaluation requires the formation of a full model
signal M. An approximation can be done by considering the signal in vector

form. Let
[ S11 ] [ Mqp ]
SN, Mp,1
512 M12
s = . and m = .
Sine Ming
SN, LM, v, ]

We now have
f(M;8) =|ls—ml|5 =sTs —2s"m + m"m.

Since the term s”s is independent of m, it can be considered constant and
therefore irrelevant to optimization. Moreover, the modelled signal M is a

superposition of signals from the arrivals, as explained in (20), so we may write

m = § my,

k=1

where each my corresponds to the partial signal resulting from the k’th arrival.
From this, we see that by disregarding the s”'s term, we can form the equivalent
objective function

N2
f(M;S)=—-2s"m+m m=m"m — QkaTs.
k=1
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If the m”m term could now be disregarded, we would arrive at a much more
computationally efficient objective function. Since each of the my, due to the
Gaussian shape of the signal they contain, are mostly zeroes, we can compute the
sum term very quickly by simply truncating the my to a smaller size containing
only nonzero entries and computing the inner product of the truncated vector
with the corresponding entries in the recorded signal, essentially exploiting the
sparsity of the my signals.

In fact, as we shall see in section 4, this approach works well for a range of
problems, but not in all cases. We therefore introduce the objective function,
which we will name the simplified objective function, given by

N2
g(M;S) = —s"m = — kaTs (22)
k=1

as an inferior, yet more efficient alternative to the full objective function. The
problem with the simplified objective function is that if the recorded signal has
an area in which arrivals are clustered (that is, several arrivals that are so close
in time and angle that they superposition on top of each other), this simplified
objective function will value modelled signals which gather all arrivals in this
cluster area higher than those where arrivals are more spread out.

2.8.2 Optimization algorithm

The black box nature of Lybin makes partial derivatives of any objective function
with respect to the problem parameters impossible to obtain, leaving us with
the choice of either a derivative-free optimization algorithm or using numerical
gradients in a more sophisticated algorithm. As the objective functions are
generally computationally expensive to compute, we would like to limit the
amount of evaluations needed. Calculating numerical gradients calls for several
evaluations per approximation, thus favouring derivative-free algorithms. Due
to its robustness and ease of implementation, the algorithm chosen here is the
derivative-free Nelder-Mead algorithm [?].

To avoid local minima, the Nelder-Mead algorithm requires that the opti-
mization start reasonably close to the global minimum. To find such an initial
guess, an exhaustive search method is employed, computing the objective func-
tion values with different problem parameters and choosing the parameters that
yield the lowest objective function value. This approach quickly runs into the
curse of dimensionality, as an increasing number of optimization parameters
necessitates a large number of evaluations to obtain a reasonable initial guess.

For example, with two parameters one may wish to check the objective
function values for five choices of each parameter, necessitating 25 evaluations
of the objective function. If a third parameter were introduced, and one wants
to check the objective function values for five choices of this parameter as well,
125 evaluations of the cost function are needed; a large increase in function
evaluations.
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3 Implementation and test setup

3.1 Implementation

The method outlined in section 2 has been implemented in MATLAB. Figure
8 shows a schematic overview of the process. Due to the modular structure of
the program, implementation of the method is done by use of many separate
functions, details about which can be found in Appendix A. For even more
detailed descriptions of the functions, please review the source code.

Lybin is accessed through the binary interface LybinCom 6.1 and incor-
porated in the MATLAB code through a COM server [?]. Since Lybin is a
32-bit-only program, a 32-bit version of MATLAB had to be used in order
for the LybinCOM extension to function. The Nelder-Mead optimization al-
gorithm being used is already implemented as the built-in MATLAB function
fminsearch.m, and is the only non-basic built-in MATLAB function used in the
code.

- RECORDED SIGNAL |
L]
~ PRE-PROCESSING

CFAR averaging
L]
Thresholding
;
Initial guess
/ OPTIMIZATION
Model parameters <—
L]
Ray Tracing
L]
Eigenrays
Y
Modelled signal
v
; Comparison — ’
AN v S

'TARGET DEPTH ESTIMATE |

Figure 8: Flowchart of the complete solution process.
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3.2 Test setup
3.2.1 Verification of numerical eigenray estimates

A test was done to check whether the eigenray candidates produced numerically
in fact reach the specified depth at target range, and in which cases the eigenray
estimates might fail. Five eigenrays were calculated by use of Lybin for each
set of environment parameters (7, 2, and z;). The target range was varied from
1000 m to 10 000 m in steps of 1000 m, the bottom depth from 100 m to 1000
m in steps of 100 m, and the target depth was varied from 50 m to 850 m in
steps of 200 m. The source depth z5 was kept constant at 50 m throughout the
test. A linear sound speed profile was used, in which sound speed varied from
1480 m/s at the surface to 1500 m/s at the bottom.

The numerical eigenray procedure produced five exit angles {6;}>_, for each
set of parameters; these exit angles were used as initial conditions in an analyt-
ical ray tracing, as described in section 2.4.1. The resulting analytical depth at
target range given the numerical exit angles, z(r;0;), was compared with the
desired target depth z;, giving the mean error in eigenray depth at target range:

5

E = éz |2 — z(re; 6;)]-
=1

Both numerical schemes presented in section 2.4.2 were tested. Recall that

method 1 signifies the method based on Lybin’s detection of ray families entering

the depth cell containing the target depth at target range, and method 2 signifies

the more transparent method of calculating ray trajectories that enclose the

target ray and interpolating between these.

3.2.2 Optimization test on synthesized data

Obtaining real acoustic data to test the procedure on is not easy. FFI has several
sets of recorded data which may be used, all of which are classified, such that
publishing results based on this data is disallowed. It was therefore necessary
to test the procedure on synthesized data, modelled as proposed in section 2.5
with added Gaussian noise. To obtain a more realistic signal and to test the
method’s sensitivity to disturbances, the arrival angles and arrival times used in
synthesizing the received signal were considered Gaussian distributed random
processes, as proposed in [?]:

7 Uw -1
07': 97:77 5 tl: ti,i .

Here, n(u, o) specifies a Gaussian process with expected value p and standard
deviation o; 0; and f; are the arrival angles and arrival times as found by the
numerical eigenray scheme, 0y is the vertical beamwidth of the sonar, B is the
bandwidth of the sonar and s = 105V/19 ig the linear signal-to-noise ratio of
the echoes. The #; and t; were obtained by first calculating 6; and £; numerically,
then adding Gaussian noise to these values. By varying the SNR values, s is
also varied, allowing us to test the method’s stability in the presence of different
levels of noise in the signal and inaccuracies in measurements.

For all tests, the nonlinear sound speed profile shown in figure 9 was used.
The parameters used in the tests were target ranges from 2000 m to 10 000 m
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in steps of 2000 m, bottom depths from 200 m to 1000 m in steps of 200 m, and
target depths from 50 m to 50 m above bottom depth in steps of 100 m. The
source depth was held constant at 5 m. In addition, all tests were done with use
of three eigenrays, then redone with five eigenrays, in an attempt to determine
how many eigenrays should be used in modeling signals to achieve a reasonable
estimate of target depth. Due to time constraints, no tests were carried out in
which the sound speed was varied as outlined in section 2.7, and as such, these
tests are a priority in future work. The source depth was not varied, either.

For each set of parameters, five iterations were done in which a signal was
synthesized by the method described above, and the optimization procedure
applied to this signal in order to estimate the target depth. The mean error
of these target depths estimates were then calculated. Both objective functions
given in section 2.8.1 were used in the test, to see whether they yielded different
results. While applying the simplified objective function (22), both methods of
estimating eigenrays were used. Only method 1 was used while applying the
full objective function (21). Again due to time constraints, the parameter range
was shortened for the runs with full objective function; target ranges were varied
from 2000 m to 10 000 m in steps of 4000 m, bottom depths from 200 m to 1000
m in steps of 400 m, and target depths from 50 m to 150 m above bottom depth
in steps of 200 m. The results of the test have been analyzed in four ways:

e The first analysis determines whether three eigenrays are sufficient in mod-
eling signals, or if five eigenrays should be used.

e The second analysis looks at the error in target depth estimation as a
function of SNR and target range, to see how sensitive the procedure is to
increasing noise levels, and how sensitive it is to increasing target range. It
also looks at the differences between the two numerical eigenray methods,
when employed in evaluating the simplified objective function.

e The third analysis is similar to the second, as it looks at the error in
target depth estimation as a function of SNR and bottom depth to further
determine the sensitivity of the procedure to noise, and to investigate the
sensitivity to bottom depths. A comparison between the two numerical
eigenray methods is given here as well.

e The fourth analysis compares the results obtained by use of the full objec-
tive function with the results obtained by use of the simplified objective
function, to see whether the simplified objective function is a reasonable
approximation.

3.2.3 Optimization test on real data

The optimization routine has been tested on real data as well, albeit without
definitive results. It appears to work, in the sense that the code runs without
crashing, and that it produces estimates of the target depth; however, the va-
lidity of these estimates have not been checked. There is also a problem with
finding proper arrival times in the real data, due to arrival times not being
provided along with the acoustic data. An ad hoc fix to this problem has been
applied, but it is not known whether this fix is correct. Therefore, and due to
the classified nature of the data these test have been applied to, no results from
the optimization test on real data is presented at this time.
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Figure 9: Sound speed profile used for testing.

4 Results and discussion

4.1 Verification of numerical eigenray estimates

Figure 10 shows the results of the verification test. Note that it is impossible that
target depth is greater than bottom depth, and so the mean error in these cases
is presented as 0 in the figures. From looking at the the figure, it is evident that
method 1 is slightly less accurate than method 2. Note, however, that method
1 seldom produces a mean error larger than 5 m, which is acceptable. Also note
that both methods show diminishing accuracy as the target range increases,
and as the bottom depth decreases. This is to be expected, as ray tracing at
large ranges requires more steps with the underlying numerical scheme than ray
tracing at close range in deep waters, thus accumulating a larger numerical error,
and since ray tracing in shallow waters is more sensitive to errors due to a higher
number of bottom reflections. We may also note that the eigenray estimates
are poorer for shallow target depths, especially for method 1, as shown by the
upper-left plot. The reason is unknown, but examination of this problem, along
with the question of why eigenray method 1 yields poorer results than method 2,
is considered as future work and requires an investigation of internal algorithms
of Lybin.

4.2 Optimization test on synthesized data
4.2.1 Number of eigenrays for signal modelling

Figure 11 shows an example of the maximum, minimum and mean estimates
of target depth obtained by use of the simplified cost function with numerical
eigenray method 2. From the figure, we see that using five eigenrays for calcu-
lating arrivals on which to model signals provides more consistent and correct
estimates for the target depth than using three eigenrays. It is worth noting
that estimates with use of three eigenrays produces a clear bias of 15 m toward
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Figure 10: Mean error in eigenray depth at target range. Left column: Method
1. Right column: Method 2.
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the bottom. The reason for this is unkown. That five eigenrays is superior to
three is to be expected, since using more eigenrays provides more information,
which should lead to better estimates. Note that the estimates improve as SNR
increases. Also, the results are satisfying enough to discourage the use of more
than five eigenrays. For the sake of brevity, we shall henceforth consider only
results obtained with the use of five eigenrays.
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Figure 11: Estimates of target depth as a function of SNR. Target depth: 350
m. Bottom depth: 800 m. Target range: 6000 m. Left: 3 eigenrays. Right: 5

eigenrays. Obtained by use of simplified cost function with numerical eigenray
method 2.

4.2.2 Estimation error as a function of SNR and target range

The plots in figure 12 show the error in the target depth estimation as a function
of SNR and target range for four different target depths. The left column
contains errors occurring with use of method 1 for obtaining eigenrays, while
the right column contains errors occurring with use of method 2.

First, we may observe that the errors are mostly within acceptable range for
classification purposes; we only need an approximate estimate for target depth
to say whether it is close to the bottom or not, and estimates with errors of less
than 50 m are good enough for this purpose. Second, we may note the markedly
better performance obtained by use of method 2, as compared to method 1, in
nearly all cases but those with target depth 50 m and target range 2000 or 10
000 m, along with the case where the target depth is 350 m and the target
range is 10 000 m. This may be attributable to the slightly more inaccurate
eigenray estimates provided by method 1, as observed from figure 10. The
sound speed profile chosen for this test is more irregular than a linear sound
speed profile and as such, the differences in eigenray accuracy between method
1 and method 2 could be exacerbated in this case, leading to poor performance
in estimating target depth. However, the irregularities may well be the effect of
an implementation error, and further investigation into the matter is in order.

Looking at the results from method 2, we see two irregular events with range
2000 m and target depths 50 and 150 m; with these parameters we recieve poor
estimates of the target depths, whereas with all other ranges and the same target
depths we find good estimates. This may be due to the sound speed profile being
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Figure 12: Mean error in estimates of target depth as a function of SNR and
target range. Bottom depth: 400 m. Left column: Method 1. Right column:
Method 2.
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used which, due to its shape in the section 0-200 m, may make depth estimation
in this depth range difficult. Rays will tend to curve toward areas of lower sound
speed, meaning that in the channel between 0 and 200 m, there will be many
eigenrays with small differences in exit angles and arrival times, making it hard
to determine the exact depth of the target[?]. However, despite high errors we
can conclude that a target is in this channel, giving important information for
classification purposes. We may also note that estimates generally decrease in
quality with increasing target range, as is to be expected. It is also worth noting
that in both cases, the error decreases with increasing SNR in most cases where
the estimation does not fail completely. In any case, the results are good enough
to use for classification, at least when using eigenray method 2; the results from
method 1 are not always as good.

4.2.3 Estimation error as a function of SNR and bottom depth

The plots in figure 13 show the error in the target depth estimation as a function
of SNR and bottom depth for four different target ranges. The left column
contains errors occurring with use of method 1 for obtaining eigenrays, while
the right column contains errors occurring with use of method 2.

Again we see that although most estimates using both methods are suitable
for classification purposes, method 2 is superior to method 1 in most cases, with
the exception of the cases where target range is 4000 m and bottom depth is 200
m or 800 m. As before, this may be attributable to the inaccuracy in eigenray
calculation when using method 1, or it may be due to implementation errors.

Looking at the results for method 2, we still see a general trend of improving
estimates with higher SNR, and we can see a trend of better estimates with larger
bottom depths, as is to be expected since ray tracing in shallow water more
sensitive to errors in initial angle than ray tracing in deep waters, due to a larger
amount of bottom reflections. Also note that method 2 still fails in some cases
with small target ranges (2000 m and 4000 m). This may be attributable to the
sound speed profile used, as explained previously. Once again, we may conclude
that the results obtained by use of method 2 are acceptable for classification
purposes while the results from method 1 are not always on par.

4.2.4 Comparison of objective functions

Figures 14 and 15 show the error in target depth estimation as a function of SNR
and bottom depth, and as a function of SNR and target range, respectively. In
both figures, the left column contains estimation errors occurring after applying
the full objective function evaluated by use of numerical eigenray method 1,
while the middle and right columns contain estimation errors occurring after
use of the simplified objective function evaluated by use of numerical eigenray
methods 1 and 2, respectively. In figure 15, five target depths are used while
the bottom depth is kept at 1000 m, and in figure 14, three target ranges are
used while the target depth is kept at 50 m.

In figure 14, we can see that the full objective function outperforms the
simplified objective function. Note that the simplified objective function with
eigenray method 1 actually performs better than the one evaluated by use of
method 2 here, giving acceptable estimates of target depth in all cases, which
would imply that the eigenray estimations work correctly for method 1 in this
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Figure 14: Mean error in estimates of target depth as a function of SNR and
bottom depth. Target depth: 50 m. Left: Full objective function. Middle: Sim-
plified objective function, using method 1. Right: Simplified objective function,
using method 2.

case. These results are to be expected, as the simplified objective function is
an approximation to the full objective function, and we would expect the full
objective function to perform better, given reliable eigenray estimates.

However, in figure 15 we see that although all three methods show mostly
acceptable results, the simplified objective function with eigenray method 2
works best in all but two cases; with target range 2000 m and target depth
either 250 m or 450 m. Also note that the full objective function and the
simplified objective function with eigenray method 1 have similar patterns in
where their estimates break down, which may be interpreted as further proof
that numerical eigenray method 1 is somewhat unsound and should be further
looked into. It would also be interesting to observe what results can be obtained
by use of the full objective function evaluated with eigenray method 2; such a
test should be prioritized in the future.

4.2.5 Execution time

An important part of the solution method is its execution time. Using the sim-
plified objective function evaluated with method 2, the optimization procedure
took 8 minutes on average in the worst cases (large target range), and 2.5 min-
utes in the best cases (small target range). This is mostly due to the need to call
on Lybin many times to find the ray paths while modeling signals to evaluate
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Figure 15: Mean error in estimates of target depth as a function of SNR and
target range. Bottom depth: 1000 m. Left: Full objective function. Mid-
dle: Simplified objective function, using method 1. Right: Simplified objective
function, using method 2.
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the objective function. It is not known whether the slowdown is attributable
to MATLAB’s plugin module being slow or whether Lybin does an unnecessary
amount of work in order to supply the ray tracing, but the time cost is quite
prohibitive. In contrast, evaluating with method 1, while inaccurate (as seen
above), is 20-30 times faster than method 2 due to it needing only one call to
Lybin. Therefore, if method 1 could be made more accurate, it would provide
a faster alternative to method 2.

The optimization procedure took 90 minutes on average to finish when us-
ing the full objective function, making this option prohibitively slow. This is
attributable to the need for a fully formed model signal for comparison with
the received signal. In any case, an optimization procedure requiring less func-
tion evaluations would be useful. Specifically, the initial guess routine is quite
slow due to the high amount of function evaluations involved. A more effective
way of producing initial guesses would probably speed up the execution time
considerably.

5 Future work and conclusion

5.1 Future work

There are several directions in which to continue work on the estimation proce-
dure; refining the method to produce more accurate results, reducing the execu-
tion time, and testing the method further to ensure its stability and reliability.
Here, several topics are presented in which improvements can be made.

Objective function

e As of now, a signal comparison technique is mostly being used, in which
whole signals are compared. However, if discrete arrival angles and times
could be extracted from the received signal, a direct comparison between
modeled and recorded arrival angles and times might be quicker and
cleaner. If so, ambiguities about which angles and times to compare must
be resolved.

e If the simplified cost function is used, weighting the contributions of dif-
ferent arrivals by their probability of detection (which can be calculated
from estimates of signal excess) may reduce the influence of weak arrivals
on the cost function, essentially giving more value to matching arrivals
which have a higher probability of showing up in the recorded signal.

e A cost function based on Bayesian inference may be a better choice than
the direct comparison of signals; Bayesian inference has previously been
used with good results in acoustic and oceanographic applications [?] [?].
There may also be a way in which the direct comparison method can be
interpreted in terms of Bayesian inversion, placing the method on firmer
theoretical ground. Also, if an objective function based on Bayesian prob-
abilities is used, a natural extension to estimating target depth through
information gained from several pings may be obtained.
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Signal processing

e A more rigorous way of choosing the size of guard bands and windows for
CFAR averaging should be found.

e If an objective function based on extracting discrete arrival times and
angles from the received signal is to be used, it relies on signal processing
to extract this information.

Optimization algorithm

e As of now, the Nelder-Mead algorithm is being used. This is not necessar-
ily the best solution, and a better algorithm may exist. Possible candidates
are simulated annealing; a derivative-free stochastic optimization method,
or gradient methods such as the BFGS method using numerical gradients

17].

e A faster method for producing initial guesses would be of great practi-
cal value as it would reduce the time needed for optimization, which is
currently quite slow. It may be possible in some cases to solve a coarser
version of the problem, that is, with a less detailed sound speed profile or
with a coarser computational grid for ray tracing, and use the solution of
this as an initial guess for the optimization method.

Analytical solutions for eigenrays

e An analytic solution to finding the initial angles of eigenrays in the case
where the sound speed profile is linear might be attainable, as outlined
in section 2.4.1. If so, it might be possible to obtain analytical solutions
for initial angles of eigenrays in the case of piecewise linear sound speed
profiles, which would essentially eliminate the need for numerical methods
for obtaining eigenrays.

Testing and debugging

e Further investigate why eigenray estimates are poorer for small target
depths when using a linear sound speed profile, as observed in section 4.1.

e Further investigate why eigenray estimates using method 1 are poorer than
method 2, and why target depth estimation using method 1 yields worse
results than using method 2. As a part of this, it might be interesting
to test whether target depth estimation using the full objective function
and numerical eigenray method 2 gives better results than with numerical
eigenray method 1.

e Test optimization with respect to EOF coefficients.

e It may be of interest to use bottom profiles instead of flat sea floors, to
check the method’s sensitivity to varying bathymetric conditions.
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5.2 Conclusion

Estimation of target depth has been carried out on synthesized acoustic data
using two different objective functions. The results obtained are acceptable
for classification purposes, and the best results were obtained while using the
simplified objective function evaluated using numerical eigenray method 2. It
remains to be seen whether this method is successful when optimizing with re-
spect to sound speed profile and source depth and if so, whether the success
transferable to real scenarios. The anomalies encountered while employing nu-
merical eigenray method 1 during estimation need to be investigated further, as
alleviating these would result in a faster procedure.
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Appendices

A Implementation details

A.1 Parameters

To simplify parameter passing and to promote consistent naming throughout
the code, two structs are used for parameter passing — one containing all com-
putation parameters, option flags etc., and one containing signal data and in-
formation about the signal.

Parameter struct

The parameter struct has five fields which are again structs: geometry, ray, env
(short for environment), signal and comp (short for computation). These are
loosely thematically organized, although not very well organized, since the fields
have grown with little planning. Each of these structs has fields with variables
pertaining to the problem.

geometry contains information about the geometry of the ocean, with the
following fields:

e bottomdepth: constant bottom depth. This should be extended to a bot-
tom profile later.

e sourcedepth: depth of the source (sonar).
o targetdepth: depth of the target.
e range: range of the target.
ray contains information about the ray tracing, with the following fields:

e mazcollisionnumber: the maximum number of collisions to allow in ray
tracing

e numrays: the number of rays to be traced with Lybin when using numer-
ical eigenray method 2.

env contains information about the environment, with the following fields:

e constSOS: speed of sound to use for computations with constant speed of
sound.

e [inSOS: 1x2 array containing sound speed at z = 0 and z = z; for use in
the linear speed of sound computations.

e meanSOS: mean speed of sound.

o coeffs: 1x3 array containing EOF coefficients for the three most significant
EOFs.

o windSpeed: takes values 1-9 to inform Lybin of severity of wind speed.
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e bottomType: takes values 1-9 to inform Lybin of absorption properties of
bottom.

signal contains information about the emitted ping, acoustic quantities and
recording capabilities of the sonar, with the following fields:

e SNR: Signal-to-Noise Ratio of the signal, used for synthetization of signals.
e linearSNR: linear Signal-to-Noise Ratio, for convenience.

e bandwidth: bandwidth of the signal.

o verticalBeamwidth: vertical beamwidth of the sonar.

o verticalBeamwidthRad: vertical beamwidth of the sonar in radians, for
convenience.

o vertical AngleResolution: vertical angle resolution, used in synthetization
and creation of windows for the objective function.

o vertical AngleResolutionRad: vertical angle resolution in radians, for con-
venience.

e samplingFrequency: frequency at which the signal is sampled.
e samplingPeriod: time between each sample.

e stoptime: probably obsolete, used earlier in synthetization of a signal to
specify when to stop the signal.

e sigmat: o, each arrival’s standard deviation in time.

e sigmaphi: oy, each arrival’s standard deviation in angle.

e sigmatarrival: o./s, the standard deviation in time of arrival times.

e sigmaphiarrival: og/s, the standard deviation in time of arrival angles.
e FM _frequency: frequency of an FM signal.

o FM pulse_length: pulse length of an FM signal.

e SL: Source Level of the signal.

e TS: Target Strength.

e NL: ambient Noise Level.

e directivity: directivity of the sonar.

comp contains information about the computational details, with the following
fields: Note: To use a sound speed choice, all previous sound speed flags must
be set to 0. For example, to use calculations with sound speed from EOFs,
EOFspeed must be set to 1, while constspeed, linspeed and pwlinspeed must
be set to 0. To use linear sound speed, linspeed must be set to 1, while only
constspeed needs to be set to 0.

e constspeed: toggle calculation with constant sound speed on/off.
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linspeed: toggle calculation with linear sound speed on/off.

pwlinspeed: toggle calculation with piecewise linear sound speed on/off.
EOFspeed: toggle calculation with sound speed from EOFs on/off.
useLybin: toggle use of Lybin in ray tracing on/off.

realdata: flag to signify real data is being used, not synthesized.

quadint: toggle use of quadratic interpolation on/off. If set to off, linear
interpolation is used.

rangeCellLength: set length of range cells used in Lybin calculations.
angleNoise: toggle additive noise to arrival angles on/off.
arrival TimeNoise: toggle additive noise to arrival times on/off.

soundSpeedNoise: toggle additive noise to sound speed profile on/off (for
use with EOFs).

numrandcoeffs: number of random EOF coefficients to use.
noise Threshold: noise threshold (in linear scale) for use in thresholding.

traveltimetrap: toggle trapezoidal rule use in travel time calculations on /off.
If set to off, the midpoint rule is used.

mazArrival Number: maximum number of eigenrays to use in calculations
of arrivals.

bottomhits: max number of bottom reflections in ray tracing.
surfacehits: max number of surface reflections in ray tracing.

visualEigenRay: set to 0 for eigenray method 1, set to 1 for eigenray
method 2.

angles: angles to use in calculations.
rayleighBottom: toggles Rayleigh bottom loss model on/off.

multCost: set to 0 for full objective function, set to 1 for simplified objec-
tive function.

Signal struct

The signal struct is smaller, containing the following fields:

signal: signal data.

tmin: time in seconds at which the signal starts.

tmaz: time in seconds at which the signal ends.

badstart: number of entries removed from start signal due to cell averaging.

badend: number of entries removed from end of signal due to cell averag-
ing.
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A.2 Functions

Computation functions

e arrivals.m combines exit angles and one-way travel times obtained from
ray tracing into arrival angles and two-way travel times. If Lybin is being
used, it also returns an estimate of the transmission loss along each path.

o cellAverage.m employs the CFAR cell-averaging technique to estimate
SNR levels in a signal.

e clean.m is an umbrella function for removing noisy data from a signal,
calling cellAverage first, then removeUnderThreshold and returning the
cleaned data..

e fastcost.m calculates the objective function based on inner products in
a quick manner by not forming the full modelled signal, instead matching
an arrival to the signal by windowing.

e fastcostnew.mis an attempt to address the window localization issue with
fastcost, however, it has not yet been effective.

e fastcostopt.m does the same as fastcost but with an additional input d
containing target depth and bottom depth data, to comply with MATLAB’s
convention for input to minimization functions.

e findArrivalAnglesAndTimes.m implements numerical eigenray method 2
. It runs through all rays generated by Lybin, finding the ones that lie
closest to the desired target depth at the target range and interpolating
to find arrival angles and times. It also returns an estimate of the trans-
mission loss of each ray.

e gethistory.m reads through a ray’s path data (depths and ranges) and
assigns a history to it, based on which kinds of collisions occur, and the
order in which they occurred.

e gettransloss.m reads through a ray’s path data (depths and ranges) and
estimates the transmission loss based on bottom collisions and signal at-
tenuation.

e initialGuess.m loops through a specified range of bottom depths and
target depths to determine an initial guess for fminsearch to work from.

e interpolationtype.m checks the histories of three rays to find out which
kind of interpolation can be applied to find eigenrays — if all rays have the
same history, quadratic interpolation can be used. If not, linear interpo-
lation or no interpolation must be used.

e linint.m generically interpolates a value linearily.

e makefilename.m makes a filename based on parameters. optimization.m
takes an uncleaned signal, parameters and an initial guess for bottom
depth as input and tries to optimize with respect to bottom depth and
target depth as outlined previously.
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e model.m is used to make the modelled signal for the full objective function.
e optimization.m runs the optimization procedure.

e planewavereflection 2layered.m is made by KTH, and computes a
reflection coefficient for a collision based on bottom properties and the
angle of the incoming ray with the bottom.

e quadint.m generically interpolates a value quadratically.

e raytrace.m calculates exit angles and one-way travel times for eigenrays,
based on the analytic model with constant speed of sound

e raytracelybin.m feeds parameters for Lybin, calls Lybin to do calcula-
tions and then findArrivalAnglesAndTimes to find angles and travel times
for all eigenrays.

e readSignal.mreads a real signal and translates its data into the parameter
and signal structs.

e removeUnderThreshold.m takes in a cell averaged signal and removes all
entries below a certain threshold, typically 10-13 dB.

e sndSpeedFromProfile.m interpolates a sound speed from a given sound
speed profile, for use in traveltime.

e synthesize.m synthesizes a signal by finding arrivals through arrivals,
then modelling a signal by the method explained earlier.

e testsetup.m initializes a parameter struct with certain default values.

e traveltime.m calculates travel time from a ray’s range and depth infor-
mation.

e traveltimetrap.m slightly more accurately calculates travel time from a
ray’s range and depth information using the trapezoid rule.
Test functions

e convtest.m is used for testing convergence properties of Lybin’s calcula-
tions to the analytic results.

e funkytest.mis used for testing analytic solutions to the linear sound speed
case.

e lybinspeedtest.m is used for testing the speed of Lybin in calculating
eigenrays.

e pingtest.m and pingtesting.m are used for testing the ability of the
method to estimate target depths of real signals.

e largeInitialGuess.m, largeoptimtest.m, largetest.m and runtest.m
are used for testing convergence properties of the method for synthesized
signals.

e test.m is a general test function, to try out changes in code.
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testdata.m is used for testing the method on real data.

testoptim.m is used for testing the optimization algorithm.

Plotting functions

lybinvsanalytic.m plots arrivals extracted from Lybin’s raytracing ver-
sus those obtained from analytic expressions.

rayanim.m animates rays returned by Lybin.
signalplot.m plots the signal as an image.

signalplot2.m plots the signal as an image, while adjusting for removed
entries due to cell averaging.

snrtestplot.m plots the results of the SNR test.
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